- Journal of New Theory
- Sayı: 47
- On the Diophantine Equation $\\left(9d^2 + 1\\right)^x + \\left(16d^2 - 1\\right)^y = (5d)^z$ Regard...
On the Diophantine Equation $\\left(9d^2 + 1\\right)^x + \\left(16d^2 - 1\\right)^y = (5d)^z$ Regarding Terai\'s Conjecture
Authors : Tuba Çokoksen, Murat Alan
Pages : 72-84
Doi:10.53570/jnt.1479551
View : 146 | Download : 122
Publication Date : 2024-06-30
Article Type : Research
Abstract :This study proves that the Diophantine equation $\\left(9d^2+1\\right)^x+\\left(16d^2-1\\right)^y=(5d)^z$ has a unique positive integer solution $(x,y,z)=(1,1,2)$, for all $d>1$. The proof employs elementary number theory techniques, including linear forms in two logarithms and Zsigmondy\'s Primitive Divisor Theorem, specifically when $d$ is not divisible by $5$. In cases where $d$ is divisible by $5$, an alternative method utilizing linear forms in p-adic logarithms is applied.Keywords : Terai, Diophantine equations, primitive divisor theorem