Some New Hilbert Sequence Spaces

Harun POLAT 🖋 Department of Mathematics,, Art and Science Faculty, Muş Alparslan University Muş, Turkey \overline: h.polat@alparslan.edu.tr

Received (Geliş): 21.01.2016

Accepted (Kabul): 01.04.2016

ABSTRACT: The main purpose of the present paper is to study of some new Hilbert sequence spaces h_{∞} , h_c and h_0 . New Hilbert sequence spaces h_{∞} , h_c and h_0 consisting all the sequences whose H- transforms are in the spaces l_{∞} , c and c_0 , respectively. The new Hilbert sequence spaces h_{∞} , h_c and h_0 that are BK- spaces and prove that the spaces h_{∞} , h_c and h_0 are linearly isomorphic to the spaces l_{\odot} , c and c_0 , respectively. Afterward the bases and α , β and γ duals of these spaces will be given. Finally, matrix the classes $(h_c : l_p)$ and $(h_c : c)$ have been characterized.

Keywords: Hilbert sequence spaces; α , β and γ duals and bases of sequence; Matrix mappings.

2010 Mathematics Subject Classification. Primary 46A45; Secondary 46B45, 46A35.

Yeni Hilbert Dizi Uzayları

ÖZET: Bu çalışmadaki amacımız h_{∞} , h_c ve h_0 ile gösterdiğimiz; sınırlı, yakınsak ve sıfıra yakınsak Hilbert dizi uzaylarını oluşturarak, Hilbert matrisi ile oluşturulan bu yeni h_{∞} , h_c ve h_0 Hilbert dizi uzaylarını birer BKuzayları oldukları sırasıyla; l_{∞} , c ve c_0 dizi uzaylarını kapsadığını ve lineer olarak izomorf olduklarını gösterdikten sonra, \mathcal{E}_{-} , \mathcal{E}_{-} ve \mathcal{E}_{-} duallerini hesaplayarak, $(h_c : l_p)$ ve $(h_c : c)$ matris dönüşümlerini yapmaktır.

Anahtar Kelimeler: Hilbert dizi uzayları, &, & ve & dualleri, Dizilerin tabanları, Matris dönüşümleri.

INTRODUCTION

By W, we shall denote the space of all real or complex valued sequences. Any vector subspace of W is called as a sequence space. We write l_{∞} , c and c_0 , for the spaces of all bounded, convergent and null sequences, respectively. Also by bs, cs, l_1 and l_p , we denote the spaces of all bounded, convergent, absolutely convergent and P-absolutely summable series, respectively; where $1 \le p < \infty$. Let X, Y be any two sequence spaces and

 $A = (a_{nk})$ be an infinite matrix of real or complex numbers a_{nk} , where $n, k \in N$. Then, the matrix Adefines a transformation from X into Y and we denote it by $A : X \to Y$, if for every sequence $x = (x_k) \in X$ the sequence $Ax = \{(Ax)_n\}$, the A-transform of x, is in Y, where

$$(Ax)_n = \sum_k a_{nk} x_k \tag{1.1}$$

for each $n \stackrel{\text{T}}{\cong} N$. For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞ . By (X : Y), we denote the class of all matrices A such that $A : X \stackrel{\text{(P)}}{\cong} Y$. Thus $A \stackrel{\text{(P)}}{=} \mathbf{\Omega} : Y \mathbf{Q}$ if and only if the series on the right side of (1.1) converges for each $n \stackrel{\text{(P)}}{=} N$ and every $x \stackrel{\text{(P)}}{=} X$, and we have $Ax = \{(Ax)_n\} \in Y$ for all $x \stackrel{\text{(P)}}{=} X$.

A sequence space λ with a linear topology is called an *K*-space provided of the maps p_i : $\mathcal{D} \oplus C$ defined by $p_i \oplus \mathbb{D} = x_i$ is continuous for all $i \oplus N$; where *C* denotes the set of complex number and $N = \{0, 1, 2, ...\}$. An K- space λ is called an FKspace provided \vec{T} is a complete linear metric space. An FK- space provided whose topology is normable is called a BK- space. An FK- space provided whose topology is normable is called a BK- space [1].

