- International Scientific and Vocational Studies Journal
- Vol: 6 Issue: 2
- Runge Kutta Optimization for Fixed Size Multimodal Test Functions
Runge Kutta Optimization for Fixed Size Multimodal Test Functions
Authors : Fatih Cantaş, Serdar Özyön, Celal Yaşar
Pages : 144-155
Doi:10.47897/bilmes.1219033
View : 16 | Download : 8
Publication Date : 2022-12-31
Article Type : Research
Abstract :In this study, it is aimed to increase the success of the Runge Kutta (RUN) algorithm, which is used in the solution of many optimization problems in the literature, on fixed-size test functions by changing the parameter values. Optimization can be defined as making a system most efficient at the least possible cost under certain constraints. For this process, many optimization algorithms have been designed in the literature and used to obtain the best solutions for certain problems. The most important parts in solving these problems are modeling the problem correctly, determining the parameters and constraints of the problem, and finally choosing a suitable meta-heuristic algorithm for the solution of the objective function. Not every algorithm is suitable for every problem structure. Therefore, in this study, the suitability of the RUN algorithm for the solution of fixed-size functions will be evaluated. Theoretically, Runge-Kutta methods used in numerical analysis are an important type of the family of closed and open iterative methods for solution approximations of ordinary differential equations. The RUN algorithm is also designed with inspiration from these methods. In order to evaluate the performance of the RUN algorithm on fixed-size functions in the study, 10 fixed-size multimodal test functions (Shekel\'s Foxholes, Kowalik, Six-Hump Camel-Back, Branin, Goldstein-Price, Hartman3, Hartman6, Shekel5, Shekel7, Shekel10) have been found in the literature before was selected. Solutions for each of the selected functions are obtained by changing the parameter values of the RUN algorithm. The obtained solution values were evaluated by comparing the solutions obtained with Slime Mold Algorithm (SMA) and Hunger Games Search (HGS) algorithms.Keywords : Runge kutta algorithm (RUN), Slime mold algorithm (SMA), Hunger games search (HGS), Fixed size multimodal test functions.