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The great mobility in the world tourism in recent years has also enabled this sector to be 
included among the study areas of big data. In this study, a solution proposal was put forward 
by using the big data and string similarity algorithms (SSA) for the problems arising from 
the entry of the hotel data coming from different providers into databases with different 
names and addresses. Therefore, 2599 hotels of a tourism agency with a wide hotel network 
located in London were selected as the sample, and the Map-Reduce process was performed 
by using the Soundex algorithm to match these hotels with approximately three million hotel 
data coming from seventy different providers. Matching with Map-Reduce ensured a 
significant reduction in process count and process time. Furthermore, the Dice coefficient, 
Levenshtein and Longest common subsequence (LCS) algorithms were compared in terms 
of the data that they correctly matched, and process time. In this stage, the words decreasing 
the score of the algorithms in the database were detected and removed before the algorithms 
were implemented. The Dice coefficient algorithm yielded better results in terms of correct 
matching, and the Levenshtein algorithm yielded better results in terms of process time.  

  

BÜYÜK VERİDE METİN BENZERLİK ALGORİTMALARININ VERİ EŞLEME 
PERFORMANSLARININ KARŞILAŞTIRILMASI 

 
Anahtar Kelimeler Öz 
Algoritmalar,  
Metin analizi,  
Doğal dil işleme,  
Veri analizi,  
Veri tabanları.  

Son yıllarda dünya turizmindeki büyük hareketlilik, bu sektörün büyük verinin çalışma 
alanları arasına girmesini sağlamıştır. Bu çalışmada farklı sağlayıcılardan gelen otel 
bilgilerinin, veritabanlarına farklı isim ve adreslerle girilmesi sonucu oluşan problemler için, 
büyük veri ve string similarity algoritmaları (SSA) kullanarak bir çözüm önerisi ortaya 
konulmuştur. Bunun için geniş bir otel ağına sahip bir turizm acentasının Londra’da bulunan 
2599 oteli örneklem olarak seçilmiş ve bu oteller ile yetmiş farklı sağlayıcıdan gelen yaklaşık 
üç milyon otel bilgisinin eşleştirilmesi için, soundex algoritmasından faydalanılarak Map-
Reduce işlemi gerçekleştirilmiştir. Map-Reduce ile eşleme işlem sayısı ve işlem süresinde 
önemli ölçüde azalma sağlanmıştır. Çalışmanın diğer aşamasında ise Dice coefficient, 
Levenshtein ve Longest common subsequence (LCS) algoritmaları, doğru eşleyebildikleri 
veri ve işlem süresi açısından kıyaslanmıştır. Bu aşamada algoritmalar uygulanmadan önce 
veri tabanında algoritmaların skorunu düşüren kelimeler tespit edilerek çıkartılmıştır. 
Doğru eşleme bakımından Dice coefficient algoritması, işlem süresi açısından ise 
Levenshtein algoritması daha iyi sonuçlar üretmiştir. 
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1. Introduction 
 
While the total contribution of the tourism sector to 
the world economy between the years 2006 and 2016 
was 7.61 trillion dollars, the number of international 
tourists traveling around the world only in 2015 was 

1 billion 186 million (Smith, 2016). One of the 
parameters that make a significant contribution to the 
great economic mobility in the sector is information 
and communication technologies that have developed 
in recent years. For a tourist, information and 
communication technologies are used intensively in 
every stage of mobility, before travelling, on the road, 
at the destination and on the way back. Nowadays, 
only corporate web pages or advertisements in 
different communication fields are not enough for 
hotels and tourism agencies to provide their services 
to tourists in the best way. Social media, forums, web 
blogs and all web environments in which 
accommodation comments can be made appear as 
important decision-making factors in tourists' 
preferences. Therefore, all actors of the tourism sector 
who are commented in the social media should follow 
these platforms in the virtual environment.  
 
