
Hacettepe Journal of Mathematics and Statistics
Volume 44 (6) (2015), 1569 – 1578

A group sequential test of circular data using the
von Mises distribution
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Abstract
In this study, the group sequential test is suggested for the mean direction
parameter of the von Mises distribution when the concentration parameter
is known and unknown. An application of the proposed test is illustrated
by using a medical data of the patients, who were complained about in-
ternal rotation angles of the shoulder and treated in a rehabilitation and
physical therapy center in Eskisehir, Turkey. It is shown that the results of
the study demonstrate that the group sequential test can provide a great
advantage not only for linear data but also for circular data in terms of
sample size.
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1. Introduction
Circular data often arise in many scientific disciplines like meteorology, geography, biology,

geology and medicine etc. As an example, meteorological events are periodical, that’s why it
is convenient to analyze them by using directional methods. It is shown that the distribution
of the wind direction can be approximated by a specific circular model.

Ecologists consider the prevailing wind direction as an important factor in many studies
including those of which involve pollutant transport. In Geology, geologists study paleocur-
rents to find out about the direction of flow of rivers in the past [16] and analyze paleomag-
netic directions of the earth’s magnetic pole to investigate the phenomenon of pole-reversal
as well as in support of the hypothesis of continental drift. In Biology, biologists who study
bird-migrations record the flight directions of just-released birds as they disappear over the
horizon. Batschelet [2] presented a number of noteworthy applications of circular statistics
in Biology. Also, any periodic phenomenon which is known and may be a day, a month or a
year, can be represented on a circle by aggregating the necessary data of several individuals
or periods if the circumferences corresponds to this period. Examples include arrival times
of patients to a hospital over the day, or the time of patients at a hospital in the day. As
a last example, the circle may represent the 365 days in the year and could be plotted the
occurrence of crash accidents in a specific roadway junction to see if they are uniformly
distributed over the different seasons of the year [8].
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Circular data take values on the circumference of a circle and they form the angles in
the range (0o, 360o) or (0, 2π) radians [7]. The circular probability distributions are used
to fit the distribution of circular data. The von Mises distribution is the most common
probability distribution for circular data. A comprehensive discussion of circular statistics
as well as examples of the applications and general properties of the von Mises distribution
can be found in [11] and [8].

There are many practical situations in which it is desirable to update the decision with
every incoming observation, by sequentially, either in the temporal or in the spatial mode of
collecting the circular data.

As an example of using a sequential test for circular data, observations on the imbalanced
directions of individually produced wheels can provide for the information of whether the
procedure is under control.

Gadsden & Kanji [5] developed a sequential probability ratio test (SPRT) of Wald [17]
for the mean direction (µVM ) of the von Mises distribution with a known and an unknown
concentration parameter (κ). Gadsden & Kanji [6] represents the applications of SPRT for
circular data.

The sample size is a predetermined fixed value in fixed sample size test procedure. In
practice, this test cause, the practitioner, to spend more resources such as money and time.
When the sequential tests are used, these difficulties can be removed. The test begins with
a single observation value and stops when there is sufficient data for statistical comparison
and for making a decision on the hypothesis. Thus, it leads to a great saving in the sample
size [17].

However, in some cases, when a new data is obtained, testing the data by grouping is an
easier way than applying SPRT. A test which is performed sequentially by grouping data
is called a group sequential test (GST ). Various group sequential testing procedures have
been proposed to achieve the desired levels of type I error. Pocock [14], O’Brien & Fleming
[12] and Lan & DeMets [10] were among the first scholars to develop group sequential test.
A great part of the progress of group sequential tests are reviewed in detail by Jennison &
Turnbull [9].

Group sequential tests are widely used in medicine. On the other hand, medical events are
convenient to be analyzed using directional methods since many of them are periodical. The
occurrences of deaths caused by some disease in several times of year is a typical example
for circular data observations. However, none of these studies consider group sequential test
for von Mises distribution. In this study, a group sequential test is suggested for the mean
direction of the von Mises distribution with known and unknown concentration parameter.

