Some New Hilbert Sequence Spaces

Harun POLAT \mathscr{O}
Department of Mathematics，，Art and Science Faculty，Muş Alparslan University Muş，Turkey
《：h．polat＠alparslan．edu．tr

Received（Geliş）：21．01．2016
Accepted（Kabul）：01．04．2016

Abstract

The main purpose of the present paper is to study of some new Hilbert sequence spaces h_{∞}, h_{c} and h_{0} ．New Hilbert sequence spaces h_{∞}, h_{c} and h_{0} consisting all the sequences whose $H_{\text {－transforms are in the }}$ spaces l_{∞}, c and c_{0} ，respectively．The new Hilbert sequence spaces h_{∞}, h_{c} and h_{0} that are $B K$－spaces and prove that the spaces h_{∞}, h_{c} and h_{0} are linearly isomorphic to the spaces l_{Θ}, c and c_{0} ，respectively．Afterward the bases and α, β and γ duals of these spaces will be given．Finally，matrix the classes $\left(h_{c}: l_{p}\right)$ and $\left(h_{c}: c\right)$ have been characterized．

Keywords：Hilbert sequence spaces；α, β and γ duals and bases of sequence；Matrix mappings．
2010 Mathematics Subject Classification．Primary 46A45；Secondary 46B45，46A35．

Yeni Hilbert Dizi Uzayları

ÖZET：Bu çalışmadaki amacımız h_{∞}, h_{c} ve h_{0} ile gösterdiğimiz；sınırlı，yakınsak ve sıfıra yakınsak Hilbert dizi uzaylarını oluşturarak，Hilbert matrisi ile oluşturulan bu yeni h_{∞} ，h_{c} ve h_{0} Hilbert dizi uzaylarının birer BK－ uzayları oldukları sırasıyla；l_{∞}, c ve c_{0} dizi uzaylarını kapsadığını ve lineer olarak izomorf olduklarını gösterdikten sonra，$\epsilon_{-}, \epsilon_{-}$ve ϵ_{-}duallerini hesaplayarak，$\left(h_{c}: l_{p}\right)$ ve $\left(h_{c}: c\right)$ matris dönüşümlerini yapmaktır．
Anahtar Kelimeler：Hilbert dizi uzayları，$\epsilon_{-}, \epsilon_{-}$ve ϵ_{-}dualleri，Dizilerin tabanları，Matris dönüşümleri．

INTRODUCTION

By w ，we shall denote the space of all real or complex valued sequences．Any vector subspace of w is called as a sequence space．We write l_{∞}, c and c_{0} ，for the spaces of all bounded，convergent and null sequences， respectively．Also by $b s, c s, l_{1}$ and l_{p} ，we denote the spaces of all bounded，convergent，absolutely convergent and $\quad p_{\text {－absolutely }}$ summable series， respectively；where $1 \leq p<\infty$ ．
Let X, Y be any two sequence spaces and $A=\left(a_{n k}\right)$ be an infinite matrix of real or complex numbers $a_{n k}$ ，where $n, k \in N$ ．Then，the matrix A defines a transformation from X into Y and we denote it by $A: X \rightarrow Y$ ，if for every sequence
$x=\left(x_{k}\right) \in X$ the sequence $A x=\left\{(A x)_{n}\right\}$ ，the A－ transform of x ，is in Y ，where

$$
\begin{equation*}
(A x)_{n}=\sum_{k} a_{n k} x_{k} \tag{1.1}
\end{equation*}
$$

for each n 園 N ．For simplicity in notation，here and in what follows，the summation without limits runs from 0 to ∞ ．By $(X: Y)$ ，we denote the class of all matrices A such that $A: X$（1）Y ．Thus A 圆 $\mathbb{X}: Y \mathbf{C}$ if and only if the series on the right side of（1．1） converges for each n 圆 N and every x 圈 X ，and we have $A x=\left\{(A x)_{n}\right\} \in Y$ for all x 圆 X ．
A sequence space λ with a linear topology is called an K－space provided of the maps $p_{i}: \&{ }^{2}$ defined by $p_{i} \boldsymbol{q} \boldsymbol{C} \boldsymbol{f} x_{i}$ is continuous for all i 圆 N ；where C
denotes the set of complex number and $N=\{0,1,2, \ldots\}$. An K - space λ is called an $F K$ space provided $\boldsymbol{\xi}^{\boldsymbol{H}}$ is a complete linear metric space. An $F K$ - space provided whose topology is normable is called a $B K_{-}$space. An $F K$ - space provided whose topology is normable is called a $B K$ - space [1].

