Detection of Face Mask Wearing Condition for COVID-19 using Mask R-CNN
Authors : Ahsen Battal, Adem Tuncer
Pages : 1051-1060
Doi:10.31202/ecjse.1061270
View : 18 | Download : 18
Publication Date : 2022-09-30
Article Type : Research
Abstract :Tüm dünyayı etkisi altına alan COVID-19 salgını nedeniyle ülkeler insanların yüz maskesi takmasını zorunlu hale getirdi. Çünkü maske takmak virüsün bulaşma riskini azaltmak için en etkili yöntemlerden biri olarak kabul edilmektedir. Ancak insanların maske takıp takmadığını manuel olarak kontrol etmek zordur. Bu çalışmada derin bir sinir ağı kullanılarak kalabalık ortamlarda her türlü yüz maskesini algılayan bir modelin geliştirilmesi amaçlanmıştır. Derin öğrenme algoritmalarından biri olan ve nesne tespiti için kullanılan Mask R-CNN, insanların maske durumlarını tespit etmek ve sınıflandırmak için kullanıldı. Önerilen derin öğrenme modeli, üç sınıf (maskeli, maskesiz, yanlış maske kullanımı) içeren 853 görüntüden oluşan bir veri seti kullanılarak k-kat çapraz doğrulama ile eğitildi ve test edildi. Omurga mimarisi olarak ResNet101 seçildi ve COCO modeli kullanılarak transfer öğrenmesi gerçekleştirildi. Önerilen Mask R-CNN modeli, %83'lük bir mAP, %90'lık bir mAR ve %86'lık bir F1 puanına ulaşmıştır. Bu sonuçlar önerilen modelin maske tespitinde başarılı olduğunu ortaya koymaktadır.Keywords : Covid-19, Derin öğrenme, Mask R-CNN, Maske tespiti