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ABSTRACT 

In this study, a high accurate numerical solution of the Burgers’ equation is obtained. For this, the collocation method 

based on quintic B-spline functions for space discretization and the fourth-order single step method for time 

discretization are used. In order to see the efficiency of the algorithm, a test problem with an analytical solution is 

discussed and compared with the numerical solution obtained.  
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Burgers Denkleminin Nümerik Çözümü için Yüksek Dereceden Doğruluklu Nümerik 

Algoritma 
 

ÖZ 

Bu çalışmada, Burgers denkleminin yüksek doğruluklu bir sayısal çözümü elde edilmiştir. Bunun için, konum 

ayrıştırmasında quintic B-spline fonksiyonlarını temel alan kolokasyon yöntemi ve zaman ayrıştırmasında dördüncü 

dereceden tek adımlı yöntem kullanılmıştır. Algoritmanın etkinliğini görmek için, analitik çözüme sahip bir test 

problemi ele alınmış ve elde edilen sayısal çözümler ile karşılaştırılmıştır. 

Anahtar Kelimeler: Burgers denklemi, Dördüncü dereceden tek adımlı yöntem, Kolokasyon metodu, Kuintik B-

spline fonksiyonları 

 

INTRODUCTION  

 

The Burgers equation which is frequently encountered in 

many sciences such as engineering, theoritical and 

environmental is as follows: 

𝑢𝑡   +  𝑢𝑢𝑥  −  𝜈𝑢𝑥𝑥  =  0.                                        (1) 
Although this equation was first proposed by Bateman 

[1], it is known as Burgers because of his work [2]. 

Numerical solutions of this equation, used in modelling 

the solitary wave and travelling waves, have been studied 

by the researchers due to the limitations in analytical 

solutions. Numerical solutions, which have been 

investigated recently, have been obtained by least 

squares, splitting, homotopy perturbation, finite 

difference and quadrature methods [3-10]. In parallel 

with these studies, we used the quintic B-spline 

collocation method for space and the various-order single 

step methods for time discretization that were not 

implemented before. The aim of this study is to see the 

effectiveness of time discretization for the most accurate 

numerical solution of the Burgers’ equation. 

 

Application of the Methods 

The time and space steps are denoted with ∆𝑡 and ℎ, 

respectively. The exact solution is represented by  

𝑢(𝑥𝑚 ,  𝑡𝑛 ) =  𝑢𝑚
𝑛  ;   𝑚 =  0, 1, . . . , 𝑁; 𝑛 = 0, 1, 2, ….  

where 𝑥𝑚  = 𝑎 + 𝑚ℎ,  𝑡𝑛  =  𝑛∆𝑡 and the numerical 

value of 𝑢𝑚
𝑛  is shown by 𝑈𝑚

𝑛  at the grid points. 

 

Time discretization 

 

Consider the Burgers’ equation of the form 

𝑢𝑡  =  𝜈𝑢𝑥𝑥 − 𝑢𝑢𝑥                                                              (2) 
𝑢𝑡𝑡 = (𝜈𝑢𝑥𝑥 − 𝑢𝑢𝑥 )𝑡 
        = 2𝑢𝑢𝑥𝑢𝑥 + (−4𝜈𝑢𝑥 + 𝑢𝑢)𝑢𝑥𝑥 − 2𝜈𝑢𝑢𝑥𝑥𝑥  

             +𝜈2𝑢𝑥𝑥𝑥𝑥                                                                  (3) 
and the following fourth order single step method 

𝑢𝑛+1 = 𝑢𝑛 + 𝜃1𝑢𝑡
𝑛+1 + 𝜃2𝑢𝑡

𝑛 + 𝜃3𝑢𝑡𝑡
𝑛+1 + 𝜃4𝑢𝑡𝑡

𝑛 .       (4) 

By choosing 𝜃1 = 𝜃2 =
∆𝑡

2
, 𝜃3 = 𝜃4 = 0 in (4), we get 

the method 1, which is of order 2, known as Crank-

Nicolson  method. By changing the values as 𝜃1 = 𝜃2 =
∆𝑡

2
, 𝜃3 = −

∆𝑡2

12
, 𝜃4 =

∆𝑡2

12
, the method 2 which is of order 

4 is obtained. Using Eqs. (2) and (3) in (4), the discretized 

Burgers’ equation in time is obtained as 

𝑢𝑛+1 + [𝜃1𝑢
𝑛+1 − 2𝜃3𝑢

𝑛+1(𝑢𝑥)
𝑛+1](𝑢𝑥)