The matrix domain X_{A} of an infinite matrix A in a sequence space X is defined by
$X_{A}=\left\{x=\left(x_{k}\right) \in w: A x \in X\right\}$
which is a sequence space.
The approach constructing a new sequence space by means of the matrix domain of a particular limitation method was used by authors [2]-[8]. They introduced the sequence spaces $\boldsymbol{\sigma}_{0}\left(\boldsymbol{\varphi}_{r} \boldsymbol{T} t_{0}^{r}\right.$ and $(c)_{T^{r}}=t_{c}^{r}$ in [2], $\left(c_{0}\right)_{E^{r}}=e_{0}^{r}$ and $(c)_{E^{r}}=e_{c}^{r}$ in [3], $\left(c_{0}\right)_{C}=\bar{c}_{0}$ and $c_{C}=\bar{c}$ in [4], $\left(l_{p}\right)_{E^{r}}=e_{p}^{r}$ in [5], $\left(l_{\infty}\right)_{R^{t}}=r_{\infty}^{t}$, $c_{R^{t}}=r_{c}^{t}$ and $\left(c_{0}\right)_{R^{t}}=r_{0}^{r}$ in [6], $\left(l_{p}\right)_{C}=X_{p}$ in [7] and $\left(l_{p}\right)_{N_{q}}$ in [8] where T^{r}, E^{r}, C, R^{t} and N_{q} denote the Taylor, Euler, Cesaro, Riesz and Nörlund means, respectively. Following [2] - [8], this way, the purpose of this paper is to introduce the new Hilbert sequence spaces h_{∞}, h_{c} and h_{0}.

The Hilbert Matrix Of Inverse Formula And Hilbert Sequence Spaces

The $n \times n$ matrix $H=\left[h_{i j}\right]=\left[\frac{1}{i+j-1}\right]_{i, j=1}^{n}$ is a Hilbert matrix [9]. The inverse of Hilbert's Matrix $H^{\& 1}$ [10] is given by

$$
\begin{equation*}
h_{i j}^{-1}=(-1)^{i+j}(i+j-1)\binom{n+i-1}{n-j}\binom{n+j-1}{n-i}\binom{i+j-2}{i-1}^{2} \cdot(2 . \tag{2.1}
\end{equation*}
$$

We introduce all bounded, convergent and null of the Hilbert sequence spaces, respectively.
$h_{\infty}=\left\{x=\left(x_{k}\right) \in w: \sup _{m}\left|\sum_{k=1}^{m} \frac{1}{n+k-1} x_{k}\right|<\infty\right\}$
$h_{c}=\left\{x=\left(x_{k}\right) \in w: \lim _{m \rightarrow \infty} \sum_{k=1}^{m} \frac{1}{n+k-1} x_{k}\right.$ exists $\}$
and
$h_{0}=\left\{x=\left(x_{k}\right) \in w: \lim _{m \rightarrow \infty} \sum_{k=1}^{m} \frac{1}{n+k-1} x_{k}=0\right\}$.

With the notation of (1.2), we may redefine the spaces h_{∞}, h_{c} and h_{0} as follows:
$h_{0}=\left(c_{0}\right)_{H}, h_{c}=(c)_{H}$ and $h_{\infty}=\left(l_{\infty}\right)_{H}$.

If $\{$ is an normed or paranormed sequence space, then matrix domain \boldsymbol{R}_{H} is called an Hilbert sequence space. We define the sequence $y=\left(y_{m}\right)$ which will be frequently used, as the H - transform of a sequence $x=\left(x_{m}\right)$ i.e.,
$y_{m}=\sum_{k=1}^{m} \frac{1}{n+k-1} x_{k}, \quad m, n \in N$.