The number of data generated in the virtual 
environment for the tourism industry, which is a large 
sector, is also large. Therefore, the actors of this sector 
can make this fast data flow meaningful for them with 
big data analyses. In the world, tourism industry and 
big data-based academic studies have focused on 
different objectives. The studies on the estimation of 
tourist demands for later periods (Li vd., 2017; Toole 
vd., 2015) are considered to be important for the 
future planning of the industry. Studies (Liu vd., 
2017;Gupta and Upadhyay, 2015; Xiang vd., 2015) 
have been carried out to determine the hotel 
satisfaction levels from the comments produced from 
social media sites such as Twitter, Facebook, Flickr, 
etc., forums and popular hotel search sites such as 
tripadvisor.com and booking.com. Some studies 
(Önder, 2017; Miah vd., 2016; Chen and Zhou, 2015; 
Peng and Huang, 2012) are related to the creation of 
tourist travel maps with semantic web applications by 
analyzing the tourist behaviors through the systems in 
which tourist behaviors can be tracked by location 
such as GPS, city travel cards and credit cards. The 
development of systems suggesting hotel proposals 
with big data analysis is also among the studies carried 
out (Shrote and Deorankar, 2016). 
 
It was envisaged that the amount of data generated in 
the world would be doubled every two years and 
would reach approximately 8 Zettabytes by 2015 
(Sagiroglu and Sinanc, 2013). Some auxiliary science 
fields such as natural language processing (NLP) are 
needed in big data analyses to analyze meaningful data 
from such a big data universe. NLP is a field of science 
that refers to the process of building, analyzing and 
interpreting the model of human-specific languages 
that is appropriate to be processed by the computer 

(Bird vd., 2009). NLP is used in numerous areas. NLP 
mechanisms are utilized in many areas such as the 
detection of incorrectly written words, alternative 
word suggestions, analysis of queries written in a form 
similar to the natural language, sentence translations 
from language to language, sentence or text derivation 
in the natural language, detection of junk mails (spam) 
by email providers, computer-aided language 
teaching, and detection of text plagiarism.  One of the 
main problems of NLP is the correction of incorrectly 
written word phrases. Therefore, it is aimed to correct 
incorrectly written word phrases with the highest 
accuracy percentage using the advanced Soundex, 
Dice coefficient, Levenshtein and LCS algorithms. 
 
The comments produced on the internet should be 
addressed in terms of the NLP while performing the 
big data analysis in the tourism sector because it is 
necessary to take into account that the comments have 
an official language or a nonofficial language (which 
may contain abbreviations and slang) as well as the 
unique grammatical structure of the language used in 
the comments made. One of the scenarios that can be 
encountered for tourism-related NLP can be 
experienced in the service sector, which is the other 
stakeholder of the tourism industry. Nowadays, 
tourism agencies play an important role between the 
hotel and the customer in terms of marketing for 
holiday sales. Each tourism agency has many hotels 
marketed by it within itself. The data related to these 
hotels are constantly updated by being stored in big 
databases. However, the incorrect entry of the hotel 
data by users into the system causes multiple different 
records of the same hotel to be kept in the database. A 
chain of hotels may have hotels in different cities, or 
the hotel name may contain words such as resort, SPA 
and luxury. For example, the fact that a hotel is 
recorded as “Miracle Hotel” or “Miracle Hotel & SPA” 
into the database poses a problem. 
 
There are two main purposes of this study. Firstly, to 
increase the quality of the representation of hotel 
names in databases by correcting these types of 
incorrectly written word phrases with the highest 
accuracy percentage through the SSA by first detecting 
non-standard abbreviations and nonsense characters 
in names. Secondly, to determine the effect for the 
process time on the sample dataset of map reduce. 
For this purpose, the Map-Reduce process was 
performed by using the Soundex algorithm to match 
the data of the hotels of a tourism agency that were 
selected as the sample with the data of the hotels 
coming from different providers. In the other stage of 
the study, the Dice coefficient, Levenshtein and LCS 
algorithms were compared in terms of the data that 
they correctly matched, and process time. In the 
literature studies carried out, it has been observed 
that the studies on this subject, especially those 
carried out using data sets belonging to the tourism 
sector, are limited. The fact that higher performance 
was obtained from the SSA by removing the common 
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words in the dataset before the SSA was used is the 
most important factor that distinguishes this study 
from other studies. 
 
This article is organised as follows. SSAs are classified, 
and some algorithms are introduced in Section II. The 
concept of big data is described in Section III. The 
method of this paper is introduced in Section IV. The 
findings of this paper are presented in Section V. The 
paper ends with a conclusion and a description of 
future work. 
 