𝑛+1 

+[4𝜈𝜃3(𝑢𝑥)
𝑛+1 − 𝜃1𝜈 − 𝜃3𝑢

𝑛+1𝑢𝑛+1](𝑢𝑥𝑥)
𝑛+1 

+2𝜈𝜃3𝑢
𝑛+1(𝑢𝑥𝑥𝑥)

𝑛+1 − 𝜃3𝜈
2(𝑢𝑥𝑥𝑥𝑥)

𝑛+1 

= 𝑢𝑛 + [−𝜃2𝑢
𝑛 + 2𝜃4𝑢

𝑛(𝑢𝑥)
𝑛](𝑢𝑥)

𝑛                        (5) 
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+[−4𝜈𝜃4(𝑢𝑥)
𝑛 + 𝜃2𝜈 + 𝜃4𝑢

𝑛𝑢𝑛](𝑢𝑥𝑥)
𝑛 

−2𝜈𝜃4𝑢
𝑛(𝑢𝑥𝑥𝑥)

𝑛 + 𝜃4𝜈
2(𝑢𝑥𝑥𝑥𝑥)

𝑛. 
 

Space discretization 

 

The quintic B-spline function is defined as 
𝑄𝑚(𝑥)

=
1

ℎ5

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
(𝑥 − 𝑥𝑚−3)

5,                                      [𝑥𝑚−3, 𝑥𝑚−2)

(𝑥 − 𝑥𝑚−3)
5 − 6(𝑥 − 𝑥𝑚−2)

5,       [𝑥𝑚−2, 𝑥𝑚−1)

(𝑥 − 𝑥𝑚−3)
5 − 6(𝑥 − 𝑥𝑚−2)

5       

+15(𝑥 − 𝑥𝑚−1)
5,                           [𝑥𝑚−1, 𝑥𝑚)

(𝑥 − 𝑥𝑚−3)
5 − 6(𝑥 − 𝑥𝑚−2)

5        

+15(𝑥 − 𝑥𝑚−1)
5 − 20(𝑥 − 𝑥𝑚)

5, [𝑥𝑚, 𝑥𝑚+1)

(𝑥 − 𝑥𝑚−3)
5 − 6(𝑥 − 𝑥𝑚−2)

5        

+15(𝑥 − 𝑥𝑚−1)
5 − 20(𝑥 − 𝑥𝑚)

5

+15(𝑥 − 𝑥𝑚+1)
5,                             [𝑥𝑚+1, 𝑥𝑚+2)

(𝑥 − 𝑥𝑚−3)
5 − 6(𝑥 − 𝑥𝑚−2)

5         

+15(𝑥 − 𝑥𝑚−1)
5 − 20(𝑥 − 𝑥𝑚)

5  

+15(𝑥 − 𝑥𝑚+1)
5 − 6(𝑥 − 𝑥𝑚+2)

5, [𝑥𝑚+2, 𝑥𝑚+3)
0,                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

   

(6) 

The approximate solutions 𝑈𝑁(𝑥, 𝑡) can be expressed in 

terms of the quintic B-spline functions as 

𝑈𝑁(𝑥, 𝑡) = ∑ 𝛿𝑗(𝑡)𝑄𝑗(𝑥)

𝑁+2

𝑗=−2

                                                        (7) 

where 𝛿𝑗 , 𝑗 = −2,−1, 0, 1, … , 𝑁 + 2 are unknowns time 

depend parameters to be determined from collocation 

form of Eq. (5). Over the element [𝑥𝑚, 𝑥𝑚+1], the 

approximation can be rewritten as 

𝑈(𝑥, 𝑡) = ∑ 𝛿𝑗(𝑡)𝑄𝑗(𝑥)

𝑚+3

𝑗=𝑚−2

.                                                      (8) 