This article is organized as follows: The von Mises distribution and the sequential proba-
bility ratio test (SPRT ) are briefly reviewed in the second and the third sections, respectively.
In the fourth section, Pocock’s group sequential test is described for the mean of the normal
distribution. In the fifth section, it is indicated that Pocock’s group sequential test can be
used for the mean direction of the von Mises distribution. An application of medical data
and conclusions are given in the sixth and the seventh sections, respectively.

2. The Von Mises Distribution
The von Mises distribution is a symmetric distribution which is the most important

model for unimodal samples of circular data and it plays the same role in circular statistical
inference as the normal distribution on the line.

If a circular random variable θ has a von Mises distribution (θ ∼ VM(µ, κ)), its probability
density function (pdf) is given by

(2.1) f(θ;µ, κ) = 1
2πIo(κ)

eκcos(θ−µ) , 0 ≤ θ < 2π

where κ ≥ 0 and 0 ≤ µ < 2π. Here, Io(κ) is a particular function of κ and it denotes the
modified Bessel function of the first kind and order zero, and is defined by

(2.2) Io(κ) = 1
2π

∫ 2π

0
eκcosθdθ =

∑∞
r=0 ( 1

r!
)2(κ

2
)2r

This function has the effect of scaling the distribution.
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For sufficiently large κ, the von Mises distribution is related to the normal distribution. If
κ→∞ and ξ = κ1/2(θ− µ), ξ is approximately distributed as standard normal distribution
(N(0, 1)) [11], [8].

Several properties of the von Mises distribution are similar to those of the normal distri-
bution. For instance, it is completely determined by two parameters. The parameter µ is
the mean direction. The von Mises density is unimodal and symmetrical about the mean
direction µ. The mode of the distribution is at θ = µ and antimode is at θ = µ + π. The
parameter κ is the concentration parameter which measures the concentration around the
mean direction. As κ approaches zero, the von Mises pdf approaches a uniform distribution
and as κ increases, the distribution increasingly concentrated at µ. Due to these properties,
the concentration parameter is similar to the variance of a normal distribution.

By giving a random sample θ1, θ2, ..., θn from VM(µ, κ), the log-likelihood function is
given by

(2.3) logL(µ, κ; θ1, θ2, ..., θn) = n[log2π + κR̄cos(θ̄ − µ)− logIo(κ)].

Then the maximum likelihood estimate µ̂ of µ is

(2.4) µ̂ = θ̄

where

(2.5) θ̄ =


tan−1(

∑n
i=1 sinθi∑n
i=1 cosθi

),
∑n
i=1 cosθi ≥ 0

tan−1(
∑n

i=1 sinθi∑n
i=1 cosθi

) + π,
∑n
i=1 cosθi < 0.

Differentiating (2.3) with respect to κ gives

(2.6)
logL(µ, κ; θ1, θ2, ...θn)

∂κ
= n{R̄cos(θ̄ − µ)−A(κ)}

where A(κ) = I1(κ)/Io(κ) is the ratio of two modified Bessel functions and I1(κ) is the
imaginary Bessel function of order one. The maximum likelihood estimate κ̂ of κ is the
solution of

(2.7) A(κ̂) = R̄

i.e.

(2.8) κ̂ = A−1(R̄)

where R̄ is the mean resultant length of the sample and is given by;

(2.9) R̄ =

√√√√( 1

n

n∑
i=1

cosθi

)2

+

(
1

n

n∑
i=1

sinθi

)2

.