It can be easily shown that $h \oplus, h_{c}$ and h_{0} are linear and normed spaces by the following norm:
$\|x\|_{h_{0}}=\|x\|_{h_{c}}=\|x\|_{h_{\infty}}=\|H x\|_{l_{\infty}}$.

Theorem 1. The sequence spaces h_{∞}, h_{c} and h_{0} endowed with the norm (2.4) are Banach spaces.

Proof. Let sequence $\left(x^{p}\right)=\left(x_{0}^{(p)}, x_{1}^{(p)}, x_{2}^{(p)}, \ldots\right)$ at h_{∞} a Cauchy sequence for all $p \in N$. Then, there exists $n_{0}=n_{0}(\varepsilon)$ for every $\varepsilon>0$ such that $\left\|x^{p}-x^{r}\right\|_{\infty}<\varepsilon \quad$ for \quad all $\quad p, \quad r>n_{0}$. Hence, $\left|H\left(x^{p}-x^{r}\right)\right|<\varepsilon$ for all $p, \quad r>n_{0}$ and for each $k \in N$.

Therefore,
$\left(H x_{k}^{p}\right)=\left(\left(H x^{0}\right)_{k},\left(H x^{1}\right)_{k},\left(H x^{2}\right)_{k}, \ldots\right) \quad$ is a Cauchy
sequence in the set of complex numbers C. Since C is complete, it is convergent say $\lim _{p \rightarrow \infty}\left(H x^{p}\right)_{k}=(H x)_{k}$ and $\lim _{m \rightarrow \infty}\left(H x^{m}\right)_{k}=(H x)_{k}$ for each k 圖 N.

Hence, we have
$\lim _{n \rightarrow \infty}\left|H x_{k}^{p}-x_{k}^{m}\right|=\left|H\left(x_{k}^{p}-x_{k}\right)-H\left(x_{k}^{m}-x_{k}\right)\right| \leq \varepsilon$ for all $n \geq n_{0}$. This implies that $\left\|x^{p}-x^{m}\right\| \rightarrow \infty$ for $p, m \rightarrow \infty$. Now, we should that $x \in h_{\infty}$. We have
$\left.\|x\|_{\infty}=\|H x\|_{\infty}=\sup _{m}\left|\sum_{k=1}^{m} \frac{1}{n+k-1} x_{k}\right|=\sup _{m} \right\rvert\, \sum_{k=1}^{m} \frac{1}{n+k-1}\left(x_{k}-x_{k}^{p}+x_{k}^{p} \mid\right.$ $\leq\left\|x^{p}-x\right\|_{\infty}+\left|H x_{k}^{p}\right|<\infty$
for $p, k \in N$. This implies that $x=\left(x_{k}\right) \in h_{\infty}$.
Thus, $h \oplus$ the space is a Banach space with the norm (2.4).

It can be shown that h_{0} and h_{c} are closed subspaces of h_{\odot} which leads us to the consequence that the spaces and are also the Banach spaces with the norm (2.4). Furthermore, since h_{\odot} is a Banach space with continuous coordinates, i.e., $\left\|H\left(x_{k}^{p}-x\right)\right\|_{\infty} \rightarrow \infty$ imples $\left|H\left(x_{k}^{p}-x_{k}\right)\right| \rightarrow \infty$ for all k 圆 N, it is also a $B K$ - space.

Theorem 2. The sequence spaces h_{∞}, h_{c} and h_{0} are linearly isomorphic to the spaces l_{Θ}, c and c_{0}, respectively, i.e $h_{\infty} \cong l_{\infty}, h_{c} \cong c$ and $h_{0} \cong c_{0}$.

Proof. To prove the fact $h_{0} \cong c_{0}$, we should show the existence of a linear bijection between the spaces h_{0} and c_{0}. Consider the transformation T defined, with the notation (2.3), from h_{0} to c_{0}. The linearity of T is clear. Further, it is trivial that $x=0$ whenever $T x=0$ and hence T is injective.

