
Mühendislik Bilimleri ve Tasarım Dergisi
7(3), 608 – 618, 2019
e-ISSN: 1308-6693

Araştırma Makalesi

Journal of Engineering Sciences and Design
DOI: 10.21923/jesd.467036

Research Article

608

 COMPARISON OF THE DATA MATCHING PERFORMANCES OF STRING SIMILARITY
ALGORITHMS IN BIG DATA

Bekir AKSOY1, Sinan UĞUZ2, Okan ORAL3*

1 Applied Sciences University of Isparta, Technology Faculty, Mechatronics Engineering, Isparta, Turkey

2 Applied Sciences University of Isparta, Technology Faculty, Computer Engineering, Isparta, Turkey
3Akdeniz University, Engineering Faculty, Mechatronics Engineering, Antalya, Turkey

Keywords Abstract
Algorithms,
Text analysis,
Natural language
processing,
Data analysis,
Databases.

The great mobility in the world tourism in recent years has also enabled this sector to be
included among the study areas of big data. In this study, a solution proposal was put forward
by using the big data and string similarity algorithms (SSA) for the problems arising from
the entry of the hotel data coming from different providers into databases with different
names and addresses. Therefore, 2599 hotels of a tourism agency with a wide hotel network
located in London were selected as the sample, and the Map-Reduce process was performed
by using the Soundex algorithm to match these hotels with approximately three million hotel
data coming from seventy different providers. Matching with Map-Reduce ensured a
significant reduction in process count and process time. Furthermore, the Dice coefficient,
Levenshtein and Longest common subsequence (LCS) algorithms were compared in terms
of the data that they correctly matched, and process time. In this stage, the words decreasing
the score of the algorithms in the database were detected and removed before the algorithms
were implemented. The Dice coefficient algorithm yielded better results in terms of correct
matching, and the Levenshtein algorithm yielded better results in terms of process time.

BÜYÜK VERİDE METİN BENZERLİK ALGORİTMALARININ VERİ EŞLEME
PERFORMANSLARININ KARŞILAŞTIRILMASI

Anahtar Kelimeler Öz
Algoritmalar,
Metin analizi,
Doğal dil işleme,
Veri analizi,
Veri tabanları.

Son yıllarda dünya turizmindeki büyük hareketlilik, bu sektörün büyük verinin çalışma
alanları arasına girmesini sağlamıştır. Bu çalışmada farklı sağlayıcılardan gelen otel
bilgilerinin, veritabanlarına farklı isim ve adreslerle girilmesi sonucu oluşan problemler için,
büyük veri ve string similarity algoritmaları (SSA) kullanarak bir çözüm önerisi ortaya
konulmuştur. Bunun için geniş bir otel ağına sahip bir turizm acentasının Londra’da bulunan
2599 oteli örneklem olarak seçilmiş ve bu oteller ile yetmiş farklı sağlayıcıdan gelen yaklaşık
üç milyon otel bilgisinin eşleştirilmesi için, soundex algoritmasından faydalanılarak Map-
Reduce işlemi gerçekleştirilmiştir. Map-Reduce ile eşleme işlem sayısı ve işlem süresinde
önemli ölçüde azalma sağlanmıştır. Çalışmanın diğer aşamasında ise Dice coefficient,
Levenshtein ve Longest common subsequence (LCS) algoritmaları, doğru eşleyebildikleri
veri ve işlem süresi açısından kıyaslanmıştır. Bu aşamada algoritmalar uygulanmadan önce
veri tabanında algoritmaların skorunu düşüren kelimeler tespit edilerek çıkartılmıştır.
Doğru eşleme bakımından Dice coefficient algoritması, işlem süresi açısından ise
Levenshtein algoritması daha iyi sonuçlar üretmiştir.

Alıntı / Cite
Aksoy, B., Uğuz, S., Oral, O., (2019). Comparison of the Data Matching Performances of String Similarity Algorithms
in Big Data, Journal of Engineering Sciences and Design, 7(3), 608-618.
Yazar Kimliği / Author ID (ORCID Number) Makale Süreci / Article Process
B. Aksoy, 0000-0001-8052-9411
S. Uğuz, 0000-0003-4397-6196
O. Oral, 0000-0003-4256-0930

 Başvuru Tarihi / Submission Date
 Kabul Tarihi / Accepted Date
 Yayım Tarihi / Published Date

 03.10.2018
 04.04.2019
 15.09.2019

* İlgili yazar / Corresponding author: okan@akdeniz.edu.tr, +90-242-310-6377

mailto:okan@akdeniz.edu.tr

AKSOY et al. 10.21923/jesd.467036

609

1. Introduction

While the total contribution of the tourism sector to
the world economy between the years 2006 and 2016
was 7.61 trillion dollars, the number of international
tourists traveling around the world only in 2015 was

1 billion 186 million (Smith, 2016). One of the
parameters that make a significant contribution to the
great economic mobility in the sector is information
and communication technologies that have developed
in recent years. For a tourist, information and
communication technologies are used intensively in
every stage of mobility, before travelling, on the road,
at the destination and on the way back. Nowadays,
only corporate web pages or advertisements in
different communication fields are not enough for
hotels and tourism agencies to provide their services
to tourists in the best way. Social media, forums, web
blogs and all web environments in which
accommodation comments can be made appear as
important decision-making factors in tourists'
preferences. Therefore, all actors of the tourism sector
who are commented in the social media should follow
these platforms in the virtual environment.