The matrix domain X_A of an infinite matrix A in a sequence space X is defined by

$$X_A = \{x = (x_k) \in w : Ax \in X\}$$
 (1.2)

which is a sequence space.

The approach constructing a new sequence space by means of the matrix domain of a particular limitation method was used by authors [2]-[8]. They introduced the sequence spaces $\mathbf{O}_{0}\mathbf{Q}_{r}\mathbf{P}\mathbf{r}\mathbf{T}_{0}^{r}$ and $(c)_{T^{r}} = t_{c}^{r}$ in [2], $(c_{0})_{E^{r}} = e_{0}^{r}$ and $(c)_{E^{r}} = e_{c}^{r}$ in [3], $(c_{0})_{C} = \overline{c}_{0}$ and $c_{C} = \overline{c}$ in [4], $(l_{p})_{E^{r}} = e_{p}^{r}$ in [5], $(l_{\infty})_{R^{t}} = r_{\infty}^{t}$, $c_{R^{t}} = r_{c}^{t}$ and $(c_{0})_{R^{t}} = r_{0}^{r}$ in [6], $(l_{p})_{C} = X_{p}$ in [7] and $(l_{p})_{N_{q}}$ in [8] where T^{r} , E^{r} , C, R^{t} and N_{q} denote the Taylor, Euler, Cesaro, Riesz and Nörlund means, respectively. Following [2] - [8], this way, the purpose of this paper is to introduce the new Hilbert sequence spaces h_{∞} , h_{c} and h_{0} .

The Hilbert Matrix Of Inverse Formula And Hilbert Sequence Spaces

The $n \times n$ matrix $H = [h_{ij}] = [\frac{1}{i+j-1}]_{i, j=1}^n$ is a Hilbert

matrix [9]. The inverse of Hilbert's Matrix $H^{\mathbb{A}}$ [10] is given by

$$h_{ij}^{-1} = (-1)^{i+j} (i+j-1) \binom{n+i-1}{n-j} \binom{n+j-1}{n-i} \binom{i+j-2}{i-1}^2.$$
(2.1)

We introduce all bounded, convergent and null of the Hilbert sequence spaces, respectively.

$$h_{\infty} = \left\{ x = (x_k) \in w : \sup_{m} \left| \sum_{k=1}^{m} \frac{1}{n+k-1} x_k \right| < \infty \right\}$$
$$h_c = \left\{ x = (x_k) \in w : \lim_{m \to \infty} \sum_{k=1}^{m} \frac{1}{n+k-1} x_k \text{ exists} \right\}$$
and

$$h_0 = \left\{ x = (x_k) \in w : \lim_{m \to \infty} \sum_{k=1}^m \frac{1}{n+k-1} x_k = 0 \right\}.$$

With the notation of (1.2), we may redefine the spaces h_{∞} , h_c and h_0 as follows:

$$h_0 = (c_0)_H, h_c = (c)_H \text{ and } h_\infty = (l_\infty)_H.$$
 (2.2)

If \vec{v} is an normed or paranormed sequence space, then matrix domain \vec{v}_H is called an Hilbert sequence space. We define the sequence $y = (y_m)$ which will be frequently used, as the *H* - transform of a sequence $x = (x_m)$ i.e.,

$$y_m = \sum_{k=1}^m \frac{1}{n+k-1} x_k, \quad m, n \in N.$$
 (2.3)

It can be easily shown that $h \oplus$, h_c and h_0 are linear and normed spaces by the following norm:

$$\|x\|_{h_0} = \|x\|_{h_c} = \|x\|_{h_\infty} = \|Hx\|_{l_\infty}.$$
 (2.4)

Theorem 1. The sequence spaces h_{∞} , h_c and h_0 endowed with the norm (2.4) are Banach spaces.