Let $y \in c_{0}$. We define the sequence $x=\left(x_{n}\right)$ as follows:
$x_{n}=\sum_{i=1}^{n}(-1)^{i+j}(i+j-1)\binom{n+i-1}{n-j}\binom{n+j-1}{n-i}\binom{i+j-2}{i-1}^{2} y_{k}$.

Then

$$
\lim _{m \rightarrow \infty}(H x)_{m}=\lim _{m \rightarrow \infty} \sum_{k=1}^{m} \frac{1}{n+k-1} x_{k}=\lim _{m \rightarrow \infty} y_{m}=0
$$

Thus, we have that $x \in h_{0}$. In addition, note that

$$
\|x\|_{h_{0}}=\sup _{m \in \mathrm{~N}}\left|\sum_{k=1}^{m} \frac{1}{n+k-1} x_{k}\right|=\sup _{m \in \mathrm{~N}}\left|y_{m}\right|=\|y\|_{c_{0}}<\infty .
$$

Consequently, T is surjective and is norm preserving. Hence, T is a linear bijection which therefore says us that the spaces h_{0} to c_{0} are linearly isomorphic. In the same way, it can be shown that h_{c} and h_{∞} are linearly isomorphic to c and l_{∞}, respectively, and so we omit the detail.

Theorem 3.The sequence space h_{∞}, h_{c} and h_{0} includes the sequence spaces l_{∞}, c and c_{0}, respectively, i.e. $l_{\infty} \subset h_{\infty}, c \subset h_{c}$ and $c_{0} \subset h_{0}$.

Proof. We only prove the conclusion $l_{\infty} \subset h_{\infty}$ and the rest follows in a similar way. Let $x \in l_{\infty}$. Then, using (2.3) and (2.4), we obtain
$\|x\|_{\infty}=\|H x\|_{\infty}=\sup _{m \in \mathrm{~N}}\left|\sum_{k=1}^{m} \frac{1}{n+k-1} x_{k}\right| \leq \sup _{n}\left|x_{k}\right| \sup _{n}|H|=\|x\|_{h_{\infty}}$
which means that $x \in h_{\infty}$.

The Bases Of The Spaces h_{c} And h_{0}

First we define the Schauder bases. A sequence $\left(b_{n}\right)_{n \in \mathrm{~N}}$ in a normed sequence space λ is called a Schauder basis (or briefly bases) [11], if for every $x \in \lambda$ there is a unique sequence $\boldsymbol{T O}_{\boldsymbol{c}}$ of scalars such that
$\lim _{n \rightarrow \infty}\left\|x-\left(\alpha_{0} x_{0}+\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}\right)\right\|=0$. In this section, we shall give the Schauder bases of the spaces h_{c} and h_{0}.

Theorem 4. Let $k \in \mathrm{~N}$ a fixed natural number and $b^{(k)}=\left\{b_{n}^{(k)}\right\}_{n \in \mathrm{~N}}$ where
$b_{n}^{(k)}=(-1)^{n+k}(n+k-1)\binom{m+n-1}{m-k}\binom{m+k-1}{m-n}\binom{n+k-1}{n-1}^{2}$.
Then the following assertions are true:
i. The sequence $\left\{b_{n}^{(k)}\right\}$ is a basis for the space h_{0} and every $x \in h_{0}$ has a unique representation of the form $\quad x=\sum_{k} \lambda_{k} b^{(k)} \quad$ where $\quad \lambda_{k}=(H x)_{k}$ for all $k \in \mathrm{~N}$.
ii．The set $\left\{e, b^{(0)}, b^{(1)}, \ldots, b^{(k)}, \ldots\right\}$ is a basis for the space h_{c} and every $x \in h_{c}$ has a unique representation of the form $\quad x=l e+\sum_{k}\left(\lambda_{k}-l\right) b^{(k)} \quad$ where $l=\lim _{k \rightarrow \infty}(H x)_{k}$ and $\lambda_{k}=(H x)_{k}$ for all $k \in \mathrm{~N}$ ．

The $\alpha-, \beta-$ and $\gamma-$ duals of the spaecs h_{∞}, h_{c} and h_{0}

For the sequence spaces λ and μ define the set $S(\lambda, \mu)$ by
$S(\lambda, \mu)=\left\{z=\left(z_{k}\right) \in w: x z=\left(x_{k} z_{k}\right) \in \mu\right.$ for all $\left.x \in \lambda\right\}$.