Values of functions A and A−1 are taken from the tables, such as Mardia and Jupp (2000,
p. 362-363) and Fisher (1993, p. 224-225). A reasonable approximation to the solution of
(2.8) can, also, be obtained by

(2.10) κ̂ =


2R̄+ R̄3 + 5R̄5/6, R̄ < 0.53
−0.4 + 1.39R̄+ 0.43/(1− R̄), 0.53 ≤ R̄ < 0.85
1/(R̄3 − 4R̄2 + 3R̄), R̄ ≥ 0.85

[4, 11].
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3. Sequential Probability Ratio Test for the Mean Direction
Let θ be a von Mises distributed random variable with a mean direction µ0 and a con-

centration parameter. For testing H0 : µ = µ0 against H1 : µ = µ1, sequential probability
ratio test is defined as follows; If the values of θ random variable is defined as θ1, θ2, ..., θn,
likelihood ratio is defined as,

(3.1) Ln =

n∏
i=1

f(θi;µ1)

f(θi;µ0)
=

1
[2πI0(κ)]n

eκ
∑n

i=1 cos(θi−µ1)

1
[2πI0(κ)]n

eκ
∑n

i=1 cos(θi−µ0)
.

Then by taking logarithm and simplifying, (3.1) can be written as;

(3.2) lnLn =

n∑
i=1

Zi = 2κ

n∑
i=1

sin(θi − v1)sin(−v2)

where v1 = µ0+µ1
2

and v2 = µ0−µ1
2

.
At each stage of the test process, the value of

∑n
i=1 Zi is computed and compared with

lnA and lnB critical values which depend on type-1(α) and type-2(β) errors. A and B values
are computed as A = 1−β

α
, B = β

1−α . Then, one of the following decision is made.

(1) If
∑n
i=1 Zi ≤ lnB, the process is terminated with the acceptance of H0.

(2) If
∑n
i=1 Zi ≥ lnA, the process is terminated with the rejection of H0.

(3) If lnB <
∑n
i=1 Zi < lnA, the experiment is continued by taking an additional

observation.

[17].
When µ is the test parameter for the von Mises distribution, the approximate formula for

the operating characteristic (OC) function P (µ) is given by;

(3.3) P (µ) =
Ah − 1

Ah −Bh

where h = sin(µ−v1)
sinv2

[5, 6].
In linear data, acceptance probabilities are computed for the various values of h. Apart

from the linear data, minimum and maximum values of operating characteristic function are
obtained in circular data. Differentiating OC function with respect to µ, it is obtained that
µ = 900 + v1 and µ = 2700 + v1, and these can be shown to be a minimum and maximum,
respectively.

An approximation to the average sample number function ASN(µ), which is the expected
number of observations, is given by;

(3.4) ASN(µ) =
P (µ)lnB + [1− P (µ)]lnA

2A(κ)sinv1sinv2
.

It is possible to compute maximum and minimum values of the average sample number
in circular data. Therefore, the average sample numbers, which are obtained when H0 or H1

is true in linear data, are computed for the maximum and minimum values in circular data.
Differentiating the average sample number with respect to v2 and setting that equal to zero
gives;

(3.5) ASN(µ)min =
P (µ)lnB + [1− P (µ)]lnA

2A(κ)sinv1
.

Since a minimum can be obtained in only one turning point, the ends of the range of v2
will give the maximum. This leads to the point 00 and it gives

(3.6) ASN(µ)max =∞

[5, 13].
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4. Pocock’s Group Sequential Test
The basic concepts of Pocock’s group sequential test in one sample are described as

follows. Consider K groups (stages) of normally distributed observations with an unknown
mean µ and a known variance σ2, where in group k,k = 1, 2, ...,K and n1 = n2 = ...nK = n
observations are obtained. It is planned as a test of the null hypothesis H0 : µ = µ0 against
the two sided alternative H1 : µ 6= µ0. Let x̄j denote the mean response of the sample in
the jth group of n observations. In the jth stage, the normal score Zj is given by

(4.1) Zj =
√
n(x̄j − µ0)/

√
σ2.

The cumulative normal score

(4.2) Sk =
∑k
j=1 Zj , k = 1, 2, ...K

is the usual statistic for testing the hypothesis of the mean at type-I error probability α.
Zj is N(0, 1) and N(∆, 1) distributed, under H0 and H1 respectively. Where ∆ is given as

(4.3) ∆ = E(Zj) =
√
n(µ1 − µ0)/

√
σ2

[1, 9]. Formally the test process is as follows:

(1) After group k = 1, 2, ...,K − 1

If |Sk| ≥ zp(K,α)
√
k, stop, reject H0

otherwise, continue to group k + 1
(2) After group K

If |SK | ≥ zp(K,α)
√
K, stop, reject H0

otherwise, stop, acceptH0.