The number of data generated in the virtual
environment for the tourism industry, which is a large
sector, is also large. Therefore, the actors of this sector
can make this fast data flow meaningful for them with
big data analyses. In the world, tourism industry and
big data-based academic studies have focused on
different objectives. The studies on the estimation of
tourist demands for later periods (Li vd., 2017; Toole
vd., 2015) are considered to be important for the
future planning of the industry. Studies (Liu vd.,
2017;Gupta and Upadhyay, 2015; Xiang vd., 2015)
have been carried out to determine the hotel
satisfaction levels from the comments produced from
social media sites such as Twitter, Facebook, Flickr,
etc., forums and popular hotel search sites such as
tripadvisor.com and booking.com. Some studies
(Önder, 2017; Miah vd., 2016; Chen and Zhou, 2015;
Peng and Huang, 2012) are related to the creation of
tourist travel maps with semantic web applications by
analyzing the tourist behaviors through the systems in
which tourist behaviors can be tracked by location
such as GPS, city travel cards and credit cards. The
development of systems suggesting hotel proposals
with big data analysis is also among the studies carried
out (Shrote and Deorankar, 2016).

It was envisaged that the amount of data generated in
the world would be doubled every two years and
would reach approximately 8 Zettabytes by 2015
(Sagiroglu and Sinanc, 2013). Some auxiliary science
fields such as natural language processing (NLP) are
needed in big data analyses to analyze meaningful data
from such a big data universe. NLP is a field of science
that refers to the process of building, analyzing and
interpreting the model of human-specific languages
that is appropriate to be processed by the computer

(Bird vd., 2009). NLP is used in numerous areas. NLP
mechanisms are utilized in many areas such as the
detection of incorrectly written words, alternative
word suggestions, analysis of queries written in a form
similar to the natural language, sentence translations
from language to language, sentence or text derivation
in the natural language, detection of junk mails (spam)
by email providers, computer-aided language
teaching, and detection of text plagiarism. One of the
main problems of NLP is the correction of incorrectly
written word phrases. Therefore, it is aimed to correct
incorrectly written word phrases with the highest
accuracy percentage using the advanced Soundex,
Dice coefficient, Levenshtein and LCS algorithms.

The comments produced on the internet should be
addressed in terms of the NLP while performing the
big data analysis in the tourism sector because it is
necessary to take into account that the comments have
an official language or a nonofficial language (which
may contain abbreviations and slang) as well as the
unique grammatical structure of the language used in
the comments made. One of the scenarios that can be
encountered for tourism-related NLP can be
experienced in the service sector, which is the other
stakeholder of the tourism industry. Nowadays,
tourism agencies play an important role between the
hotel and the customer in terms of marketing for
holiday sales. Each tourism agency has many hotels
marketed by it within itself. The data related to these
hotels are constantly updated by being stored in big
databases. However, the incorrect entry of the hotel
data by users into the system causes multiple different
records of the same hotel to be kept in the database. A
chain of hotels may have hotels in different cities, or
the hotel name may contain words such as resort, SPA
and luxury. For example, the fact that a hotel is
recorded as “Miracle Hotel” or “Miracle Hotel & SPA”
into the database poses a problem.

There are two main purposes of this study. Firstly, to
increase the quality of the representation of hotel
names in databases by correcting these types of
incorrectly written word phrases with the highest
accuracy percentage through the SSA by first detecting
non-standard abbreviations and nonsense characters
in names. Secondly, to determine the effect for the
process time on the sample dataset of map reduce.
For this purpose, the Map-Reduce process was
performed by using the Soundex algorithm to match
the data of the hotels of a tourism agency that were
selected as the sample with the data of the hotels
coming from different providers. In the other stage of
the study, the Dice coefficient, Levenshtein and LCS
algorithms were compared in terms of the data that
they correctly matched, and process time. In the
literature studies carried out, it has been observed
that the studies on this subject, especially those
carried out using data sets belonging to the tourism
sector, are limited. The fact that higher performance
was obtained from the SSA by removing the common

AKSOY et al. 10.21923/jesd.467036

610

words in the dataset before the SSA was used is the
most important factor that distinguishes this study
from other studies.

This article is organised as follows. SSAs are classified,
and some algorithms are introduced in Section II. The
concept of big data is described in Section III. The
method of this paper is introduced in Section IV. The
findings of this paper are presented in Section V. The
paper ends with a conclusion and a description of
future work.

2. String Similarity Algorithms

In information technologies, text similarity takes an
important place among the methods that are used to
analyze text data. The SSA allows for the numerical
expression of similarity ratios between texts.
Similarity ratios may consist of texts, words or long
sentences to be calculated (Dursun and Sonmez,
2008). The SSA, which is the subject of the NLP study
field, includes many subjects of scientific study such as
word recognition (Fuentes vd., 2016), information
retrieval (Kisla vd., 2015), text summarization (Bakar
vd., 2000), word learning (Kurdziel and Spencer,
2016), translation (Xiang vd., 2014), text classification
(Lodhi vd., 2002), development of question and
answer systems (Ilhan vd., 2008), and detection of
plagiarism Baruah and Mahanta, 2013).

String similarity measures are presented in Figure 1.
Edit-based similarity measures indicate after how
many moves the distance of two texts will be equal.
These moves are based on the differentiation,
alteration, reduction or increasing of the characters
found in the same or nearby locations in the texts
(Deng vd., 2013; Jiang vd., 2013). The total similarity
is calculated by dividing the texts to be found in Token
based similarity measures into words or word groups.
In hybrid similarity measures, edit-based similarity
measures and token-based similarity measures are
used together. Different combinations of letters in
many language structures on the Earth may have the
same pronunciations. For this reason, it is common for
users to write words incorrectly while writing since
the definition of words may become complicated.

Figure 1. String Similarity Measures (Naumann and
Herschel, 2013).