Proof. Let sequence $(x^p) = (x_0^{(p)}, x_1^{(p)}, x_2^{(p)}, ...)$ at h_{∞} a Cauchy sequence for all $p \in N$. Then, there exists $n_0 = n_0(\varepsilon)$ for every $\varepsilon > 0$ such that $||x^p - x^r||_{\infty} < \varepsilon$ for all p, $r > n_0$. Hence, $|H(x^p - x^r)| < \varepsilon$ for all p, $r > n_0$ and for each $k \in N$. Therefore, $(Hx_k^p) = ((Hx^0)_k, (Hx^1)_k, (Hx^2)_k, ...)$ is a Cauchy sequence in the set of complex numbers C. Since C is complete, it is convergent say $\lim_{p \to \infty} (Hx^p)_k = (Hx)_k$ and $\lim_{m \to \infty} (Hx^m)_k = (Hx)_k$ for each $k \stackrel{\text{T}}{=} N$.

Hence, we have

 $\lim_{n \to \infty} |Hx_k^p - x_k^m| = |H(x_k^p - x_k) - H(x_k^m - x_k)| \le \varepsilon$ for all $n \ge n_0$. This implies that $||x^p - x^m|| \to \infty$ for $P, m \to \infty$. Now, we should that $x \in h_\infty$. We have

$$\begin{aligned} \|x\|_{\infty} &= \|Hx\|_{\infty} = \sup_{m} \left| \sum_{k=1}^{m} \frac{1}{n+k-1} x_{k} \right| = \sup_{m} \left| \sum_{k=1}^{m} \frac{1}{n+k-1} (x_{k} - x_{k}^{p} + x_{k}^{p} \right| \\ &\leq \left\| x^{p} - x \right\|_{\infty} + \left| Hx_{k}^{p} \right| < \infty \end{aligned}$$

for p, $k \in N$. This implies that $x = (x_k) \in h_{\infty}$. Thus, $h \odot$ the space is a Banach space with the norm (2.4).

It can be shown that h_0 and h_c are closed subspaces of h_{\odot} which leads us to the consequence that the spaces and are also the Banach spaces with the norm (2.4). Furthermore, since h_{\odot} is a Banach space with continuous coordinates, i.e., $\left\|H\left(x_{k}^{p}-x\right)\right\|_{\infty} \to \infty$ imples $|H(x_k^p - x_k)| \rightarrow \infty$ for all $k \stackrel{\text{\tiny [P]}}{=} N$, it is also a BK - space.

Theorem 2. The sequence spaces h_{∞} , h_c and h_0 are linearly isomorphic to the spaces l_{\odot} , c and c_0 , respectively, i.e $h_{\infty} \cong l_{\infty}$, $h_c \cong c$ and $h_0 \cong c_0$.

Proof. To prove the fact $h_0 \cong c_0$, we should show the existence of a linear bijection between the spaces h_0 and c_0 . Consider the transformation T defined, with the notation (2.3), from h_0 to c_0 . The linearity of T is clear. Further, it is trivial that x = 0 whenever Tx = 0 and hence T is injective.

Let $y \in c_0$. We define the sequence $x = (x_n)$ as follows:

$$x_{n} = \sum_{i=1}^{n} (-1)^{i+j} (i+j-1) {n+i-1 \choose n-j} {n+j-1 \choose n-i} {i+j-2 \choose i-1}^{2} y_{k}.$$

Then

$$\lim_{m\to\infty} (Hx)_m = \lim_{m\to\infty} \sum_{k=1}^m \frac{1}{n+k-1} x_k = \lim_{m\to\infty} y_m = 0.$$

Thus, we have that $x \in h_0$. In addition, note that

$$\|x\|_{h_0} = \sup_{m \in \mathbb{N}} \left| \sum_{k=1}^m \frac{1}{n+k-1} x_k \right| = \sup_{m \in \mathbb{N}} |y_m| = \|y\|_{c_0} < \infty.$$

Consequently, T is surjective and is norm preserving. Hence, T is a linear bijection which therefore says us that the spaces h_0 to c_0 are linearly isomorphic. In the same way, it can be shown that h_c and h_{∞} are linearly isomorphic to c and l_{∞} , respectively, and so we omit the detail.

Theorem 3. The sequence space h_{∞} , h_c and h_0 includes the sequence spaces l_{∞} , c and c_{0} , respectively, i.e. $l_{\infty} \subset h_{\infty}$, $c \subset h_c$ and $c_0 \subset h_0$.