2. String Similarity Algorithms 
 
In information technologies, text similarity takes an 
important place among the methods that are used to 
analyze text data. The SSA allows for the numerical 
expression of similarity ratios between texts. 
Similarity ratios may consist of texts, words or long 
sentences to be calculated (Dursun and Sonmez, 
2008). The SSA, which is the subject of the NLP study 
field, includes many subjects of scientific study such as 
word recognition (Fuentes vd., 2016), information 
retrieval (Kisla vd., 2015), text summarization (Bakar 
vd., 2000), word learning (Kurdziel and Spencer, 
2016), translation (Xiang vd., 2014), text classification 
(Lodhi vd., 2002), development of question and 
answer systems (Ilhan vd., 2008), and detection of 
plagiarism Baruah and Mahanta, 2013). 
 
String similarity measures are presented in Figure 1. 
Edit-based similarity measures indicate after how 
many moves the distance of two texts will be equal. 
These moves are based on the differentiation, 
alteration, reduction or increasing of the characters 
found in the same or nearby locations in the texts 
(Deng vd., 2013; Jiang vd., 2013). The total similarity 
is calculated by dividing the texts to be found in Token 
based similarity measures into words or word groups. 
In hybrid similarity measures, edit-based similarity 
measures and token-based similarity measures are 
used together. Different combinations of letters in 
many language structures on the Earth may have the 
same pronunciations. For this reason, it is common for 
users to write words incorrectly while writing since 
the definition of words may become complicated. 
 

 

Figure 1. String Similarity Measures (Naumann and 
Herschel, 2013). 

Furthermore, homophony between words makes it 
difficult to classify typographical errors correctly or to 
index these names correctly. Phonetic algorithms are 
among the SSAs used to find solutions to these 
problems (Mutalib and Noah, 2011; Parmar and 
Kumbharana, 2014). 
 
2.1. Soundex Algorithm 
 
Different combinations of letters in a word may show 
similarity in the pronunciation of that word. This may 
lead to the misspelling of words. The Soundex 
algorithm, one of the first algorithms developed to find 
a solution to this problem, was developed by Robert 
Russell and Margaret Odell in 1918 (Odell and Russell, 
1918). Since the Soundex algorithm is an algorithm 
developed only for the English language, various 
studies have been carried out regarding the 
adaptations of this algorithm in different languages 
(Yahia vd., 2006; Baruah and Mahanta, 2015; Bhatti 
vd., 2014; Jaisunder, 2017; Shedeed and Abdel, 2011; 
Freeman vd., 2006). The Soundex algorithm generates 
codes depending on pronunciation in detecting the 
similarity of words. Table 1 shows the processing 
steps of the Soundex algorithm. 
 

Table 1. Soundex Algorithm 

1 All letters in the word are capitalized, and all punctuation 
marks are removed. 

2 The first letter remains in the word. 
3 The letters 'A', E', 'I', 'O', 'U', 'H', 'W', 'Y' among the letters 

except the first letter are removed from the word. 
4 Each letter is replaced with the appropriate number that 

corresponds to it. Except for these, any numeric, alpha-
numeric or character existing in the word is removed and 
replaced with a space. 

5 The words except for the first letter are coded according to 
Table 2. 

6 Only one of the same adjacent letters remains, and the other 
one is removed from the word. 

7 The spaces are deleted, and zero is added to the end as many 
times as the missing number to complete the expression to 
4 digits. 

 
The numeric equivalents of the letters in the algorithm 
are presented in Table 2. 

 
Table 2.  Numeric Equivalents of The Letters 

Numeric 
Equivalent 

Letter Equivalent 

1 'B', 'F', 'P', 'V' 
2 'C', 'G', 'J', 'K', 'Q', 'S', 'X', 'Z' 
3 'D','T' 
4 'L' 
5 'M','N' 
6 'R’ 

 
The code equivalents of some words with similar 
pronunciation generated by the algorithm in the 
Soundex algorithm are presented in the examples in 
Table 3. 
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Table 3.  Soundex Code Equivalents of Some Words 

Word Soundex Code 
SCHMID, SCHMIDT, SCHMIT S530 
REAL, RAIL, REILLY, RULE R400 
JONES, JONAS, JOHANNAS J520 
HOTEL, HOTTEL, HUDDLE H340 

SURFACE, SERVOS S612 
TURKEY, TOWERS, THRUSH T620 

BEEMAN,BEAMAN, 
BAUMANN 

B550 

 
2.2. Dice Coefficient Algorithm 
 
The Dice coefficient measure is used in determining 
the similarities and differences in datasets. This 
method is calculated by dividing two times of the data 
intersected in two data sets by the sum of individual 
data elements (Dice, 1945). The statistical expression 
of the Dice coefficient similarity coefficient of the X and 
Y word set is presented in Equation (1). It can be 
interpreted that the closer the similarity coefficient 
found to 1 is, the more similar the two texts are. 
 