Furthermore, homophony between words makes it
difficult to classify typographical errors correctly or to
index these names correctly. Phonetic algorithms are
among the SSAs used to find solutions to these
problems (Mutalib and Noah, 2011; Parmar and
Kumbharana, 2014).

2.1. Soundex Algorithm

Different combinations of letters in a word may show
similarity in the pronunciation of that word. This may
lead to the misspelling of words. The Soundex
algorithm, one of the first algorithms developed to find
a solution to this problem, was developed by Robert
Russell and Margaret Odell in 1918 (Odell and Russell,
1918). Since the Soundex algorithm is an algorithm
developed only for the English language, various
studies have been carried out regarding the
adaptations of this algorithm in different languages
(Yahia vd., 2006; Baruah and Mahanta, 2015; Bhatti
vd., 2014; Jaisunder, 2017; Shedeed and Abdel, 2011;
Freeman vd., 2006). The Soundex algorithm generates
codes depending on pronunciation in detecting the
similarity of words. Table 1 shows the processing
steps of the Soundex algorithm.

Table 1. Soundex Algorithm

1 All letters in the word are capitalized, and all punctuation
marks are removed.

2 The first letter remains in the word.
3 The letters 'A', E', 'I', 'O', 'U', 'H', 'W', 'Y' among the letters

except the first letter are removed from the word.
4 Each letter is replaced with the appropriate number that

corresponds to it. Except for these, any numeric, alpha-
numeric or character existing in the word is removed and
replaced with a space.

5 The words except for the first letter are coded according to
Table 2.

6 Only one of the same adjacent letters remains, and the other
one is removed from the word.

7 The spaces are deleted, and zero is added to the end as many
times as the missing number to complete the expression to
4 digits.

The numeric equivalents of the letters in the algorithm
are presented in Table 2.

Table 2. Numeric Equivalents of The Letters

Numeric
Equivalent

Letter Equivalent

1 'B', 'F', 'P', 'V'
2 'C', 'G', 'J', 'K', 'Q', 'S', 'X', 'Z'
3 'D','T'
4 'L'
5 'M','N'
6 'R’

The code equivalents of some words with similar
pronunciation generated by the algorithm in the
Soundex algorithm are presented in the examples in
Table 3.

AKSOY et al. 10.21923/jesd.467036

611

Table 3. Soundex Code Equivalents of Some Words

Word Soundex Code
SCHMID, SCHMIDT, SCHMIT S530
REAL, RAIL, REILLY, RULE R400
JONES, JONAS, JOHANNAS J520
HOTEL, HOTTEL, HUDDLE H340

SURFACE, SERVOS S612
TURKEY, TOWERS, THRUSH T620

BEEMAN,BEAMAN,
BAUMANN

B550

2.2. Dice Coefficient Algorithm

The Dice coefficient measure is used in determining
the similarities and differences in datasets. This
method is calculated by dividing two times of the data
intersected in two data sets by the sum of individual
data elements (Dice, 1945). The statistical expression
of the Dice coefficient similarity coefficient of the X and
Y word set is presented in Equation (1). It can be
interpreted that the closer the similarity coefficient
found to 1 is, the more similar the two texts are.

2.
(,)

X Y
D X Y

X Y





 (1)

where X is the first word, Y is the second word.

In Figure 2, it is observed that the Dice coefficient
similarity coefficient of the X and Y word set is
calculated as an example.

Figure 2. Exemplary Calculation of The Dice
Coefficient Similarity

2.3. Levenshtein Algorithm

The Levenshtein algorithm is used in finding the
process count required to calculate the similarity of
two words by converting one of the two words given
to the other one (Levenshtein, 1966). The purpose of
this algorithm is to calculate the amount of change in
the letter between two words. This algorithm results
in the least cost to convert one text to another by
adding, deleting and displacing. The fact that the
calculated Levenshtein distance value is zero indicates
that the two words compared are the same (Kruskal
and Sankoff, 1999; Heeringa, 2004; Ugon vd., 2015;
Chaudhary vd., 2016; Kurdziel and Spencer, 2016). In
Equation (2), the Levenshtein similarity coefficient is
calculated.

 
(,) 1

max ,

Z
D X Y

X Y
  (2)

where X is the first word, Y is the second word, and Z
is the Levenshtein distance.

In order to calculate the Levenshtein distance of two
words with N and M word lengths, it is necessary to
create a matrix in the form of [N+1] x [M+1] (Su vd.,
2008). For example, the calculation of the Levenshtein
similarity of the words “rixos” and “pinas” can be
examined in Figure 3. The matrix values for the words
pinas and rixos given in Figure 3.a are N=5 and M=5.
During the calculation of the similarity value, if the
letters are not equal, 1 is added and written to the
smallest value to the left, top and cross left of the cell
(Figure 3.b). If the letters compared on the matrix are
equal, the value on its cross left is copied (Figure 3.c).

 r i x o s

 0 1 2 3 4 5

p 1

i 2

n 3

a 4

s 5

 (a) Levenshtein Matrix

 r i x o s

 0 1 2 3 4 5

p 1 1 2 3 4 5

i 2

n 3

a 4

s 5

(b) Letters are Different

 r i

 0 1 2 3 4 5

p 1 1 2 3 4 5

i 2 2 1

(c) Letters are The Same

 r i x o s

 0 1 2 3 4 5

p 1 1 2 3 4 5

i 2 2 1 2 3 4

n 3 3 2 2 3 4

a 4 4 3 3 3 4

s 5 5 4 4 4 3

(d) Result Matrix

Figure 3. Identification of the levenshtein matrix

The value in the last cell of the matrix found after all
letters are equalized gives the Levenshtein distance
(Figure 3.d). The lower the distance value obtained is,
the less the cost is. When the closeness of these words

AKSOY et al. 10.21923/jesd.467036

612

is graduated, fewer changes indicate that the two
words are more similar to each other.

