- Turkish Journal of Mathematics
- Vol: 37 Issue: 2
- On quasiconformal harmonic mappings lifting to minimal surfaces
On quasiconformal harmonic mappings lifting to minimal surfaces
Authors : Hakan Mete Taştan, Yaşar Polatoğlu
Pages : 267-277
Doi:10.3906/mat-1106-36
View : 15 | Download : 9
Publication Date : 9999-12-31
Article Type : Makaleler
Abstract :We prove a growth theorem for a function to belong to the class \sum(m;a) and generalize a Weierstrass-Enneper representation type theorem for the minimal surfaces given in [5] to spacelike minimal surfaces which lie in 3-dimensional Lorentz-Minkowski space L3. We also obtain some estimates of the Gaussian curvature of the minimal surfaces in 3-dimensional Euclidean space R3 and of the spacelike minimal surfaces in L3.Keywords : Minimal surface, isothermal parameters, Weierstrass-Enneper representation, quasiconformal harmonic mapping