2.
( , )

X Y
D X Y

X Y





                                                     (1) 

where X is the first word, Y is the second word. 
 
In Figure 2, it is observed that the Dice coefficient 
similarity coefficient of the X and Y word set is 
calculated as an example. 
 

 

Figure 2. Exemplary Calculation of The Dice 
Coefficient Similarity 

 
2.3. Levenshtein Algorithm 
 
The Levenshtein algorithm is used in finding the 
process count required to calculate the similarity of 
two words by converting one of the two words given 
to the other one (Levenshtein, 1966). The purpose of 
this algorithm is to calculate the amount of change in 
the letter between two words. This algorithm results 
in the least cost to convert one text to another by 
adding, deleting and displacing. The fact that the 
calculated Levenshtein distance value is zero indicates 
that the two words compared are the same (Kruskal 
and Sankoff, 1999; Heeringa, 2004; Ugon vd., 2015; 
Chaudhary vd., 2016; Kurdziel and Spencer, 2016). In 
Equation (2), the Levenshtein similarity coefficient is 
calculated. 
 

 
( , ) 1

max ,

Z
D X Y

X Y
                                                          (2) 

where X is the first word, Y is the second word, and Z 
is the Levenshtein distance. 
 

In order to calculate the Levenshtein distance of two 
words with N and M word lengths, it is necessary to 
create a matrix in the form of [N+1] x [M+1] (Su vd., 
2008). For example, the calculation of the Levenshtein 
similarity of the words “rixos” and “pinas” can be 
examined in Figure 3. The matrix values for the words 
pinas and rixos given in Figure 3.a are N=5 and M=5. 
During the calculation of the similarity value, if the 
letters are not equal, 1 is added and written to the 
smallest value to the left, top and cross left of the cell 
(Figure 3.b). If the letters compared on the matrix are 
equal, the value on its cross left is copied (Figure 3.c). 

 
  r i x o s 

 0 1 2 3 4 5 

p 1      

i 2      

n 3      

a 4      

s 5      

 (a) Levenshtein Matrix 
 

  r i x o s 

 0 1 2 3 4 5 

p 1 1 2 3 4 5 

i 2      

n 3      

a 4      

s 5      

(b) Letters are Different 
 

  r i    

 0 1 2 3 4 5 

p 1 1 2 3 4 5 

i 2 2 1    

       

       

       

(c) Letters are The Same 
 

  r i x o s 

 0 1 2 3 4 5 

p 1 1 2 3 4 5 

i 2 2 1 2 3 4 

n 3 3 2 2 3 4 

a 4 4 3 3 3 4 

s 5 5 4 4 4 3 

(d) Result Matrix 

Figure 3. Identification of the levenshtein matrix 
 
The value in the last cell of the matrix found after all 
letters are equalized gives the Levenshtein distance 
(Figure 3.d). The lower the distance value obtained is, 
the less the cost is. When the closeness of these words 
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is graduated, fewer changes indicate that the two 
words are more similar to each other. 
 
2.4. Longest Common Subsequence Algorithm 
 
The LCS algorithm is a similarity measure that is 
successfully used for sequence matching (Nyirarugira 
and Kim, 2015). The LCS algorithm aims to find a 
common subsequence with the longest possible length 
in two sequences (Chowdhury vd., 2014; Tabataba 
and Mousavi, 2012). As it is seen in Equation (3), the 
algorithm needs to be repeated until all characters are 
matched. 
 

1 1

1 1

0 0 0

( , ) 1 ( , )

max( ( , ), ( , )

i i i j i j

i j i j i j

if i or j

LCS X Y LCS X Y if X Y

LCS X Y LCS X Y if X Y

 

 

 

 



 
 
 
 
 

        (3) 

where X is the first word, and Y is the second word. 
 