Proof. We only prove the conclusion $l_{\infty} \subset h_{\infty}$ and the rest follows in a similar way. Let $x \in l_{\infty}$. Then, using (2.3) and (2.4), we obtain

$$|x||_{\infty} = ||Hx||_{\infty} = \sup_{m \in \mathbb{N}} \left| \sum_{k=1}^{m} \frac{1}{n+k-1} x_k \right| \le \sup_{n} |x_k| \sup_{n} |H| = ||x||_{h_{\infty}}$$

which means that $x \in h_{\infty}$.

The Bases Of The Spaces h_c And h_0

First we define the Schauder bases. A sequence $(b_n)_{n \in \mathbb{N}}$ in a normed sequence space λ is called a Schauder basis (or briefly bases) [11], if for every $x \in \lambda$ there is a unique sequence $\mathfrak{m} \mathfrak{l}$ of scalars such that

 $\lim_{n \to \infty} \|x - (\alpha_0 x_0 + \alpha_1 x_1 + ... + \alpha_n x_n)\| = 0$. In this section, we shall give the Schauder bases of the spaces h_c and h_0 .

Theorem 4. Let $k \in \mathbb{N}$ a fixed natural number and $b^{(k)} = \{b_n^{(k)}\}_{n \in \mathbb{N}}$ where

$$b_n^{(k)} = (-1)^{n+k} (n+k-1) \binom{m+n-1}{m-k} \binom{m+k-1}{m-n} \binom{n+k-1}{n-1}^2.$$

Then the following assertions are true:

Then the following assertions are true:

The sequence $\{b_n^{(k)}\}$ is a basis for the space h_0 i. and every $x \in h_0$ has a unique representation of the form $x = \sum_k \lambda_k b^{(k)}$ where $\lambda_k = (Hx)_k$ for all $k \in \mathbb{N}$.

ii. The set $\{e, b^{(0)}, b^{(1)}, ..., b^{(k)}, ...\}$ is a basis for the space h_c and every $x \in h_c$ has a unique representation of the form $x = le + \sum_k (\lambda_k - l)b^{(k)}$ where $l = \lim_{k \to \infty} (Hx)_k$ and $\lambda_k = (Hx)_k$ for all $k \in \mathbb{N}$.

The α - , β - and γ - duals of the spaces h_{∞} , h_c and h_0

For the sequence spaces λ and μ define the set $S(\lambda, \mu)$ by

$$S(\lambda,\mu) = \{z = (z_k) \in w : xz = (x_k z_k) \in \mu \text{ for all } x \in \lambda\}.$$

The \mathcal{E}_{-} , \mathcal{E}_{-} and \mathcal{E}_{-} duals of the sequence spaces $\tilde{\mathcal{U}}$, which are respectively denoted by λ^{α} , λ^{β} and λ^{γ} are defined by Garling [12], by $\lambda^{\alpha} = S(\lambda, l_1)$, $\lambda^{\beta} = S(\lambda, cs)$ and $\lambda^{\gamma} = S(\lambda, bs)$. We shall begin with the lemmas due to Stieglitz and Tietz [13], which are needed in the proof of the theorems 5-7. We denote by K and F finite subsets of N.

Lemma 1. $A \in (c_0 : l_1) = (c : l_1)$ if and only if, for $\mathbf{R} \cup \mathbf{R}$

$$\sup_{K \in F} \sum_{n} \left| \sum_{k \in K} a_{nk} \right| < \infty$$
(4.1)

Lemma 2. $A \stackrel{\text{T}}{=} \mathbf{Q}_0$: $c \mathbf{U}_{\text{if and only if}}$ $\sup_{n} \sum_{k} |a_{nk}| < \infty,$ (4.2) $\lim_{n \to \infty} a_{nk} = \alpha_k, (k \in \mathbf{N}).$ (4.3)

Lemma 3. $A \in (c_0 : l_{\infty})$ if and only if (4.2) holds.

