- Akademik Platform Mühendislik ve Fen Bilimleri Dergisi
- Vol: 8 Issue: 2
- Makine Öğrenimi Yöntemleri ile Türkiye için Sera Gazı Emisyonu Tahmini
Makine Öğrenimi Yöntemleri ile Türkiye için Sera Gazı Emisyonu Tahmini
Authors : Melike Şişeci Çeşmeli, Ihsan Pençe
Pages : 332-348
Doi:10.21541/apjes.658922
View : 31 | Download : 8
Publication Date : 2020-05-26
Article Type : Research
Abstract :Sera gazı emisyonu dünyamızın kendini yenileme kapasitesinin önüne geçerek, ozon tabakasının delinmesi, küresel ısınma ve besin kaynaklarının azalması gibi sonuçlara sebep olmaktadır. Ayrıca sera gazları, ekolojik ayak izini oluşturan en büyük etmendir. Dünyanın daha yaşanılabilir ve kendi kendine yetebilir olması için biyokütle alanları ile ekolojik ayak izi dengede olmalıdır. Bu dengeyi sağlamak için ise sera gazı emisyonunun ileriye yönelik durumu belirlenmelidir. Bu çalışmada, makine öğrenimi algoritmaları kullanılarak Türkiye için ileriye yönelik sera gazı emisyonu tahminlemesi gerçekleştirilmiş olup, veri setini Türkiye’ye ait 1967-2017 yılları arasındaki sera gazı emisyonu oluşturmaktadır. Yöntemlerin başarısını sınamak için öncelikle veri seti zaman serisi olarak ele alınmış daha sonra ise istatistiksel olarak da sonuçları değerlendirmek için 10-kat çapraz doğrulama uygulanmıştır. En iyi algoritma olarak Uzun Kısa-Vadeli Hafıza tespit edilmiş olup zaman serisi olarak değerlendirilen test setinde bu algoritmanın ortalama karesel hataların karekökü, ortalama mutlak yüzde hata ve belirleme katsayısı değerleri sırası ile 0.25, 1.11, 1.0 bulunmuştur. Bu başarılı sonuçlar ile oluşturulan model 2018-2031 yılına kadar olan sera gazı emisyonunu tahmin etmek için kullanılmıştır. Tahmin edilen emisyon değerleri günümüze göre yüksek seviyede olup bu değerler göz önüne alınarak gerekli tedbir ve biyokütleyi artırıcı faaliyetlerin gerçekleştirilmesi gerekmektedir.Keywords : Makine öğrenimi, Sera gazı emisyonu, Makine öğrenimi, Derin Öğrenme, Uzun Kısa-Vadeli Hafıza, Tahminleme