An exemplary problem for the LCS algorithm is 
presented in Figure 4. Here, it is observed that the 
commonality of the word “abcf” was achieved 
sequentially by comparing the words “abcdaf” and 
“acbcf“. The first word to be compared is placed in the 
first line of the, and the second word is placed in the 
first column. All members of the second line and the 
second column are set as zero. The first letter of the 
word in the first column is compared individually with 
all letters of the word in the first line. If the same letter 
is matched, one more than the number in the upper 
cross left is entered into the cell into which the number 
will be entered. If the letters are not matched, the 
number larger than those in the first cells on its top 
and left is written in the cell into which the number 
will be entered. After the values are entered into all 
cells, from which cell the value in the cell comes is 
marked with arrows until the first cell by starting from 
the last cell backwardly. 
 

  a b c d a f 

 0 0 0 0 0 0 0 

a 0 1 1 1 1 1 1 

c 0 1 1 2 2 2 2 

b 0 1 2 2 2 2 2 

c 0 1 2 3 3 3 3 

f 0 1 2 3 3 3 4 

Figure 4. An Exemplary LCS Algorithm 
 
While the path marked with arrows is followed, the 
cells with increment in number are circled. When the 
matches in the circled cells are written, the longest 
commonality of two elements in a sequential manner 
is achieved. 
 
3. Big Data 
 
In the age of technology, very big data stacks are 
created with e-mails, videos, sound files, images, click 

flows, logs, messages, search queries, social network 
interactions, science data, sensors and mobile phones. 
It is necessary to develop new methods since it is 
getting more difficult to capture, format, store, 
manage, share, analyze and visualize these data with 
each passing day (Zikopoulos and Eaton, 2011). The 
concept of big data was defined by Cavoukian and 
Jonas (2012), as “datasets the size of which is beyond 
the ability of typical database software tools to 
capture, store, manage, and analyze”. Furthermore, it 
can also be defined as a data stack that makes 
traditional data processing methods insufficient. 
There are five main features (Volume, Velocity, 
Variety, Verification, Value) that define big data 
(Figure 5). 
 

 

Figure 5. Big data 5V features 
 

Volume refers to the high volume of data. For example, 
there are millions of sensors in the engine and other 
parts of an airplane. These sensors record each state 
in the airplane and create very large volume data in a 
single flight.  Velocity refers to the rate of data. The 
data obtained by the sensors in the airplane can be 
collected quickly as a result of the high levels which 
today's microprocessor speeds have reached.  Variety 
refers to different types of data that can be obtained 
such as image, sound and text file.  Verification is the 
feature that is used in cases when it is necessary to 
check whether the incoming data are safe during data 
flow. The feature of Value refers to obtaining 
significant results from the big data analysis that is 
performed using the first four features. 
 
To perform analyses using the features of big data, it is 
necessary to split the data into pieces that can be 
processed and to bring the results back together.  This 
process is called Map-Reduce. The Map-Reduce 
process consists of four stages as it is seen in Figure 6. 
 

 

Figure 6. Stages of Map-Reduce 
 

In the splitting stage, the data are divided into 64 MB 
or 128 MB blocks. With the mapping process, the 
expressions in data blocks are divided into words.   In 
the Shuffling stage, the results found for the correct 
matching of the expressions formed by the mapping 
process are directed to the Reducer. The Reducer 
performs the most correct matching process by 
roaming on the records it has received. The reducing 
stage, which is the final stage, refers to the process of 
printing the results to the source desired (database, 
stream, etc.). 
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4. Method 
 
In the sales of holiday packages, tourism agencies play 
an important role between the hotel and the customer. 
Tourism agencies make sales by offering appropriate 
bids to their customers through various technological 
applications. Tourism agencies can keep the data of 
the hotels with which they are contracted in their 
databases and also provide users with the data they 
provide through the web services of different 
agencies. For this reason, data come to the travel 
agency from multiple providers. The hotel records 
that are identical to each other or that have been 
previously recorded in the agency’s database can be 
included in hotel addresses incoming from different 
providers. However, since the address spellings of 
these data expressing the same hotel and coming from 
different providers are different from each other, the 
matching of these hotels with each other in databases 
is possible after a certain process time. The shortening 
of this process as much as possible is important for 
agencies in the sector. This study aiming to contribute 
to this problem consists of three stages including data 
pre-processing, Map-reducing process and the 
implementation of different algorithms, observed in 
Figure 7. 
 

