- The International Journal of Materials and Engineering Technology
- Vol: 5 Issue: 2
- EXAMINATION OF THE INFLUENCE OF PRINTING PARAMETERS FOR THE CONTINUOUS CARBON FIBER-REINFORCED THERM...
EXAMINATION OF THE INFLUENCE OF PRINTING PARAMETERS FOR THE CONTINUOUS CARBON FIBER-REINFORCED THERMOPLASTICS BASED ON FUSED DEPOSITION MODELING
Authors : Altuğ Uşun, Recep Gümrük, Nuri Yildiz, Bahri Barış Vatandaş
Pages : 65-70
View : 14 | Download : 9
Publication Date : 2022-12-31
Article Type : Research
Abstract :The continuous carbon fiber-reinforced thermoplastic (CFRTP) printing process has been used more widely in recent years and is an alternative production method, especially in sectors such as aviation, automotive, prototyping, medical applications, and aerospace. Although additive manufacturing reduces the design limitations and makes it easier to manufacture, it is one of the disadvantages of this method: it has relatively low thermal and mechanical properties compared to standard production techniques. Therefore, in this study, printing parameters such as nozzle temperature, printing speed, layer thickness and heated bed temperature was investigated for fused deposition modelling. In this regard, a polymer impregnation line based on the melt impregnation technique was utilized to obtain CFRTP filaments using polylactic acid (PLA) and 3K carbon fiber. Obtained filaments then were used to print three-point bending test samples in order to investigate mechanical performance. The test result showed flexural stress between 108 and 224 MPa and flexural modulus between 9.67 and 17.69 GPa with a 23% fiber ratio. Results from this study proclaim that CFRTP's manufactured with this method and optimized printing parameters have great potential for implementing future production methods.Keywords : Additive Manufacturing, Polymer-matrix Composites, Continuous Fiber-reinforced Thermoplastic, Mechanical Properties