The $\epsilon_{-}, \epsilon_{-}$and ϵ_{-}duals of the sequence spaces $\{$， which are respectively denoted by $\lambda^{\alpha}, \lambda^{\beta}$ and λ^{γ} are defined by Garling［12］，by $\lambda^{\alpha}=S\left(\lambda, l_{1}\right)$ ， $\lambda^{\beta}=S(\lambda, c s)$ and $\lambda^{\gamma}=S(\lambda, b s)$ ．We shall begin with the lemmas due to Stieglitz and Tietz［13］，which are needed in the proof of the theorems 5－7．We denote by K and F finite subsets of N ．

Lemma 1．$A \in\left(c_{0}: l_{1}\right)=\left(c: l_{1}\right)$ if and only if，for

（20） 18

$\sup _{K \in F} \sum_{n}\left|\sum_{k \in K} a_{n k}\right|<\infty$

Lemma 2．A 園 $\boldsymbol{\Omega}_{0}: c \boldsymbol{l}_{\text {if }}$ and only if
$\sup _{n} \sum_{k}\left|a_{n k}\right|<\infty$ ，
$\lim _{n \rightarrow \infty} a_{n k}=\alpha_{k},(k \in \mathrm{~N})$.

Lemma 3．$A \in\left(c_{0}: l_{\infty}\right)$ if and only if（4．2）holds．
Theorem 5．Let $a \boldsymbol{a}_{k}(1) w$ and the matrix $B=(-1)^{n+k}(n+k-1)\binom{m+n-1}{m-k}\binom{m+k-1}{m-n}\binom{n+k-1}{n-1}^{2}$ ．
The C_{-}－dual of the sequence spaces h_{\odot}, h_{c} and h_{0} is the set

$$
D=\left\{a=\left(a_{k}\right) \in w: \sup _{K \in F} \sum_{n}\left|\sum_{k \in K} h_{n k}^{-1} a_{n}\right|<\infty\right\} .
$$

Proof．Let a 『i $\boldsymbol{\alpha}_{n}$（圆 w and consider the matrix B whose rows are the products of the rows of the matrix H^{8} and sequence $a \boldsymbol{\square} \boldsymbol{a}_{n}(\boldsymbol{y}$ Bearing in mind the relation（2．3），we immediately derive that

$$
\begin{equation*}
a_{n} x_{n}=\sum_{k=1}^{n} h_{n k}^{-1} a_{n} y_{k}=(B y)_{n}, n \in \mathrm{~N} \tag{4.4}
\end{equation*}
$$

We therefore observe by（4．4）that $\operatorname{ax} \boldsymbol{\operatorname { T i }} \boldsymbol{a}_{n} x_{n}$（1）圏 l_{1} whenever x 圆 h_{\odot}, h_{c} and h_{0} if and only if
$B y$ 圆 l_{1} whenever $y \in l_{\infty}, c$, and c_{0} ．Then，by appliying Lemma 1 we get

$$
\sup _{K \in F} \sum_{n}\left|\sum_{k \in K} h_{n k}^{-1} a_{n}\right|<\infty
$$

which yields the consequences that

Theorem 6．Consider the sets D_{1}, D_{2}, D_{3} and D_{4} defined as follows：
$D_{1}=\left\{a=\left(a_{k}\right) \in w: \sup _{m} \sum_{k=1}^{m}\left|\sum_{n=k}^{m} h_{n k}^{-1} a_{n}\right|<\infty\right\}$,
$D_{2}=\left\{a=\left(a_{k}\right) \in w: \sum_{n=k}^{m} h_{n k}^{-1} a_{n}\right.$ exists for each $\left.k \in \mathrm{~N}\right\}$ ，

and
$D_{4}=\left\{a=\left(a_{k}\right) \in w: \quad \lim _{m \rightarrow \infty} \sum_{k=1}^{m} \sum_{n=k}^{m} h_{n k}^{-1} a_{n}\right.$ exists $\}$.