Where zp(K,α) is the Pocock’s critical value as in Table 1. The sample size per group is
obtained as

(4.4) n = ∆2

( √
σ2

µ1 − µ2

)2

where ∆ is the value of noncentrality parameter and it can be determined by a given value
of 1 − β. The maximum sample size is nmax = nK. If K = 1 is taken as fixed sample size
design (4.4) becomes the familiar sample size for a normal response. The average sample
number, under H1 is ASN = nK̄∗, where K̄∗ is the average number of stages.
zp(K,α), ∆ and K̄∗ values are given in Table 1 for k = 1, 2, .., 5, α = 0, 05, 1− β = 0, 95.

More complete tabulations of various values can be found in [14] and [9].

Table 1. Pocock’s Critical Values zp(K,α), ∆ and K̄∗ for k = 1, 2, ..., 5,
α = 0, 05, 1− β = 0, 95

k zp(K,α) ∆ K̄∗

1 1,645 3,290 1
2 1,875 1,875 2,445 1,282
3 1,993 1,993 1,993 2,035 1,656
4 2,067 2,067 2,067 2,067 1,782 2,056
5 2,122 2,122 2,122 2,122 2,122 1,605 2,460

When the variance σ2 is unknown, group sequential t-test is used. Test procedure is
the same as the one with known σ2. Since σ2 is unknown, the pooled sample variance is
estimated of n observations and is used for σ2 in (4.1). Furthermore, sample size per group
can not be calculated with (4.4) in group sequential t-test. Thus, the researcher supposed
that each group contains n observations, in this case [9].
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5. Group Sequential Test for the Mean Direction of the Von Mises
Distribution
In this section, it is shown that Pocock’s group sequential test can be used for the mean

direction of the von Mises distribution both for known κ and unknown κ cases.
It is assumed that θ1, ϑ2, ..., ϑn is a random sample from a von Mises distribution VM(µ, κ).
Let the concentration parameter be known as κ = κ0(κ0 ≥ 2). Then, the population mean

resultant length of a von Mises distribution is ρ. The hypothesis to be tested is H0 : µ = µ0

against H1 : µ 6= µ0. From (2.3), the score statistic is defined as

(5.1)
∂logL(µ, κ; θ1, θ2, ..., θn)

∂µ

∣∣∣∣
µ=µ0

= nκR̄sin(θ̄ − µ0).

[3]. Under H0, the score statistic is equal to

(5.2)
√
nκ0ρsin(θ̄ − µ0)

and it has approximately the distribution N(0, 1), for large n. The circular standard error
of the mean direction for the von Mises distribution is

(5.3) σVM =
1

√
nκ0ρ

.

Thus, the test statistic for the score test is given by

(5.4) ZVM =
sin(θ̄ − µ0)

σVM

[4]. Let zα/2 indicates the upper 100(α/2)% point and zα indicates 100(α)% point of the
standard normal distribution. Then the test of H0 : µ = µ0 against the alternatives are at
the 100α% level are follows:

(1) When H1 : µ 6= µ0: if |ZVM | > zα/2, then reject H0.
(2) When H1 : µ < µ0: if µ0 − π < θ̄ < µ0 and ZVM < −zα, then reject H0.
(3) When H1 : µ > µ0: if θ̄ < µ0 + π and ZVM > −zα, then reject H0.