Theorem 5. Let $a \blacksquare \mathbf{Q}_k \bigcup^{\mathbb{P}} W$ and the matrix

$$B = (-1)^{n+k} (n+k-1) {\binom{m+n-1}{m-k}} {\binom{m+k-1}{m-n}} {\binom{n+k-1}{n-1}}^2.$$

The \mathcal{E} - dual of the sequence spaces h_{\odot} , h_c and h_0 is the set

$$D = \left\{ a = (a_k) \in w : \sup_{K \in F} \sum_n \left| \sum_{k \in K} h_{nk}^{-1} a_n \right| < \infty \right\}.$$

Wherein h_{nk}^{-1} is as defined (2.1).

Proof. Let $a \blacksquare \mathbf{\Omega}_n \mathbf{O}^{\mathbb{R}}$ *w* and consider the matrix *B* whose rows are the products of the rows of the matrix

 $H^{\leq 4}$ and sequence $a \blacksquare \Omega_n \cup$ Bearing in mind the relation (2.3), we immediately derive that

$$a_n x_n = \sum_{k=1}^n h_{nk}^{-1} a_n y_k = (By)_n, n \in \mathbb{N}.$$
 (4.4)

We therefore observe by (4.4) that $ax \blacksquare \mathfrak{A}_n x_n \bigcup l_1$ whenever $x \blacksquare h_{\bigoplus}, h_c$ and h_0 if and only if

By $\overline{\mathbb{Y}}$ l_1 whenever $y \in l_{\infty}$, C, and Co. Then, by applying Lemma 1 we get

$$\sup_{K\in F}\sum_{n}\left|\sum_{k\in K}h_{nk}^{-1}a_{n}\right|<\infty$$

which yields the consequences that $\eta_{B} = \eta_{c} \psi^{2} =$

Theorem 6. Consider the sets D_1 , D_2 , D_3 and D_4 defined as follows:

$$D_{1} = \left\{ a = (a_{k}) \in w : \sup_{m} \sum_{k=1}^{m} \left| \sum_{n=k}^{m} h_{nk}^{-1} a_{n} \right| < \infty \right\},$$
$$D_{2} = \left\{ a = (a_{k}) \in w : \sum_{n=k}^{m} h_{nk}^{-1} a_{n} \text{ exists for each } k \in \mathbb{N} \right\},$$

$$D_{3} \ \overline{\mathbf{D}} \left\{ a \ \overline{\mathbf{D}} \mathbf{Q}_{k} \mathbf{O}^{\mathbb{T}} w : \lim_{m \to \mathbb{T}} \bigotimes_{k \overline{\mathbf{D}}}^{m} \left| \bigotimes_{n \overline{\mathbf{L}}}^{m} h_{nk}^{\underline{\mathbf{d}}} a_{n} \right| \ \overline{\mathbf{D}} \bigotimes_{k \overline{\mathbf{D}}}^{m} \left| \lim_{n \overline{\mathbf{D}}} \bigotimes_{n \overline{\mathbf{L}}}^{m} h_{nk}^{\underline{\mathbf{d}}} a_{n} \right| \right\}$$

and

$$D_4 = \left\{ a = \left(a_k\right) \in w : \lim_{m \to \infty} \sum_{k=1}^m \sum_{n=k}^m h_{nk}^{-1} a_n \text{ exists} \right\}.$$

Wherein h_{nk}^{\notin} is as defined (2.1). Then $\{h_0\}^{\beta} = D_1 \cap D_2$ and $\{h_c\}^{\beta} = D_1 \cap D_2 \cap D_4$ and $\{h_{\infty}\}^{\beta} = D_2 \cap D_3$.

