- İstanbul Tıp Fakültesi Dergisi
- Vol: 85 Issue: 4
- MACHINE LEARNING-BASED CLASSIFICATION OF HBV AND HCV-RELATED HEPATOCELLULAR CARCINOMA USING GENOMIC ...
MACHINE LEARNING-BASED CLASSIFICATION OF HBV AND HCV-RELATED HEPATOCELLULAR CARCINOMA USING GENOMIC BIOMARKERS
Authors : Sami Akbulut, Zeynep Küçükakçali, Cemil Çolak
Pages : 532-540
Doi:10.26650/IUITFD.1130442
View : 27 | Download : 10
Publication Date : 2022-10-28
Article Type : Research
Abstract :Amaç: Hepatoselüler karsinomun (HCC) optimal yönetimi için altında yatan nedenleri bilmek çok önemlidir. Bu çalışma, HBV veya HCV enfeksiyonu olan HCC hastalarının açık erişim gen ekspresyon verilerini XGboost yöntemini kullanarak sınıflandırmayı amaçlamaktadır. Gereç ve Yöntem: Bu vaka-kontrol çalışmasında, HBV ve HCV ile ilişkili HCC’li hastaların açık erişimli gen ekspresyonu verileri dikkate alınmıştır. Bu amaçla, 17 HBV+HCC ve 17 HCV+HCC hastadan elde edilen veriler çalışmaya dahil edildi. Sınıflandırma için on katlı çapraz geçerlilik kullanılarak XGboost modeli oluşturuldu. Model performansı için doğruluk, dengeli doğruluk, duyarlılık, özgüllük, pozitif tahmin değeri ve negatif tahmin değeri ve F1 skor performans metrikleri değerlendirildi. Bulgular: Özellik seçimi yaklaşımı ile 17 gen seçilmiş ve bu girdi değişkenleri kullanılarak modelleme yapılmıştır. XGboost modelinden elde edilen doğruluk, dengeli doğruluk, duyarlılık, özgüllük, pozitif tahmin değeri, negatif tahmin değeri ve F1 skor sırasıyla %97,1, %97,1, %94,1, %100, %100, %94,4 ve %97 idi. XGboost’tan elde edilen değişken önemliliği bulgularına dayanarak, ALDOC, GLUD2, TRAPPC10, FLJ12998, RPL39, KDELR2 ve KIAA0446 genleri, HBV ile ilişkili HCC için potansiyel biyobelirteçler olarak kullanılabilir. Sonuç: Çalışma sonucunda, HCC’ye neden olan iki farklı etiyolojik faktör (HBV ve HCV), makine öğrenimi tabanlı bir tahmin yaklaşımı kullanılarak sınıflandırıldı ve HBV ile ilişkili HCC için biyobelirteç olabilecek genler tanımlandı. Ortaya çıkan genler sonraki araştırmalarda klinik olarak doğrulandıktan sonra, bu genlere dayalı terapötik prosedürler oluşturulabilir ve klinik uygulamada kullanımları belgelenebilir. Anahtar Kelimeler:Keywords : Hepatosellüler kanser, Hepatit B enfeksiyonu, Hepatit C enfeksiyonu, makine öğrenimi, sınıflandırma