In the sense of the information given above, the group sequential test statistic for the von
Mises distribution can be defined as:

(5.5) SVMk =
∑k
j=1 ZVMj , k = 1, ...,K

where

(5.6) ZVMj =
√
nκ0ρsin(θ̄j − µ0)

where θ̄j is computed from the data of n observations for the jth group. For K = 1, the
test statistic (5.5) transforms into fixed sample test in the von Mises distribution. Therefore,
since ZVMj has approximately the distribution N(0, 1) under H0, the group sequential test
can be used for testing the mean direction of the von Mises distribution with the known
concentration parameter. The test statistic SVMk is compared with zp(K,α) as follows:

After group k = 1, 2, ...,K − 1
For H1 : µ 6= µ0, if |SVMk| ≥ zp(K,α)

√
k, stop, reject H0

For H1 : µ < µ0 and µ0 − π < θ̄k < µ0, if |SVMk| < −zp(K,α)
√
k, stop, reject H0

For H1 : µ > µ0 and θ̄k < µ0 + π, if |SVMk| > −zp(K,α)
√
k, stop, reject H0

otherwise continue to group k + 1
After group K
For H1 : µ 6= µ0, if |SVMk| ≥ zp(K,α)

√
K, stop, reject H0

For H1 : µ < µ0 and µ0 − π < θ̄k < µ0, if |SVMk| < −zp(K,α)
√
K, stop, reject H0

For H1 : µ > µ0 and θ̄k < µ0 + π, if |SVMk| > −zp(K,α)
√
K, stop, reject H0

otherwise stop, accept H0.
For this test, the group size nVM is obtained from the expected value of the test statistic

(5.6) under H1;
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(5.7) ∆ = E(ZVMj|H1
) =
√
nVMρκsin(µ1 − µ0).

Therefore, the value of nVM for this test is

(5.8) nVM = ∆2 1

[sin(µ1 − µ0)]2κρ
.

The maximum sample size can be defined as

(5.9) nmax = nVMN

and the average sample number is

(5.10) ASNVM = nVMK̄
∗.

Now, let the concentration parameter κ be unknown, and then the test statistic for the
score test can be defined as

(5.11) ZVM =
sin(θ̄ − µ0)

σ̂VM
where

(5.12) σ̂VM =
1√
nκ̂R̄

.

Therefore, ZVM is approximately distributed as N(0, 1) under H0. This approximation
is satisfactory for the values of estimated concentration parameter (κ̂) and sample size (n)
which are given in Table 2 [4, 11].

Table 2. κ̂ and n values for the test

κ̂ n
0, 4 ≤ κ̂ < 1 n ≥ 25

1, 0 ≤ κ̂ < 1, 5 n ≥ 15
1, 5 ≤ κ̂ < 2, 0 n ≥ 10

κ̂ ≥ 2, 0 All n

Then, as for group sequential test statistic, it can be defined as

(5.13) ZVMj =
√
nR̄j κ̂jsin(θ̄j − µ0)

where θ̄j ,R̄j and κ̂j values are computed from the data of n observations for the jth
group. The test proceeds as in the same way of known κ. Since κ is unknown, group size
can not be calculated in (5.8). Therefore, group size is supposed by researchers.

To give an instance for the application of real-life data on wind directions, the following
example compares the group sequential test for the von Mises distribution with known κ,
with fixed sample test and SPRT.

Example 5.1: Wind directions, in Anadolu University Airport Eskisehir, are measured
sequentially (hourly) in university’s weather station. For this data set, κ is known as κ = 4, 58
(corresponding ρ = 0, 88263) and α = β = 0, 05 is supposed and the hypothesis is tested
H0 : µ = 1410 against H1 : µ = 1300. Table 3 gives the maximum sample sizes and the
expected sample sizes for the fixed sample, the sequential probability ratio, and the group
sequential test.

Other examples can be presented that have the same general principle with different
choices of α,β,µ0,µ1 and κ. Pocock [15] compared those tests for the mean of the normal
distribution and showed that GST is more advantageous than the fixed sample test and SPRT
in terms of sample size; in addition , Bacanlı & Demirhan [1] proposed the group sequential
test for the mean of the inverse Gaussian distribution, in a similar way and showed that this
test is more advantageous than the others.
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Table 3. Comparison of the Fixed Sample, Sequential Probability Ratio
and Group Sequential Tests for κ = 4, 58, α = β = 0, 05, H0 : µ = 1410,
H1 : µ = 1300 (von Mises response with known κ)

Tests Maximum Sample Size Average Sample Number
Fixed Sample Test 73,545 73,545

minimum maximum
SPRT ∞ 2,380 ∞

Group Sequential Test

Group sizes nmax

K = 2 40,618 81,236 52,072
K = 3 28,138 84,413 46,596
K = 4 21,576 86,305 44,361
K = 5 17,503 87,515 43,057

Thus, it is seen that these results are, also, valid for circular normal distribution that is
known as Von-mises distribution.

