- European Mechanical Science
- Cilt: 7 Sayı: 4
- Optimizing printing parameters for enhanced mechanical properties of 3D printed PLA octet lattice st...
Optimizing printing parameters for enhanced mechanical properties of 3D printed PLA octet lattice structures
Authors : Oğuz Tunçel
Pages : 278-284
Doi:10.26701/ems.1382590
View : 56 | Download : 117
Publication Date : 2023-12-20
Article Type : Research
Abstract :This study explores the impact of printing parameters on the mechanical properties of 3D printed octet lattice structures using PLA material. Focused on optimizing layer height, print speed, and infill density, the study employed Taguchi methodology. Compressive strength and strength per mass were the key metrics analyzed. The optimized parameters, determined as 0.2 mm layer height, 90 mm/s print speed, and 100% infill density, significantly enhanced compressive strength. Infill density emerged as the most influential factor, contributing to 82.74% of the overall variation. A robust predictive model was developed, achieving a 92.06% accuracy in estimating compressive strength per mass values. These findings provide crucial guidelines for manufacturing high-strength, lightweight PLA octet lattice structures, vital in industries like aerospace and automotive. This study advances additive manufacturing, opening avenues for further research in diverse lattice structures and materials.Keywords : Fdm, , pla, octet lattice, compression strength, taguchi, anova