2.4. Longest Common Subsequence Algorithm

The LCS algorithm is a similarity measure that is
successfully used for sequence matching (Nyirarugira
and Kim, 2015). The LCS algorithm aims to find a
common subsequence with the longest possible length
in two sequences (Chowdhury vd., 2014; Tabataba
and Mousavi, 2012). As it is seen in Equation (3), the
algorithm needs to be repeated until all characters are
matched.

1 1

1 1

0 0 0

(,) 1 (,)

max((,), (,)

i i i j i j

i j i j i j

if i or j

LCS X Y LCS X Y if X Y

LCS X Y LCS X Y if X Y

 

 

 

 



 
 
 
 
 

 (3)

where X is the first word, and Y is the second word.

An exemplary problem for the LCS algorithm is
presented in Figure 4. Here, it is observed that the
commonality of the word “abcf” was achieved
sequentially by comparing the words “abcdaf” and
“acbcf“. The first word to be compared is placed in the
first line of the, and the second word is placed in the
first column. All members of the second line and the
second column are set as zero. The first letter of the
word in the first column is compared individually with
all letters of the word in the first line. If the same letter
is matched, one more than the number in the upper
cross left is entered into the cell into which the number
will be entered. If the letters are not matched, the
number larger than those in the first cells on its top
and left is written in the cell into which the number
will be entered. After the values are entered into all
cells, from which cell the value in the cell comes is
marked with arrows until the first cell by starting from
the last cell backwardly.

 a b c d a f

 0 0 0 0 0 0 0

a 0 1 1 1 1 1 1

c 0 1 1 2 2 2 2

b 0 1 2 2 2 2 2

c 0 1 2 3 3 3 3

f 0 1 2 3 3 3 4

Figure 4. An Exemplary LCS Algorithm

While the path marked with arrows is followed, the
cells with increment in number are circled. When the
matches in the circled cells are written, the longest
commonality of two elements in a sequential manner
is achieved.

3. Big Data

In the age of technology, very big data stacks are
created with e-mails, videos, sound files, images, click

flows, logs, messages, search queries, social network
interactions, science data, sensors and mobile phones.
It is necessary to develop new methods since it is
getting more difficult to capture, format, store,
manage, share, analyze and visualize these data with
each passing day (Zikopoulos and Eaton, 2011). The
concept of big data was defined by Cavoukian and
Jonas (2012), as “datasets the size of which is beyond
the ability of typical database software tools to
capture, store, manage, and analyze”. Furthermore, it
can also be defined as a data stack that makes
traditional data processing methods insufficient.
There are five main features (Volume, Velocity,
Variety, Verification, Value) that define big data
(Figure 5).

Figure 5. Big data 5V features

Volume refers to the high volume of data. For example,
there are millions of sensors in the engine and other
parts of an airplane. These sensors record each state
in the airplane and create very large volume data in a
single flight. Velocity refers to the rate of data. The
data obtained by the sensors in the airplane can be
collected quickly as a result of the high levels which
today's microprocessor speeds have reached. Variety
refers to different types of data that can be obtained
such as image, sound and text file. Verification is the
feature that is used in cases when it is necessary to
check whether the incoming data are safe during data
flow. The feature of Value refers to obtaining
significant results from the big data analysis that is
performed using the first four features.

To perform analyses using the features of big data, it is
necessary to split the data into pieces that can be
processed and to bring the results back together. This
process is called Map-Reduce. The Map-Reduce
process consists of four stages as it is seen in Figure 6.

Figure 6. Stages of Map-Reduce

In the splitting stage, the data are divided into 64 MB
or 128 MB blocks. With the mapping process, the
expressions in data blocks are divided into words. In
the Shuffling stage, the results found for the correct
matching of the expressions formed by the mapping
process are directed to the Reducer. The Reducer
performs the most correct matching process by
roaming on the records it has received. The reducing
stage, which is the final stage, refers to the process of
printing the results to the source desired (database,
stream, etc.).

AKSOY et al. 10.21923/jesd.467036

613

4. Method

In the sales of holiday packages, tourism agencies play
an important role between the hotel and the customer.
Tourism agencies make sales by offering appropriate
bids to their customers through various technological
applications. Tourism agencies can keep the data of
the hotels with which they are contracted in their
databases and also provide users with the data they
provide through the web services of different
agencies. For this reason, data come to the travel
agency from multiple providers. The hotel records
that are identical to each other or that have been
previously recorded in the agency’s database can be
included in hotel addresses incoming from different
providers. However, since the address spellings of
these data expressing the same hotel and coming from
different providers are different from each other, the
matching of these hotels with each other in databases
is possible after a certain process time. The shortening
of this process as much as possible is important for
agencies in the sector. This study aiming to contribute
to this problem consists of three stages including data
pre-processing, Map-reducing process and the
implementation of different algorithms, observed in
Figure 7.

Figure 7. Stages of the study

4.1. Data Pre-Processing

In the first stage of the study, the data containing the
names of 2599 hotels belonging to the city of London
were sampled from the local database of the agency
discussed in the study. These records needed to be
individually matched with 3.040.096 address data
coming to the agency's local database from seventy
different providers. This matching process requires
2599 x 3.040.096 = 7.901.209.504 controlling
processes. This process places a significant workload.
The Map-Reduce process was implemented in the next
stage to reduce this workload.

