- Endüstri Mühendisliği
- Vol: 31 Issue: 3
- FORECASTING MODELS FOR COVID-19 CASES OF TURKEY USING ARTIFICIAL NEURAL NETWORKS AND DEEP LEARNING
FORECASTING MODELS FOR COVID-19 CASES OF TURKEY USING ARTIFICIAL NEURAL NETWORKS AND DEEP LEARNING
Authors : Yunus Eroğlu
Pages : 353-372
Doi:10.46465/endustrimuhendisligi.771646
View : 21 | Download : 14
Publication Date : 2020-12-31
Article Type : Research
Abstract :Hükumetler, bir pandemi salgını sırasında stratejik kararlar alırken, halk sağlığı ve ekonomi arasında bir ikilemle karşı karşıyadır. Özellikle salgın dönemlerinde hükumetler tarafından alınacak stratejik kararlar açısından vaka sayısını tahmin etmek ve belirtilen ikilemi yönetmek büyük önem taşımaktadır. Bugün neredeyse tüm ülkeler için önemli konulardan birisi de Covid-19 salgınıdır. Ne yazık ki, henüz Covid-19 için etkili bir aşı veya tedavi bulunamamıştır. Ayrıca, bu çalışmanın hazırlığı sırasında, Dünya Sağlık Örgütü tarafından dünya çapında toplam vaka sayısının on üç milyondan fazla olduğu bildirilmiştir. Böyle büyük bir salgınla başa çıkmak için çeşitli karantina önlemlerinin alınması gerekli olmuştur. Hükumetler tarafından alınan karantina önlemleri, ülkeleri ekonomik krizle karşı karşıya getirmiştir. Bu durum ekonomik belirsizlikler yaratmaktadır ve hükumetleri doğru ve en az zararlı stratejik kararlar almak için muazzam bir baskı altına sokmaktadır. Bu nedenlerle hükumetler, ani bir karar vermek yerine durumu adım adım gözlemleyerek Covid-19 için stratejik kararlar almayı tercih etmektedirler. Eğer pandemi vakalarının sayısı belirlenmiş bir zamandan önce tahmin edilebilirse, hükümetlerin halk sağlığı ve ekonomi ikilemini daha doğru bir şekilde yönetmeleri için önemli bir rehber olarak kullanılabilir. Bu nedenle, bu çalışmada 7 gün önceden Covid-19 vakalarını tahmin etmek için yapay sinir ağı (YSA) ve derin öğrenme (uzun-kısa süreli bellek, LSTM ağları) modelleri sunulmuştur. Önerilen modeller Türkiye'nin gerçek verileri üzerinde test edilmiştir. Sonuçlar LSTM modellerinin eğitim seti için hem kümülatif hem de yeni vaka tahminlerinde YSA modellerinden daha iyi performans gösterdiğini göstermiştir. Önerilen modellerin tüm veri seti üzerindeki performansları kıyaslandığında YSA ve LSTM algoritmalarının birbirleri ile rekabet edebilir sonuçlar verdiği gözlemlenmiştir. Ayrıca hem YSA hem de LSTM modellerinin kümülatif vaka tahmini performanslarının yeni vaka tahminlerinden daha iyi olduğu gözlenmiştir.Keywords : Covid-19, Pandemiler, Tahminleme, Yapay Sinir Ağları, Derin Öğrenme, LSTM, Türkiye