Some Additive Inequalities for Heinz Operator Mean
Authors : Sever Dragomir
Pages : 168-174
View : 14 | Download : 12
Publication Date : 2019-04-15
Article Type : Research
Abstract :In this paper we obtain some new additive inequalities for Heinz operator mean, namely the operator $H_{\nu }\left( A,B\right) :=\frac{1}{2}\left( A\sharp _{\nu }B+A\sharp _{1-\nu }B\right) $ where $A\sharp _{\nu }B:=A^{1/2}\left( A^{-1/2}BA^{-1/2}\right) ^{\nu }A^{1/2}$ is the weighted geometric mean for the positive invertible operators $A$ and $B,$ and $\nu \in \left[ 0,1\right] .$Keywords : Youngs Inequality, Real functions, Arithmetic mean-Geometric mean inequality