4.2. Map-Reduce Process

Group codes were generated for hotel names using the
Soundex algorithm to decrease the number of records

to be matched in the data pre-processing process. Due
to a large number of hotels in the local database, the
grouping process was firstly performed among the
hotels to be matched. Figure 8 includes some examples
of the Soundex codes that were generated for the hotel
names in the local database and the hotel names
coming from different providers. After all Soundex
codes were generated, the hotel in the local database
and the hotel names coming from different providers
were matched. The number of controlling processes
in the data pre-processing stage was significantly
reduced by this matching process.

Figure 8. Soundex Codes Generated

4.3. Implementation of Different Algorithms

Common words in data sets decrease the correct
matching ratio in the SSA. For this reason, the hotel
names and addresses were separated word by word,
the words with a frequency of more than 1000 were
sorted from many to less, and these are presented in
Table 4.

Table 4. General Words Set

Word Freq. Word Freq. Word Freq.
hotel 41621 city 3253 at 1566
inn 26703 comfort 3242 del 1473
suites 13569 villa 3123 casa 1441
resort 9281 park 3048 village 1284
& 8572 airport 2756 apartm

ent
1265

and 6934 residence 2720 b&b 1216
the 5912 le 2099 plus 1195
- 4807 garden 2063 villas 1179
beach 4796 palace 1880 centre 1134
la 4294 days 1867 motel 1120
de 4292 boutique 1778 guest 1113
apart
ments

4157 san 1755 el 1084

spa 4021 center 1604 north 1062
by 3773 hostel 1593 aparta

mentos
1055

The words given in Table 4 were not taken into
consideration in the algorithm calculations for the
SSA to give results with higher performance. The uses
of the Dice coefficient, Levenshtein and LCS
algorithms, respectively, updated by removing the
common words are observed in Equations (4), (5) and
(6). The correct matching (score) conditions of the
name and address data of the updated SSA are
observed in Equation (7). The correct matching
percentage was obtained as a result of centuplicating
the condition expression stated in Equation 7 by the
results obtained.

AKSOY et al. 10.21923/jesd.467036

614

2. ()
(,)

()

X Y Common Words
D X Y

X Y Common Words

 


 
 (4)

(,) 1
max(, ()

Z
D X Y

X Y Common Words
 


 (5)

1 1

1 1

0 0 0

(,) 1 (,) ()

max((,), (,) ()

i i i j i j

i j i j i j

if i or j

LCS X Y LCS X Y Common Words if X Y

LCS X Y LCS X Y Common Words if X Y

 

 

 

  

 

 
 
 
 
 

 (6)

(0.9 0.9) (0.99 0.7)
name adress name adress

score and score or score and score    (7)

where X is the first word, Y is the second word, Z is the
Levenshtein distance, scorename is the matching hotel
name score, and scoreadress is the matching hotel
address score.

4.4. Developed Application Software

A window of the interface of the software developed
for this study is presented in Figure 9. The software
was developed using the C# programming language.
In the program, the user was first offered options
regarding whether he would optionally perform the
Map-Reduce process and whether he would use the
set of common words. In addition, the selection of the
algorithms used in the study was enabled.
Furthermore, the areas the user could log in for the
name and address scores expressed in Equation 7
were created. The process time, process count,
automatic matching count and incorrect matching
count are presented in the results section.

Figure 9. Developed Application Software

5. Findings

Table 5 presents a part of the Soundex code table
created for 2599 hotel names belonging to the city of
London obtained from the database of the agency
discussed in the study.

Table 5. Soundex Code Table For The Hotel Names
Obtained From The Local Database

Sample
Code

Soundex
Code

Hotel Name

O1 A000 A Home to Rent - The Belgravia
Apartment

O2 A100 Abbey
.O2599 .--- .---

Table 6 presents a part of the Soundex code table
created for 3.040.096 hotel names coming from
different data providers.

Table 6. Soundex Code Table For Hotel Names
Coming From Different Data Providers

Code Soundex
Code

Hotel Name

K1 A000 A
K2 A000 A - Austerlitz Hotel***
K3 A000 A - Haven Townhouse
K4 A000 A & A Plaza Hotel
K5 A000 A & Be
K6 A000 A & EM 19 Dong Du Hotel
K7 A000 A & Em 46 Hai Ba Trung Hotel
K8 A000 A & Em Dong Du
K9 A000 A & Em Hotel - 19 Dong Du
K10 A000 A & H Suite Madrid
K11 A100 Aap Hotel & Hostel
K12 A100 Aava Hotel

K13 A100 Aava Hotel Whistler
K14 A100 Aava Whistler - Deluxe
K15 A100 Aava Whistler - Superior King (1

Bed)
K16 A100 Aava Whistler Hotel
K17 A100 Aava Whistler Hotel
K18 A100 Ab Arganda
K19 A100 Ab Hotel Arganda
K20 A100 Ab Pension Granada
K3.040.096 --- ---

When the hotel names given in Table 5 and Table 6 are
matched with each other, it is necessary to perform a
matching process as a part of which is observed in
Table 7. As a result of this process, the Total Process
Count=7.901.209.504 and the Total Process Time
(second)=94.104 were obtained.

