Some New Cauchy Sequence Spaces
Authors : Harun Polat
Pages : 267-272
Doi:10.32323/ujma.399587
View : 12 | Download : 8
Publication Date : 2018-12-20
Article Type : Research
Abstract :In this paper, our goal is to introduce some new Cauchy sequence spaces. These spaces are defined by Cauchy transforms. We shall use notations $C_{\infty }\left( s,t\right) $, $C\left( s,t\right) $ and $C_{0}\left( s,t\right) ~$for these new sequence spaces. We prove that these new sequence spaces $C_{\infty }\left( s,t\right) $, $C\left( s,t\right) $ and $C_{0}\left( s,t\right) ~$ are the $BK-$spaces and isomorphic to the spaces $l_{\infty }$, $c\ $and $c_{0}$, respectively. Besides the bases of these spaces, $\alpha -$, $\beta -\ $and $\gamma -$ duals of these spaces will be given. Finally, the matrix classes $(C\left( s,t\right) :l_{p})$ and $(C\left( s,t\right) :c)$ have been characterized.Keywords : Cauchy sequence spaces, $alpha -$, $~eta - $and $% gamma -$ duals, Schauder basis, Matrix mappings