- Turkish Journal of Mathematics
- Vol: 32 Issue: 2
- Real Gromov-Witten Invariants on the Moduli Space of Genus 0 Stable Maps to a Smooth Rational Projec...
Real Gromov-Witten Invariants on the Moduli Space of Genus 0 Stable Maps to a Smooth Rational Projective Space
Authors : Seongchun Kwon
Pages : 155-186
View : 13 | Download : 8
Publication Date : 9999-12-31
Article Type : Makaleler
Abstract :We characterize transversality, non-transversality properties on the moduli space of genus 0 stable maps to a rational projective surface. If a target space is equipped with a real structure, i.e, anti-holomorphic involution, then the results have real enumerative applications. Firstly, we can define a real version of Gromov-Witten invariants. Secondly, we can prove the invariance of Welschinger's invariant in algebraic geometric category.Keywords : Gromov-Witten invariant, enumerative invariant, transversality, intersection multiplicity, real structure