Table 7. The Data Matrix Before Map-Reduce

Local Database Different Providers
Sample Code Sample Code

O1 K1 O2 K1 .. O2599 K1
O1 K2 O2 K2 .. O2599 K2
O1 K3 O2 K3 .. O2599 K3
O1 K4 O2 K4 .. O2599 K4
O1 K5 O2 K5 .. O2599 K5
O1 K6 O2 K6 .. O2599 K6
O1 K7 O2 K7 .. O2599 K7
O1 K8 O2 K8 .. O2599 K8
O1 K9 O2 K9 .. O2599 K9
O1 K10 O2 K10 .. O2599 K10
O1 K11 O2 K11 .. O2599 K11

O1 K12 O2 K12 .. O2599 K12
O1 K13 O2 K13 .. O2599 K13
O1 K14 O2 K14 .. O2599 K14
O1 K15 O2 K15 .. O2599 K15
O1 K16 O2 K16 .. O2599 K16
O1 K17 O2 K17 .. O2599 K17
O1 K18 O2 K18 .. O2599 K18
O1 K19 O2 K19 .. O2599 K19
O1 K20 O2 K20 .. O2599 K20
.
O1 K3.040

.096
O2 K3.04

0.096
.. O2599 K3.040

.096
Total Process Count=7.901.209.504
Total Process Time (second)=94.104

AKSOY et al. 10.21923/jesd.467036

615

As it is seen in Table 8, after the data were reduced by
performing the Map-Reduce process, the Total
Process Count=100.190.117 and the Total Process
Time (second)= 1193 were obtained. Table 9 includes
the performances of the Dice coefficient, Levenshtein
and LCS algorithms. The incorrect data column is the
column that indicates how many of 2599 records were
matched incorrectly by the algorithms before
common words were removed.

Table 8. The Data Matrix After Map-Reduce

Local Database Different Providers
Sample Code Sample Code
O1 K1 O2 K1 .. O2599 K100.190.108
O1 K2 O2 K2 .. O2599 K100.190.109
O1 K3 O2 K3 .. O2599 K100.190.110
O1 K4 O2 K4 .. O2599 K100.190.111
O1 K5 O2 K5 .. O2599 K100.190.112
O1 K6 O2 K6 .. O2599 K100.190.113
O1 K7 O2 K7 .. O2599 K100.190.114
O1 K8 O2 K8 .. O2599 K100.190.115
O1 K9 O2 K9 .. O2599 K100.190.116
O1 K10 O2 K10 .. O2599 K100.190.117
Total Process Count=100.190.117
Total Process Time (second)= 1193

The updated incorrect data column gives the number
of incorrect matching obtained when the common
words were run without being included in the
algorithm. At this point, the Dice coefficient algorithm
achieved success by 99.23% while the Levenshtein
algorithm achieved success by 81.45%. The LCS
algorithm showed a relatively poor performance by
3.19% compared to the others.

Table 9. Comparison of The Performances of The
Algorithms

Sample
Code

Data
Count

Incorrect
Data

Updated
Incorrect Data

Success
(%)

Dice
coefficient

2599 79 4 99.23

Levenshtein 2599 356 360 81.45
LCS 2599 2502 2497 3.19

The processing times of the SSAs before the common
words were removed and the processing times after
the common words were removed are presented in
the chart in Figure 10. When the chart is examined, it
is observed that there is no significant difference
between the two groups in terms of duration.

Figure 10. The processing times of the SSAs
according to common words

In Figure 11, the time analysis that before and after the
map reduce process of the names of the hotels selected
as a sample in Istanbul, Berlin, Amsterdam, Bucharest
and Dubai is seen. According to in Figure 11, with the
map reduce operation, a gain of approximately 20%
was obtained in terms of the process time (sec).

Figure 11. Durations by map reduced used or non
used

After the map reduction process, the performances of
SSAs according to the five cities given as a sample are
seen in Table 10. Accordingly, it is seen that the best
results are obtained with the dice coefficient
algorithm. When the averages of the results of the
algorithms for these five sample cities are taken, it can
be concluded that the dice coefficient algorithm
performs 5 times more than the levenshtein algorithm
and 1.3 times higher than the LCS algorithm.

Table 10. The Comparison of SSAs After Map-Reduce

City Dice
Coefficient

Levenshtein LCS

Istanbul 95.24% 16.99% 64.48%
Berlin 88.95% 12.82% 62.57%
Amsterdam 94.86% 19.86% 70.32%
Bucharest 93.57% 27.14% 74.13%
Dubai 92.42% 16.48% 68.49%
Mean 93.00% 18.60% 68.00%

In figure 12, it is seen that the number of hotels
matched of the dice coefficient algorithm before and
after common words are used. Accordingly, with the
use of common words, the accuracy of hotel matches
is increased by about 50%

Figure 12. Mis-matched hotel count by common
keywords used or removed.

5. Conclusion

The fact that the data stored in databases by being
obtained from different data providers are not
consistent with each other leads to many problems,
especially data redundancy. When the obtained data

AKSOY et al. 10.21923/jesd.467036

616

are of big data sizes, the matching of data becomes
more complicated and takes longer. In this study,
solutions were searched for the problems arising from
the entry of the hotel data coming from different
providers into databases with different names and
addresses, using a data set of the tourism sector. For
this purpose, the Map-Reduce process was performed
by using the Soundex algorithm to match the data of
the hotels of a tourism agency that were selected as
the sample with the data of the hotels coming from
different providers. Thus, a significant amount of time
was saved in terms of the time required for data
matching. In the final stage of the study, some SSAs
were compared in terms of the data that they correctly
matched, and process time. It was observed that the
Dice coefficient algorithm yielded a better result in
terms of correct matching. It was observed that there
was no significant difference between the algorithms
in terms of process time. Since each SSA will exhibit
different performance on the data set used, different
SSAs can be used in the following studies. The data set
in this study was obtained from the tourism sector.
The methods used in this study can also be applied to
the data sets belonging to different sectors. The
Soundex algorithm supporting the English language
was used for the data set used in this study. Another
one of the suggestions is the adaptation of Soundex or
other algorithms to these languages in the matching of
words from different languages.

Conflict of Interest

No conflict of interest was declared by the authors.