The approximate solution and their derivatives at the 

knots can be found from the Eqs. (6) and (8) as 

 
𝑈𝑚 = 𝑈(𝑥𝑚) = 𝛿𝑚+2 + 26𝛿𝑚+1 + 66𝛿𝑚 + 26𝛿𝑚−1 + 𝛿𝑚−2, 

𝑈𝑚
′ = 𝑈′(𝑥𝑚) =

5

ℎ
(𝛿𝑚+2 + 10𝛿𝑚+1 − 10𝛿𝑚−1 − 𝛿𝑚−2), 

𝑈𝑚
′′ = 𝑈′′(𝑥𝑚) =

20

ℎ2
(𝛿𝑚+2 + 2𝛿𝑚+1 − 6𝛿𝑚 + 2𝛿𝑚−1

+ 𝛿𝑚−2), 

𝑈𝑚
′′′ = 𝑈′′′(𝑥𝑚) =

60

ℎ3
(𝛿𝑚+2 − 2𝛿𝑚+1 + 2𝛿𝑚−1 − 𝛿𝑚−2), 

𝑈𝑚
(4)
= 𝑈(4)(𝑥𝑚) =

120

ℎ4
(𝛿𝑚+2 − 4𝛿𝑚+1 + 6𝛿𝑚 − 4𝛿𝑚−1

+ 𝛿𝑚−2). 
(9) 

Substituting (9) into the time discretized form of the 

proposed equation, we obtain; 

[1 + 𝛽1 (
−5

ℎ
) + 𝛽2 (

20

ℎ2
) + 𝛽3 (

−60

ℎ3
) + 𝛽4 (

120

ℎ4
)] 𝛿𝑚−2

𝑛+1  

+[26 + 𝛽1 (
−50

ℎ
) + 𝛽2 (

40

ℎ2
) + 𝛽3 (

120

ℎ3
) + 𝛽4 (

−480

ℎ4
)] 𝛿𝑚−1

𝑛+1  

+[66 + 𝛽2 (
−120

ℎ2
) + 𝛽4 (

720

ℎ4
)] 𝛿𝑚

𝑛+1 

+[26 + 𝛽1 (
50

ℎ
) + 𝛽2 (

40

ℎ2
) + 𝛽3 (

−120

ℎ3
) + 𝛽4 (

−480

ℎ4
)] 𝛿𝑚+1

𝑛+1  

+[1 + 𝛽1 (
5

ℎ
) + 𝛽2 (

20

ℎ2
) + 𝛽3 (

60

ℎ3
) + 𝛽4 (

120

ℎ4
)] 𝛿𝑚+2

𝑛+1  

= 

[1 + 𝛽5 (
−5

ℎ
) + 𝛽6 (

20

ℎ2
) + 𝛽7 (

−60

ℎ3
) + 𝛽8 (

120

ℎ4
)] 𝛿𝑚−2

𝑛  

+ [26 + 𝛽5 (
−50

ℎ
) + 𝛽6 (

40

ℎ2
) + 𝛽7 (

120

ℎ3
) + 𝛽8 (

−480

ℎ4
)] 𝛿𝑚−1

𝑛  

+ [66 + 𝛽6 (
−120

ℎ2
) + 𝛽8 (

720

ℎ4
)] 𝛿𝑚

𝑛  

+ [26 + 𝛽5 (
50

ℎ
) + 𝛽6 (

40

ℎ2
) + 𝛽7 (

−120

ℎ3
) + 𝛽8 (

−480

ℎ4
)] 𝛿𝑚+1

𝑛  

+ [1 + 𝛽5 (
5

ℎ
) + 𝛽6 (

20

ℎ2
) + 𝛽7 (

60

ℎ3
) + 𝛽8 (

120

ℎ4
)] 𝛿𝑚+2

𝑛  

(10) 

When the above expressions are associated, the system 

of linear equations, which is 𝑁 + 1 algebraic equations 

with 𝑁 + 5 unknowns, is obtained. By the help of the 

conditions 𝑢(𝑎, 𝑡) = 𝑢𝑥(𝑎, 𝑡) = 0 and 𝑢(𝑏, 𝑡) =
𝑢𝑥(𝑏, 𝑡) = 0, the parameters 𝛿−2, 𝛿−1, 𝛿𝑁+1 and 𝛿𝑁+2 can 

be eliminated from the system and the obtained solvable 

(N+1)×(N+1) matrix system is solved easily by using 

Matlab packet program. To start the iteration of system, 

𝛿0 can be determined by using the initial and boundary 

conditions which will be given in numerical experiment, 

so then we can obtain the 𝛿𝑛 at time  𝑡𝑛  =  𝑛∆𝑡. 
 

Numerical Example 

 

In this part, we applied the proposed methods to one 

example of nonlinear Burgers’ equation. To compute the 

maximum error 𝐿∞, we used the following formula: 

 

𝐿∞ = ‖𝑢 − 𝑈𝑁‖∞ = max
𝑗
|𝑢𝑗 − (𝑈𝑁)𝑗|. 

