- Fundamental Journal of Mathematics and Applications
- Vol: 5 Issue: 3
- On the Exponential Diophantine Equation $(6m^{2}+1)^{x}+(3m^{2}-1)^{y}=(3m)^{z}$
On the Exponential Diophantine Equation $(6m^{2}+1)^{x}+(3m^{2}-1)^{y}=(3m)^{z}$
Authors : Murat Alan, Ruhsar Gizem Biratli
Pages : 174-180
Doi:10.33401/fujma.1038699
View : 20 | Download : 11
Publication Date : 2022-09-23
Article Type : Research
Abstract :Let $m$ be a positive integer. In this paper, we consider the exponential Diophantine equation $(6m^{2}+1)^{x}+(3m^{2}-1)^{y}=(3m)^{z}$ and we show that it has only unique positive integer solution $(x,y,z)=(1,1,2)$ for all $ m>1. $ The proof depends on some results on Diophantine equations and the famous primitive divisor theorem.Keywords : Classification method, Exponential Diophantine equations, Primitive divisor theorem, Terai’s conjecture