Yapay Zeka Destekli ÇOKS Yöntemi ile Kredi Kartı Sahtekarlığının Tespiti
Authors : Mustafa Furkan Keskenler, Deniz Dal, Tolga Aydin
Pages : 1007-1023
Doi:10.31202/ecjse.908260
View : 27 | Download : 9
Publication Date : 2021-05-31
Article Type : Research
Abstract :Ödeme ve bankacılık sistemleri yeni teknolojik imkânlarla her geçen gün bir değişime ve gelişime uğramaktadır. Bu kapsamda kredi kartı teknolojisi de barındırdığı çeşitli avantajlar dolayısıyla kullanımı hızla artan bir ödeme seçeneği olarak karşımıza çıkmaktadır. Diğer taraftan kredi kartları en yaygın ödeme şekli haline geldikçe, sanal ortamdaki dolandırıcılık oranının da bu duruma paralel bir biçimde artma eğilimi gösterdiği bildirilmektedir. Hem yasal hem de sahtekârlığa yönelik işlemlerin benzer davranış eğilimine sahip olduğu gerçeği kredi kartı sahteciliğinin sanal ortamda tespitini oldukça zorlaştırmaktadır. Literatür incelendiğinde kredi kartı sahteciliğini tespite yönelik araştırmalarda çoğunlukla makine öğrenmesi algoritmalarından faydalanıldığı ve bu çalışmalar kapsamında farklı sınıflandırma algoritmalarının bireysel olarak dikkate alındığı görülmektedir. Öte yandan literatürde sınıflandırma işlemi için makine öğrenmesi algoritmalarının birlikte kullanıldıkları yöntemlere de rastlanıldığı ve bu sayede son derece hassas sınıflandırıcılara ulaşılabildiği rapor edilmektedir. Buna rağmen kredi kartı sahteciliğini tespit etmek amacıyla karar ağacı, k en yakın komşu ve näive bayes sınıflandırıcıların bir arada kullanıldığı bir çalışma literatürde mevcut değildir. Bu gözlemden hareketle bu çalışma kapsamında eldeki problemin çözümüne yönelik karar ağacı, k en yakın komşu ve näive bayes makine öğrenmesi algoritmalarından yararlanan ve Çoğunluk Oyu ile Karar Verme Sistemi (ÇOKS) olarak adlandırılan yeni bir sezgisel algoritma geliştirilmiştir. Geliştirilen yöntem ile literatürdeki çalışmalarda elde edilen başarının üzerine çıkıldığı saptanmıştır. Bu algoritmanın ortak karar verme mekanizması için de bir sayısal devre tasarımı lojik fonksiyonu olan çoğunluk fonksiyonundan faydalanılmıştır. Bu sayede ilgili algoritmaların güçlü yönlerinin stratejik bir şekilde birleştirilmesi amaçlanmıştır. ÇOKS’nin etkinliği her biri 30 farklı özniteliğe sahip 284,807 kredi kartı işleminin yer aldığı bir veri kümesi üzerinde test edilmiştir. Yürütülen testler finansal güvenliği hedefleyen bu yeni yöntemin %99,93 doğruluk oranı, %95,60 kesinlik oranı ve %80,0 ROC AUC değeri ile veri kümesindeki bir işlemi "sahte” veya "yasal” işlem olarak sınıflandırabilmeyi başardığını göstermiştir. Literatürdeki benzer çalışmalarla yapılan kıyaslamalar doğruluk oranıyla birlikte ÇOKS’nin özellikle kesinlik ve ROC AUC performans ölçütleri açısından yüksek bir başarı gösterdiğini ortaya koymuştur.Keywords : Kredi kartı, sahtekârlık tespiti, veri madenciliği, makine öğrenmesi, çoğunluk oyu ile karar