 

Figure 7. Stages of the study 
 
4.1. Data Pre-Processing 
 
In the first stage of the study, the data containing the 
names of 2599 hotels belonging to the city of London 
were sampled from the local database of the agency 
discussed in the study. These records needed to be 
individually matched with 3.040.096 address data 
coming to the agency's local database from seventy 
different providers. This matching process requires 
2599 x 3.040.096 = 7.901.209.504 controlling 
processes. This process places a significant workload. 
The Map-Reduce process was implemented in the next 
stage to reduce this workload. 
 
4.2. Map-Reduce Process 
 
Group codes were generated for hotel names using the 
Soundex algorithm to decrease the number of records 

to be matched in the data pre-processing process. Due 
to a large number of hotels in the local database, the 
grouping process was firstly performed among the 
hotels to be matched. Figure 8 includes some examples 
of the Soundex codes that were generated for the hotel 
names in the local database and the hotel names 
coming from different providers. After all Soundex 
codes were generated, the hotel in the local database 
and the hotel names coming from different providers 
were matched.  The number of controlling processes 
in the data pre-processing stage was significantly 
reduced by this matching process. 
 

 

Figure 8. Soundex Codes Generated 
 
4.3. Implementation of Different Algorithms 
 
Common words in data sets decrease the correct 
matching ratio in the SSA. For this reason, the hotel 
names and addresses were separated word by word, 
the words with a frequency of more than 1000 were 
sorted from many to less, and these are presented in 
Table 4. 
 

Table 4. General Words Set 

Word Freq. Word Freq. Word Freq. 
hotel 41621 city 3253 at 1566 
inn 26703 comfort 3242 del 1473 
suites 13569 villa 3123 casa 1441 
resort 9281 park 3048 village 1284 
& 8572 airport 2756 apartm

ent 
1265 

and 6934 residence 2720 b&b 1216 
the 5912 le 2099 plus 1195 
- 4807 garden 2063 villas 1179 
beach 4796 palace 1880 centre 1134 
la 4294 days 1867 motel 1120 
de 4292 boutique 1778 guest 1113 
apart
ments 

4157 san 1755 el 1084 

spa 4021 center 1604 north 1062 
by 3773 hostel 1593 aparta

mentos 
1055 

 
The words given in Table 4 were not taken into 
consideration in the algorithm calculations for the 
SSA to give results with higher performance. The uses 
of the Dice coefficient, Levenshtein and LCS 
algorithms, respectively, updated by removing the 
common words are observed in Equations (4), (5) and 
(6). The correct matching (score) conditions of the 
name and address data of the updated SSA are 
observed in Equation (7). The correct matching 
percentage was obtained as a result of centuplicating 
the condition expression stated in Equation 7 by the 
results obtained. 
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2. ( )
( , )

( )

X Y Common Words
D X Y

X Y Common Words

 


 
                                            (4) 

( , ) 1
max( , ( )

Z
D X Y

X Y Common Words
 


                                  (5) 

1 1

1 1

0 0 0

( , ) 1 ( , ) ( )

max( ( , ), ( , ) ( )

i i i j i j

i j i j i j

if i or j

LCS X Y LCS X Y Common Words if X Y

LCS X Y LCS X Y Common Words if X Y

 

 

 

  

 

 
 
 
 
 

  (6) 

( 0.9 0.9) ( 0.99 0.7)
name adress name adress

score and score or score and score            (7) 

where X is the first word, Y is the second word, Z is the 
Levenshtein distance, scorename is the matching hotel 
name score, and scoreadress is the matching hotel 
address score. 
 
4.4. Developed Application Software 
 
A window of the interface of the software developed 
for this study is presented in Figure 9. The software 
was developed using the C# programming language. 
In the program, the user was first offered options 
regarding whether he would optionally perform the 
Map-Reduce process and whether he would use the 
set of common words. In addition, the selection of the 
algorithms used in the study was enabled. 
Furthermore, the areas the user could log in for the 
name and address scores expressed in Equation 7 
were created. The process time, process count, 
automatic matching count and incorrect matching 
count are presented in the results section. 
 