Proof. We only give the proof space h_0 . Since the proof may give by a similar way for the spaces h_c and h_{\odot} , we omit it. Consider the equation

$$\sum_{k=1}^{m} a_k x_k = \sum_{k=1}^{m} \left[\sum_{k=1}^{m} h_{nk}^{-1} y_k \right] a_k = \sum_{k=1}^{m} \left[\sum_{k=n}^{m} h_{nk}^{-1} a_k \right] y_n = (Dy)_n,$$

where $D = \left[\sum_{k=n}^{m} h_{nk}^{-1} a_k\right]$. Thus, we deduce from Lemma 2 with (4.4) that $ax = (a_k x_k) \in cs$ whenever $x = (x_k) \in h_0$ if and only if $Dy \stackrel{\text{T}}{=} c$ whenever $y \stackrel{\text{T}}{=} \mathbf{O}_k \stackrel{\text{T}}{=} c_0$. Therefore, using relations (4.3) and (4.4), we conclude that $\lim_{n\to\infty} h_{nk}^{-1} a_k$ exists for each $k \in \mathbf{N}$ and $\sup_{n \in \mathbf{N}} \sum_{k=1}^{n} |h_{nk}^{-1} a_k| < \infty$ which shows that $\{h_0\}^{\beta} = D_1 \cap D_2$.

Theorem 7. The γ - dual of the sequence spaces h_{∞} , h_c and h_0 are

$$D_5 = \left\{ a = (a_k) \in w : \sup_{n} \sum_{k=0}^{n} h_{nk}^{-1} a_k < \infty \right\}.$$

Wherein h_{nk}^{\notin} is as defined (2.1).

Proof. We only give the proof space h_0 . Consider the equality

$$\left|\sum_{k=1}^{m} a_{k} x_{k}\right| = \left|\sum_{n=1}^{m} a_{n} \left[\sum_{k=1}^{n} h_{nk}^{-1} y_{k}\right]\right| = \left|\sum_{k=1}^{m} h_{nk}^{-1} a_{k} y_{k}\right| \le \sum_{k=1}^{m} \left|h_{nk}^{-1} a_{k}\right| \left|y_{k}\right|.$$

Taking supremum over $m \stackrel{\text{T}}{=} N$, we get $\sup_{m} \left| \sum_{k=1}^{m} a_{k} x_{k} \right| \leq \sup_{m} \left(\sum_{k=1}^{m} \left| h_{nk}^{-1} a_{k} \right| \left| y_{k} \right| \right) \leq \left\| y \right\|_{c_{0}} \sup_{m} \left(\sum_{k=1}^{m} h_{nk}^{-1} a_{k} \right) \leq \infty.$

This means that $a = (a_k) \in \{h_0\}^{\gamma}$. Hence,

$$D_5 \subset \{h_0\}^{\gamma}. \tag{4.5}$$

Conversely, let $a = (a_k) \in \{h_0\}^{\gamma}$ and $x \stackrel{\text{T}}{=} h_0$. Then one can easily see that $(\sum_{k=1}^m h_{nk}^{-1} a_k y_k) \in I_{\infty}$

whenever $ax \blacksquare \mathbf{a}_k x_k \mathbf{O}^{\mathbb{F}} bs$. This implies that matrix $\sum_{k=n}^m h_{nk}^{-1} a_k$ is in the class \mathbf{O}_0 : $l \otimes \mathbf{C}$. Hence, the condition $\sup_m \sum_{k=1}^m \left| h_{nk}^{-1} a_k \right| < \infty$ is satisfied, which implies that $a \blacksquare \mathbf{a}_k \mathbf{O}^{\mathbb{F}} D_5$.

$$\left\{h_{0}\right\}^{\gamma} \subset D_{1}. \tag{4.6}$$

Therefore, by combining inclusions (4.5) and (4.6), we establish that the \mathcal{E} - dual of the sequence spaces h_0 is D_5 , which completes the proof.

Some Matrix Mappings Related to Hilbert Sequence Spaces

In this section, we give the characterization of the classes $(h_c : l_p)$ and $(h_c : c)$. As the following theorems can be proved using standart methods, we omit the detail.

Lemma 4. [13, p. 57] The matrix mappings between BK- spaces are continuous.

