- Journal of Universal Mathematics
- Vol: 4 Issue: 1
- SPECTRAL PROPERTIES OF A CONFORMABLE BOUNDARY VALUE PROBLEM ON TIME SCALES
SPECTRAL PROPERTIES OF A CONFORMABLE BOUNDARY VALUE PROBLEM ON TIME SCALES
Authors : Zeki Ceylan
Pages : 73-80
Doi:10.33773/jum.695777
View : 33 | Download : 15
Publication Date : 2021-01-31
Article Type : Research
Abstract :We study a self-adjoint conformable dynamic equation of second order on an arbitrary time scale $\mathbb{T}$. We state an existence and uniqueness theorem for the solutions of this equation. We prove the conformable Lagrange identity on time scales. Then, we consider a conformable eigenvalue problem generated by the above-mentioned dynamic equation of second order and we examine some of the spectral properties of this boundary value problem.Keywords : Time scales, Conformable derivative