6. Application to Medical Data
In this section, the group sequential test is applied to a medical circular data set. The

medical data were collected from sequentially patients who was male and female and between
the age of 44 and 75 in Eskisehir Private Fizyomer Rehabilitation and Physical Therapy
Center between the years of 2010 and 2013. These patients were admitted to the center with
complaints of pain in their shoulders. After the physical examination, some problems were
detected in patients such as shoulder joint motions are painful and, also, partially restrictive
and so on. Then, the range of motion the shoulder joints of patients were measured. These
measurements include active and passive angular values for flexion, extension, abduction,
internal rotation and external rotation variables. After the patients were diagnosed with the
adhesive capsulitis of shoulder (also known as the frozen shoulder), 30 sessions of physical
therapy and rehabilitation were applied to them and the range of motion of the shoulder
joints were measured again. After the therapy, it is aimed that the patients will reach a
complete joint range of motion in all of the shoulder motions. In this study, the group
sequential test is applied for the internal rotation (passive) variable which is obtained after
the therapy in the data set. In anatomy, internal rotation (also known as medial rotation) is
a term that refers to the rotation towards the center of the body [18] and the term passive
means that the patient moves with an external support or assistance.

It is theorized that a healthy, "perfect" shoulder should have 90 degrees of internal rotation
[19]. Therefore, the group sequential test is applied for H0 : µ = 900 against the alternative
H1 : µ = 800 with α = β = 0, 05 and K = 4. The concentration parameter is unknown, so
the group sizes are supposed as n = 5. GST results are given in Table 4.

Table 4. Group Sequential Test Results for (passive) Internal Rotation Data Set

j 1 2 3 4
n 5 5 5 5
θ̄j 84,133 85,031 86,012 85,031
κ̂j 11,486 27,181 47,768 27,181
R̄j 0,978 0,991 0,995 0,991

ZVMj -0,766 -1,005 -1,072 -1,005
SVMk -0,766 -1,771 -2,843 -3,848

Zp(4; 0, 05)
√
k 2,067 2,923 3,580 4,134

Decision Continue Continue Continue Accept H0

When Table 4 results are examined, it can be seen that, in stage 4;

SVM4 = 3, 848 > −ZP (4; 0, 05)
√

4 = −2, 067(2) = −4, 134
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hence we stop and accept H0.
Therefore, researchers can apply the group sequential test for predetermined α, β, N and

n values.

7. Discussion and Conclusions
As in many scientific fields, the most common probability distribution in medical appli-

cations of circular data is the von Mises distribution. However, the group sequential tests
are often used in medical researches which the data is collected sequentially. Therefore, the
group sequential test for the mean of the distributed von Mises data is proposed in this
study.

In medical studies, a significant amount of the collected data is in the form of circular.
In the literature, there are fixed sample and sequential probability ratio tests for circular
data. However, in medical studies, the use of these tests is very difficult in terms of obtaining
required sample sizes. The reason of this is that, when SPRT is used in the studies in which
the data is collected sequentially, the expected sample size and the maximum sample size
are infinite (see Table 3). Therefore, these values cannot be predetermined before the test.
In this study, the group sequential test have been proposed for circular data. An application
of this test for a medical data set (shoulder internal rotation angles) is carried out and it is
shown that the advantages of the test are also valid for circular data.

In GST, researchers can determine required maximum sample size and expected sample
size values for their hypotheses, determined α and β probabilities and K values. In this
respect, using GST provides a great advantage. GST was generated for linear data in the
literature. In this study, GST is defined for circular data and it is indicated that GST can be
used for the mean of the von Mises distribution which is frequently encountered in medical
studies.
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