 

Figure 9. Developed Application Software 
 
5. Findings 
 
Table 5 presents a part of the Soundex code table 
created for 2599 hotel names belonging to the city of 
London obtained from the database of the agency 
discussed in the study. 
 

Table 5. Soundex Code Table For The Hotel Names 
Obtained From The Local Database 

Sample 
Code 

Soundex 
Code 

Hotel Name 

O1 A000 A Home to Rent - The Belgravia 
Apartment 

O2 A100 Abbey 
.O2599 .--- .--- 

 

Table 6 presents a part of the Soundex code table 
created for 3.040.096 hotel names coming from 
different data providers. 
 

Table 6. Soundex Code Table For Hotel Names 
Coming From Different Data Providers 

Code Soundex 
Code 

Hotel Name 

K1 A000 A 
K2 A000 A - Austerlitz Hotel*** 
K3 A000 A - Haven Townhouse 
K4 A000 A & A Plaza Hotel 
K5 A000 A & Be 
K6 A000 A & EM 19 Dong Du Hotel 
K7 A000 A & Em 46 Hai Ba Trung Hotel 
K8 A000 A & Em Dong Du 
K9 A000 A & Em Hotel - 19 Dong Du 
K10 A000 A & H Suite Madrid 
K11 A100 Aap Hotel & Hostel 
K12 A100 Aava Hotel 

K13 A100 Aava Hotel Whistler 
K14 A100 Aava Whistler - Deluxe 
K15 A100 Aava Whistler - Superior King (1 

Bed) 
K16 A100 Aava Whistler Hotel 
K17 A100 Aava Whistler Hotel 
K18 A100 Ab Arganda 
K19 A100 Ab Hotel Arganda 
K20 A100 Ab Pension Granada 
K3.040.096 --- --- 

 
When the hotel names given in Table 5 and Table 6 are 
matched with each other, it is necessary to perform a 
matching process as a part of which is observed in 
Table 7. As a result of this process, the Total Process 
Count=7.901.209.504 and the Total Process Time 
(second)=94.104 were obtained. 
 

Table 7. The Data Matrix Before Map-Reduce 

Local Database       Different Providers 
Sample Code           Sample Code 

O1 K1 O2 K1 .. O2599 K1 
O1 K2 O2 K2 .. O2599 K2 
O1 K3 O2 K3 .. O2599 K3 
O1 K4 O2 K4 .. O2599 K4 
O1 K5 O2 K5 .. O2599 K5 
O1 K6 O2 K6 .. O2599 K6 
O1 K7 O2 K7 .. O2599 K7 
O1 K8 O2 K8 .. O2599 K8 
O1 K9 O2 K9 .. O2599 K9 
O1 K10 O2 K10 .. O2599 K10 
O1 K11 O2 K11 .. O2599 K11 

O1 K12 O2 K12 .. O2599 K12 
O1 K13 O2 K13 .. O2599 K13 
O1 K14 O2 K14 .. O2599 K14 
O1 K15 O2 K15 .. O2599 K15 
O1 K16 O2 K16 .. O2599 K16 
O1 K17 O2 K17 .. O2599 K17 
O1 K18 O2 K18 .. O2599 K18 
O1 K19 O2 K19 .. O2599 K19 
O1 K20 O2 K20 .. O2599 K20 
. . . .  . . 
O1 K3.040

.096 
O2 K3.04

0.096 
.. O2599 K3.040

.096 
Total Process Count=7.901.209.504 
Total Process Time (second)=94.104 
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As it is seen in Table 8, after the data were reduced by 
performing the Map-Reduce process, the Total 
Process Count=100.190.117 and the Total Process 
Time (second)= 1193 were obtained. Table 9 includes 
the performances of the Dice coefficient, Levenshtein 
and LCS algorithms. The incorrect data column is the 
column that indicates how many of 2599 records were 
matched incorrectly by the algorithms before 
common words were removed. 