Lemma 5. [13, p. 128] $A \in (c : l_p)$ if and only if

$$\sup_{K\in F}\sum_{n}\left|\sum_{k\in K}a_{nk}\right|^{p}<\infty, \ 1\leq p<\infty.$$
(5.1)

Theorem 8. $A \blacksquare \mathbf{\hat{n}}_c : l_p \mathbf{U}_{if}$ and only if the following conditions are satisfied:

$$\sup_{K\in F}\sum_{k}\left|\sum_{k\in K}\sum_{n=k}^{m}h_{nk}^{-1}a_{kn}\right|^{\nu}<\infty,\qquad(5.2)$$

$$\sum_{n=k}^{m} h_{nk}^{-1} a_{kn} \text{ exists for all } k, n \in \mathbb{N}$$
 (5.3)

$$\sum_{k}\sum_{n=k}^{m}h_{nk}^{-1}a_{kn} \text{ converges for all } n \in \mathbb{N} \quad (5.4)$$

$$\sup_{m\in\mathbb{N}}\sum_{k=1}^{m}\left|\sum_{n=k}^{m}h_{nk}^{-1}a_{kn}\right| < \infty, 1 \le p < \infty$$
(5.5)

and for $p \blacksquare \oplus$, conditions (5.3) and (5.5) are satisfied and

$$\sup_{n\in\mathbb{N}}\sum_{k=0}^{n}\left|\sum_{n=k}^{m}h_{nk}^{-1}a_{kn}\right|<\infty.$$
(5.6)

Wherein h_{nk}^{-1} is as defined (2.1) for every m, n, $k \in N$.

Theorem 9. $A \in (h_c : c)$ if and only if conditions (5.3), (5.5) and (5.6) are satisfied,

$$\lim_{n \to \infty} g_{nk} = \alpha_k \quad \text{for all } k \in \mathbb{N}$$
 (5.7)

and 371

$$\lim_{n \to \infty} g_{nk} = \alpha. \tag{5.8}$$

Where $g_{nk} = \sum_{n=k}^{m} h_{nk}^{-1} a_{kn}$

and

$$h_{nk}^{-1} = (-1)^{n+k} (n+k-1) {\binom{m+n-1}{m-k}} {\binom{m+k-1}{m-n}} {\binom{n+k-1}{n-1}}^2$$

for every $m, n, k \in N$.

REFERENCES

- [1] Choudhary, B., Nanda, S. Functional analysis with applications. Wiley, 1989.
- [2] Kırıscı, M. On The Taylor Sequence Spaces Of Nonabsolute Type Which Include The Spaces c0 AND c, Journal of Mathematical Analisys, 2, 22-35,2015.
- [3] Altay, B., Basar, F. On some Euler sequence spaces of nonabsolute type. Ukrainian Mathematical Journal, 57(1), 1-17, 2005.
- [4] Sengonül, M., Basar, F. Some new cesaro sequence spaces of non-absolute type which include. Soochow Journal of Mathematics, 31(1), 107-119, 2005.
- [5] Altay, B., Başar, F., Mursaleen, M. On the Euler sequence spaces which include in the

spaces l_p and ∞ I. Information Sciences, 176(10), 1450-1462, 2006.

- [6] Malkowsky, E. Recent results in the theory of matrix transformations in sequences spaces, *Mat. Vesnik 49, 187-196, 1997*
- [7] Ng, P. N., Lee, P. Y. Cesaro sequence spaces of non-absolute type. Comment. Math. Prace Mat, 20(2), 429-433, 1978
- [8] Wang, C. S. On Nörlund sequence spaces, *Tamkang J. Math.*, 9, 269-274, 1978.
- [9] Raja, P. V. K., Chakravarthy, A. S. N., Avadhani, P. S. A Cryptosystem Based on Hilbert Matrix using Cipher Block Chaining Mode. arXiv preprint arXiv:1110.1498, 2011.
- [10] Tabanjeh, M. M. New Approach for the Inversion of Structured Matrices via Newton's Iteration, Advances in Linear Algebra and Matrix Theory, 5,(1) 1-15,2015.
- [11] Maddox, I. J. Elements of Functional Analysis, *Cambridge University Press, Cambridge 1988.*
- [12] Garling, D. J. H. The β-and γ-duality of sequence spaces. In Mathematical Proceedings of the Cambridge Philosophical Society, 63(4), 963-981, 1967
- Stieglitz, M., Tietz, H. Matrixtransformationen von folgenräumen eine ergebnisübersicht. Mathematische Zeitschrift, 154(1), 1-16, 1977