The order of convergence is obtained by the following 

formula: 

𝑜𝑟𝑑𝑒𝑟 =

log |
𝑢 − 𝑈Δ𝑡𝑛
𝑢 − 𝑈Δ𝑡𝑛+1

|

log |
Δ𝑡𝑛
Δ𝑡𝑛+1

|
 

where 𝑢 is the exact solution and 𝑈Δ𝑡𝑛 is the numerical 

solution with time step Δ𝑡𝑛. 
The exact solution, which models a shock propagation of 

the Burgers’ equation is as 

𝑢(𝑥, 𝑡) =
𝑥/𝑡

1 + √𝑡/𝑡0𝑒𝑥𝑝(𝑥
2/(4𝑣𝑡))

, 𝑡 ≥ 1,             (11) 

where 𝑡0  = exp (
1

8𝜈
). With this solution of the Burgers’ 

equation, the sharpness of the shock waves can be 

simulated by choice of various viscosity values. The 

initial shock is obtained from Eq. (11) with the choice of 

𝑡 = 1. The boundary conditions are taken as 𝑢(0, 𝑡) = 0 

and 𝑢(1, 𝑡) = 𝑢𝑥(1, 𝑡) = 0. The computations are 

performed with the parameters 𝜈 = 0.005,0.0005, ℎ =
0.001 and ∆𝑡 = 0.1,0.05,0.02,0.01,0.005,0.002,0.001 

over the solution domain [−2,2]. The propagation of the 

shock wave is simulated in Fig. 1 for 𝜈 = 0.005, ℎ =
0.001 and 𝜈 = 0.0005, ℎ = 0.001 by method 2. The 

figure shows that the obtained wave for the parameter 

𝜈 = 0.0005, is steeper than the other. 
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Figure 1. Solutions for 𝑣 = 0.005, 0.0005;  Δ𝑡 = ℎ = 0.001. 

 
The absolute errors profiles of the proposed methods at 
time 𝑡 = 3 is given in Fig. 2 for various viscosity 
coefficients. From these figures, as expected, the absolute 
error increases at the peak of the waves. For this problem, 
by calculating the 𝐿∞ error norm and the rate of 
convergence of algorithms, the accuracy of the proposed 
methods can be seen and compared each other in Table 
1. From this table we conclude that the method 2, for 
finding the shock wave solution of the Burgers’ equation, 
gives better accuracy than the method 1. The rate of 
convergence for time is around 2 for method 1 and 
around 4 for method 2.  
 

CONCLUSION 

 

In this paper, an effective algorithm is proposed for the 

numerical solution of the Burgers’ equation. This 

algorithm is constructed by using the quintic B-spline 

based collocation method for space discretization and 

fourth order single-step method for the time 

discretization. To compare the effect of the time 

discretization methods, the single step methods which 

has two different order as 2 and 4 is chosen and the 

obtained solutions are compared with the those of a test 

problem which has an exact solution. By this study it is 

concluded that the fourth order single step method which 

used for the time discretization gives the better solutions 

than the Crank-Nicolson method. 
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Figure 2. Errors for 𝑣 = 0.005, 0.0005;  Δ𝑡 = ℎ = 0.001 
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Table 1. Comparison of numerical results at different times 

for ℎ = 0.001. 

 

 Method 1 Method 2 

 𝜈 = 0.005 

∆𝑡 𝐿∞ order 𝐿∞ order 

0.1 5.76×10-4  1.20×10-4  

0.05 1.54×10-4
 

1.908 1.38×10-5
 

3.123 

0.02 2.55×10-5
 

1.960 5.48×10-7
 

3.521 

0.01 6.42×10-6
 

1.989 4.08×10-8 3.748 

0.005 1.61×10-6
 

1.997 2.89×10-9 3.820 

0.002 2.58×10-7
 

1.999 1.08×10-10
 

3.590 

0.001 6.44×10-8
 

2.000 3.46×10-11
 

1.637 

 𝜈 = 0.0005 

∆𝑡 𝐿∞ order 𝐿∞ order 

0.1 2.32×10-1  2.05×10-1  

0.05 1.44×10-1
 

0.692 9.36×10-2
 

1.132 

0.02 2.36×10-2
 

1.973 1.53×10-2
 

1.974 

0.01 3.39×10-3
 

2.800 2.32×10-3
 

2.725 

0.005 4.17×10-4
 

3.024 2.52×10-4
 

3.203 

0.002 3.18×10-5
 

2.807 9.79×10-6
 

3.544 

0.001 6.20×10-6
 

2.360 9.59×10-7
 

3.352 
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