- Mühendislik Bilimleri ve Araştırmaları Dergisi
- Vol: 5 Issue: 1
- Kötü Amaçlı Yazılım Türlerinin Tespitinde Kullanılan 1B Verilerin 2B Barkod Türlerine Dönüştürülerek...
Kötü Amaçlı Yazılım Türlerinin Tespitinde Kullanılan 1B Verilerin 2B Barkod Türlerine Dönüştürülerek Derin Ağlarla Analizlerinin Gerçekleştirilmesi
Authors : Mesut Toğaçar
Pages : 169-177
Doi:10.46387/bjesr.1262841
View : 10 | Download : 8
Publication Date : 2023-04-30
Article Type : Research
Abstract :Kötü amaçlı yazılımlar bilgisayar tabanlı sistemlere zarar vermek, önemli bilgileri elde etmek veya değiştirmek amaçlı hazırlanmış yazılımlardır. Bu tür yazılımlar insanların etkileşim içerisinde olduğu ağ ortamlarını hedef alırlar. Bu ağ ortamlarında kullanılan akıllı cihazlar günümüzde hayatımızın vazgeçilmez parçalarından biri olmuştur. Akıllı cihazların güvenliğini sağlayabilmek, zararlı yazılımların tespitini gerçekleştirebilmek için son zamanlarda yapay zekâ tabanlı birçok çalışma gerçekleşmiştir. Bu çalışmanın veri kümesi gizlenmiş kötü amaçlı yazılım türlerini içerisinde barındıran metin tabanlı içeriklerden oluşmaktadır. Önerilen yaklaşım, önişlem adımından ve derin öğrenme modelinden oluşmaktadır. Önişlem adımında metin tabanlı veriler, 2-boyutlu barkod türlerine dönüştürülerek iki yeni veri kümesi elde edilmiştir. Bir sonraki adımda veri kümeleri tasarlanmış derin ağ modeli tarafından eğitilerek özellik setleri çıkartılmıştır. Son adımda özellik setleri birleştirilerek sınıflandırma süreci Softmax yöntemi kullanılarak gerçekleşmiştir. Deneysel analizler önerilen yaklaşımın genel performansı artırdığı görülmüştür ve sınıflandırma sürecinde genel doğruluk başarısı %100 olarak elde edilmiştir.Keywords : Özellik Çıkarma, Kötü Amaçlı Yazılımlar, 2B Barkod Türleri, Derin Öğrenme