 

Table 8. The Data Matrix After Map-Reduce 

Local Database       Different Providers 
Sample Code          Sample Code 
O1 K1 O2 K1 .. O2599 K100.190.108 
O1 K2 O2 K2 .. O2599 K100.190.109 
O1 K3 O2 K3 .. O2599 K100.190.110 
O1 K4 O2 K4 .. O2599 K100.190.111 
O1 K5 O2 K5 .. O2599 K100.190.112 
O1 K6 O2 K6 .. O2599 K100.190.113 
O1 K7 O2 K7 .. O2599 K100.190.114 
O1 K8 O2 K8 .. O2599 K100.190.115 
O1 K9 O2 K9 .. O2599 K100.190.116 
O1 K10 O2 K10 .. O2599 K100.190.117 
Total Process Count=100.190.117 
Total Process Time (second)= 1193 

 
The updated incorrect data column gives the number 
of incorrect matching obtained when the common 
words were run without being included in the 
algorithm. At this point, the Dice coefficient algorithm 
achieved success by 99.23% while the Levenshtein 
algorithm achieved success by 81.45%. The LCS 
algorithm showed a relatively poor performance by 
3.19% compared to the others. 
 

Table 9. Comparison of The Performances of The 
Algorithms 

Sample 
Code 

Data 
Count 

Incorrect 
Data 

Updated 
Incorrect Data 

Success 
(%) 

Dice 
coefficient 

2599 79 4 99.23 

Levenshtein  2599 356 360 81.45 
LCS 2599 2502 2497 3.19 

 
The processing times of the SSAs before the common 
words were removed and the processing times after 
the common words were removed are presented in 
the chart in Figure 10. When the chart is examined, it 
is observed that there is no significant difference 
between the two groups in terms of duration. 
 

 

Figure 10. The processing times of the SSAs 
according to common words 

 

In Figure 11, the time analysis that before and after the 
map reduce process of the names of the hotels selected 
as a sample in Istanbul, Berlin, Amsterdam, Bucharest 
and Dubai is seen. According to in Figure 11, with the 
map reduce operation, a gain of approximately 20% 
was obtained in terms of the process time (sec). 
 

 

Figure 11. Durations by map reduced used or non 
used 

 
After the map reduction process, the performances of 
SSAs according to the five cities given as a sample are 
seen in Table 10. Accordingly, it is seen that the best 
results are obtained with the dice coefficient 
algorithm. When the averages of the results of the 
algorithms for these five sample cities are taken, it can 
be concluded that the dice coefficient algorithm 
performs 5 times more than the levenshtein algorithm 
and 1.3 times higher than the LCS algorithm. 
 
Table 10. The Comparison of SSAs After Map-Reduce 

City Dice 
Coefficient 

Levenshtein  LCS 

Istanbul 95.24% 16.99% 64.48% 
Berlin 88.95% 12.82% 62.57% 
Amsterdam 94.86% 19.86% 70.32% 
Bucharest 93.57% 27.14% 74.13% 
Dubai 92.42% 16.48% 68.49% 
Mean 93.00% 18.60% 68.00% 

 
In figure 12, it is seen that the number of hotels 
matched of the dice coefficient algorithm before and 
after common words are used. Accordingly, with the 
use of common words, the accuracy of hotel matches 
is increased by about 50% 
 

 

Figure 12. Mis-matched hotel count by common 
keywords used or removed. 

 
5. Conclusion 
 
The fact that the data stored in databases by being 
obtained from different data providers are not 
consistent with each other leads to many problems, 
especially data redundancy. When the obtained data 
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are of big data sizes, the matching of data becomes 
more complicated and takes longer. In this study, 
solutions were searched for the problems arising from 
the entry of the hotel data coming from different 
providers into databases with different names and 
addresses, using a data set of the tourism sector. For 
this purpose, the Map-Reduce process was performed 
by using the Soundex algorithm to match the data of 
the hotels of a tourism agency that were selected as 
the sample with the data of the hotels coming from 
different providers. Thus, a significant amount of time 
was saved in terms of the time required for data 
matching. In the final stage of the study, some SSAs 
were compared in terms of the data that they correctly 
matched, and process time. It was observed that the 
Dice coefficient algorithm yielded a better result in 
terms of correct matching. It was observed that there 
was no significant difference between the algorithms 
in terms of process time. Since each SSA will exhibit 
different performance on the data set used, different 
SSAs can be used in the following studies. The data set 
in this study was obtained from the tourism sector. 
The methods used in this study can also be applied to 
the data sets belonging to different sectors. The 
Soundex algorithm supporting the English language 
was used for the data set used in this study.  Another 
one of the suggestions is the adaptation of Soundex or 
other algorithms to these languages in the matching of 
words from different languages. 
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