- Mathematical Sciences and Applications E-Notes
- Cilt: 11 Sayı: 4
- On Generalizations of Hölder\'s and Minkowski\'s Inequalities
On Generalizations of Hölder\'s and Minkowski\'s Inequalities
Authors : Uğur Selamet Kirmaci
Pages : 213-225
Doi:10.36753/mathenot.1150375
View : 83 | Download : 323
Publication Date : 2023-10-25
Article Type : Research
Abstract :We present the generalizations of Hölder\'s inequality and Minkowski\'s inequality along with the generalizations of Aczel\'s, Popoviciu\'s, Lyapunov\'s and Bellman\'s inequalities. Some applications for the metric spaces, normed spaces, Banach spaces, sequence spaces and integral inequalities are further specified. It is shown that $({\\mathbb{R}}^n,d)$ and $\\left(l_p,d_{m,p}\\right)$ are complete metric spaces and $({\\mathbb{R}}^n,{\\left\\|x\\right\\|}_m)$ and $\\left(l_p,{\\left\\|x\\right\\|}_{m,p}\\right)$ are $\\frac{1}{m}-$Banach spaces. Also, it is deduced that $\\left(b^{r,s}_{p,1},{\\left\\|x\\right\\|}_{r,s,m}\\right)$ is a $\\frac{1}{m}-$normed space.Keywords : Aczel\'s inequality, Bellman\'s inequality, Hölder\'s inequality