References

Bakar, Z. A., Sembok, T. M. T., and Yusoff, M., 2000. An

evaluation of retrieval effectiveness using spelling-
correction and string-similarity matching methods
on Malay texts, Journal of the Association for
Information Science and Technology, vol. 51, no. 8,
pp. 691-706, doi: 10.1002/(SICI)1097-
4571(2000)51:8<691: :AID-ASI20>3.0.CO;2-U

Baruah, D., and Mahanta, A. K., 2013. A new similarity
measure with length factor for plagiarism
detection, International Journal of Computer
Applications, vol. 72, no. 14, pp. 14-17.

Baruah, D., and Mahanta, A. K., 2015. Design and
development of soundex for assamese language,
International Journal of Computer Applications,
vol. 117, no. 9, pp. 9-12, doi: 10.5120/20581-3000

Bhatti, Z., Waqas, A., Ismaili, I. A., Hakro, D. N., and
Soomro, W. J., 2014. Phonetic based soundex and
shapeex algorithm for Sindhi spell checker system,
Advances in Environmental Biology, vol. 8, no. 4,
pp. 1147-1155.

Bird, S., Klein, E., and Loper, E., 2009. Natural Language
Processing with Python. O’Reilly Press, pp. 463.

Cavoukian, A., and Jonas, J., 2012. Privacy by design in
the age of big data. Information and Privacy
Commissioner of Ontario, Canada, pp. 3.

Chaudhary, A., Wakchoure, N., Gotarne, N., Nath, P.,
and B., Dhakulkar, 2016. A comparative study on
name matching algorithms, International Journal
of Research in Advent Technology, vol. 4, no. 5, pp.
127-129.

Chen, X., and Zhou, L., 2015. Design and
implementation of an intelligent system for tourist
routes recommendation based on Hadoop, 6th
IEEE International Conference on Software
Engineering and Service Science (ICSESS), Beijing,
pp. 774–778. doi: 10.1109/ICSESS.2015.7339171

Chowdhury, S. R., Hasan, M. M., Iqbal, S., and Rahman,
M. S., 2014. Computing a longest common
palindromic subsequence, Fundamenta
Informaticae, vol. 129, no. 4, pp. 329-340, doi:
10.3233/FI-2014-974

Dice, L. R., 1945. Measures of the amount of ecologic
association between species, Ecology, vol. 26, no. 3,
pp. 297-302.

Dursun, B., and Sonmez, A. C., 2008. A new method for
computing the similarity of Turkish texts, IEEE
16th Signal Processing, Communication and
Applications Conference, Aydın, pp. 76. doi:
10.1109/SIU.2008.4632581

Freeman, A. T., Condon, S. L., and Ackerman, C. M.,
2006. Cross linguistic name matching in English
and Arabic: a one to many mapping extension of
the Levenshtein edit distance algorithm, in proc.
Main conference on Human Language Technology
Conference of the North American Chapter of the
Association of Computational Linguistics.
Association for Computational Linguistics, pp. 471-
478, doi:10.3115/1220835.1220895

Fuentes, A. A. G., Parra, I. P., Quevedo-Torrero, J. U., and
Perez, R. D., 2016. Comparative analysis of
phonetic algorithms applied to Spanish,”
International Conference on Computational
Science and Computational Intelligence (CSCI), Las
Vegas, pp. 1180-1185, doi:
10.1109/CSCI.2016.0223

Gupta P., and Upadhyay, A., 2015. Sentiment and
predictive analysis of big data for hotel reviews,
International Journal of Software & Hardware
Research in Engineering, vol. 3, no. 5, pp. 78–86.

AKSOY et al. 10.21923/jesd.467036

617

Heeringa, W. J. 2004. Measuring dialect pronunciation
differences using Levenshtein distance, Groningen:
s.n, pp.323.

Ilhan, S., Duru, N., Karagoz, S., and Sagir, M., 2008.
Metin madenciligi ile soru cevaplama sistemi,
Electrical – Electronics - Computer Engineering
Symposium, Bursa, pp. 356-359.

Jaisunder, G. C, Ahmed, I., and Mishra, R. K., 2017. Need
for customized soundex based algorithm on indian
names for phonetic matching, Global Journal of
Enterprise Information System, vol. 8, no. 2, pp. 30-
35, doi: 10.18311/gjeis/2016/7658

Jiang, Y., Deng, D., Wang, J., and Li, G., 2013. Efficient
parallel partition based algorithms for similarity
search and join with edit distance constraints, in
Proc. Joint EDBT/ICDT 2013 Workshops, Genoa.
doi: 10.1145/2457317.2457382

Kisla, T., Karaoglan, B., and Metin, S. K., 2015.
Extracting the Features of Similarity in Short Texts.
IEEE 23th Signal Processing And Communications
Applications Conference, Malatya, pp. 180-183,
doi: 10.1109/SIU.2015.7130443

Kruskal, J. B., and Sankoff, D., 1999. Time Warps, String
Edits, and Macromolecules: The Theory and
Practice of Sequence Comparison. Stanford, CA:
CSLI Publications.

Kurdziel, L. B. F., and Spencer, R. M. C., 2016.
Consolidation of novel word learning in native
English-speaking adults, Memory, vol. 24, no. 4, pp.
471-481, doi: 10.1080/09658211.2015.1019889

Levenshtein, V. I., 1966. Binary codes capable of
correcting deletions, insertions, and reversals,
Soviet Physics Doklady, vol. 10, no. 8. pp. 707-710.

Li, G., Deng, D., and Feng, J., 2013. A partition-based
method for string similarity joins with edit-
distance constraints, ACM Transactions on
Database Systems (TODS), vol. 38, no. 2, pp. 1–33,
doi: 10.1145/2487259.2487261

Li, X., Pan, B., Law, R., and Huang, X., 2017. Forecasting
tourism demand with composite search index,
Tourism Management, vol. 59, pp. 57-66, 2017. doi:
10.1016/j.tourman.2016.07.005

Liu, Y., Teichert, T., Rossi, M., Li, H., and Hu, F., 2017.
Big data for big insights: Investigating language-
specific drivers of hotel satisfaction with 412,784
user-generated reviews, Tourism Management,
vol. 59, pp. 554–563.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N.,
and Watkins, C., 2002. Text classification using

string kernels, Journal of Machine Learning
Research, vol. 2, pp. 419-444.

