- Fundamental Journal of Mathematics and Applications
- Vol: 1 Issue: 2
- $\mathcal{I}$-Cesaro Summability of a Sequence of Order $\alpha$ of Random Variables in Probability
$\mathcal{I}$-Cesaro Summability of a Sequence of Order $\alpha$ of Random Variables in Probability
Authors : Ömer Kişi, Erhan Güler
Pages : 157-161
Doi:10.33401/fujma.480808
View : 13 | Download : 9
Publication Date : 2018-12-25
Article Type : Research
Abstract :In this paper, we define four types of convergence of a sequence of random variables, namely, $\mathcal{I}$-statistical convergence of order $ \alpha $, $\mathcal{I}$-lacunary statistical convergence of order $\alpha $, strongly $\mathcal{I}$-lacunary convergence of order $\alpha $ and strongly $ \mathcal{I}$-Cesaro summability of order $\alpha $ in probability where $ 0<\alpha <1$. We establish the connection between these notions.Keywords : Probability, Lacunary, Ideal convergence