Miah, S. J., Vu, H. Q., Gammack, J.,. and McGrath, M.,
2017. A big data analytics method for tourist
behaviour analysis, Information & Management,
vol. 54, no. 6, pp. 771-785, doi:
10.1016/j.im.2016.11.011

Mutalib N. S. A., and Noah, S. A., 2011. Phonetic coding
methods for Malay names retrieval,” International
Conference on Semantic Technology and
Information Retrieval, Putrajaya, pp. 125-129. doi:
10.1109/STAIR.2011.5995776

Naumann, F., and Herschel, M., 2010. An introduction
to duplicate detection,” Synthesis Lectures on Data
Management, vol. 2, no.1, pp. 1-87, doi: 10.2200/
S00262ED1V01Y201003DTM003

Nyirarugira, C., and Kim, T., 2015. Stratified gesture
recognition using the normalized longest common
subsequence with rough sets, Signal Processing:
Image Communication, vol. 30, pp. 178-189, doi:
10.1016/j.image.2014.10.00844.

Odell, M., and Russell, R., 1918. The soundex coding
system, US Patents 1261167.

Onder, I., 2017. Classifying multi-destination trips in
Austria with big data, Tourism Management
Perspectives, vol. 21, pp. 54-58, doi:
10.1016/j.tmp.2016.11.002

Parmar, V. P., and Kumbharana, C. K., 2014. Study
existing various phonetic algorithms and designing
and development of a working model for the new
developed algorithm and comparison by
implementing it with existing algorithm (s),
International Journal of Computer Applications,
vol. 98, no. 19, pp. 45-49.

Peng, X., and Huang, Z., 2012. Enabling semantic
queries against the spatial database, Advances in
Electrical and Computer Engineering, vol. 12, no.1,
pp. 45-50, doi: 10.4316/AECE.2012.01008

Sagiroglu, S., and Sinanc, D., 2013. Big data: A review,
International Conference on Collaboration
Technologies and Systems (CTS), San Diego, pp 42-
47. doi: 10.1109/CTS.2013.6567202

Shedeed, H. A., and Abdel, H., 2011. A new intelligent
methodology for computer based assessment of
short answer question based on a new enhanced
soundex phonetic algorithm for Arabic language,
International Journal of Computer Applications,
vol. 34, no. 10, pp. 40-47.

Shrote, K. R., and Deorankar, A. V., 2016 Hotel
recommendation system using hadoop and

AKSOY et al. 10.21923/jesd.467036

618

mapreduce for big data, International Journal of
Computer Science, Information Technology, and
Security, vol. 6, no. 2, pp. 137–141.

Stein-Smith, K., 2016. The US Foreign Language
Deficit: Strategies for Maintaining a Competitive
Edge in a Globalized World. Palgrave Macmillan,
pp. 21, doi: 10.1007/978-3-319-34159-0

Su, Z., Ahn, B. R., Eom, K. Y., Kang, M. K., Kim, J. P., and
Kim, M. K., 2008. Plagiarism detection using the
Levenshtein distance and Smith-Waterman
algorithm, 3rd International Conference on
Innovative Computing Information and Control,
Dalian, Liaoning, pp. 0-3. doi:
10.1109/ICICIC.2008.422

Tabataba F. S., and Mousavi, S. R., 2012. A hyper-
heuristic for the longest common subsequence
problem, Computational Biology and Chemistry,
vol. 36, pp. 42–54, doi:
10.1016/j.compbiolchem.2011.12.004

Toole, J. L., Colak, S., Sturt, B., Alexander, L. P., Evsukoff,
A., and González, M. C., The path most traveled:
Travel demand estimation using big data
resources, Transportation Research Part C:
Emerging Technologies, vol. 58, pp. 162-177, 2015.
doi: 10.1016/j.trc.2015.04.022

Ugon, A., T. 2015. Nicolas, M. Richard, P. Guerin, P.
Chansard, C. Demoor, and L. Toubiana, “A new
approach for cleansing geographical dataset using
Levenshtein distance, prior knowledge and
contextual information, Medical Informatics
Europe, Madrid, pp. 227-229. doi: 10.3233/978-1-
61499-512-8-227

Xiang, L. , Jiang, N., Ya-ting, Y., Xi, Z., and Cheng-gang,
M., 2014. Application of generalization language
model in Chinese-Uyghur machine translation,
Application Research of Computers, vol. 31, no. 10,
pp. 2994-2997, doi: 10.3969/j.issn.1001-
3695.2014.10.026.

Xiang, Z., Schwartz, Z., Gerdes, J. H., and Uysal, M., 2015.
What can big data and text analytics tell us about
hotel guest experience and satisfaction?
International Journal of Hospitality Management,
vol. 44, pp. 120-130, doi:
10.1016/j.ijhm.2014.10.013

Yahia, M. E., Saeed, M. E., and Salih, A. M., 2006. An
intelligent algorithm for Arabic soundex function
using intuitionistic fuzzy logic, 3rd International
IEEE Conference Intelligent Systems, London, pp.
711-715. doi: 10.1109/IS.2006.348506

Zikopoulos, P., and Eaton, C., 2011. Understanding Big
Data: Analytics for Enterprise Class Hadoop and

Streaming Data. Mcgraw-Hill Osborne Media Press,
pp. 176.