Wherein $h_{n k}^{\ell t}$ is as defined（2．1）．Then $\left\{h_{0}\right\}^{\beta}=D_{1} \cap D_{2}$ and
$\left\{h_{c}\right\}^{\beta}=D_{1} \cap D_{2} \cap D_{4}$ and $\left\{h_{\infty}\right\}^{\beta}=D_{2} \cap D_{3}$ ．

Proof．We only give the proof space h_{0} ．Since the proof may give by a similar way for the spaces h_{c} and $h \odot$ ，we omit it．Consider the equation

Wherein $h_{n k}^{-1}$ is as defined（2．1）．
$\sum_{k=1}^{m} a_{k} x_{k}=\sum_{k=1}^{m}\left[\sum_{k=1}^{m} h_{n k}^{-1} y_{k}\right] a_{k}=\sum_{k=1}^{m}\left[\sum_{k=n}^{m} h_{n k}^{-1} a_{k}\right] y_{n}=(D y)_{n}$,
where $D=\left[\sum_{k=n}^{m} h_{n k}^{-1} a_{k}\right]$ ．Thus，we deduce from Lemma 2 with（4．4）that $a x=\left(a_{k} x_{k}\right) \in c s$ whenever $x=\left(x_{k}\right) \in h_{0} \quad$ if and only if $D y$ 圆 c whenever $y \boldsymbol{\operatorname { T i n }} \boldsymbol{y}_{k} \boldsymbol{c}_{0}$ ．Therefore，using relations（4．3）and （4．4），we conclude that $\lim _{n \rightarrow \infty} h_{n k}^{-1} a_{k}$ exists for each $k \in \mathrm{~N}$ and $\sup _{n \in \mathrm{~N}} \sum_{k=1}^{n}\left|h_{n k}^{-1} a_{k}\right|<\infty \quad$ which shows that $\left\{h_{0}\right\}^{\beta}=D_{1} \cap D_{2}$ ．

Theorem 7．The $\gamma-$ dual of the sequence spaces h_{∞} ， h_{c} and h_{0} are
$D_{5}=\left\{a=\left(a_{k}\right) \in w: \sup _{n} \sum_{k=0}^{n} h_{n k}^{-1} a_{k}<\infty\right\}$ ．
Wherein $h_{n k}^{\ell d}$ is as defined（2．1）．

Proof．We only give the proof space h_{0} ．Consider the equality
$\left|\sum_{k=1}^{m} a_{k} x_{k}\right|=\left|\sum_{n=1}^{m} a_{n}\left[\sum_{k=1}^{n} h_{n k}^{-1} y_{k}\right]\right|=\left|\sum_{k=1}^{m} h_{n k}^{-1} a_{k} y_{k}\right| \leq \sum_{k=1}^{m}\left|h_{n k}^{-1} a_{k}\right|\left|y_{k}\right|$.

Taking supremum over m 圆 N ，we get $\sup _{m}\left|\sum_{k=1}^{m} a_{k} x_{k}\right| \leq \sup _{m}\left(\sum_{k=1}^{m}\left|h_{n k}^{-1} a_{k}\right|\left|y_{k}\right|\right) \leq\|y\|_{c_{0}} \sup _{m}\left(\sum_{k=1}^{m} h_{n k}^{-1} a_{k}\right) \leq \infty$ ． This means that $a=\left(a_{k}\right) \in\left\{h_{0}\right\}$ ．Hence，
$D_{5} \subset\left\{h_{0}\right\}^{\gamma}$.
Conversely，let $a=\left(a_{k}\right) \in\left\{h_{0}\right\}^{\gamma}$ and x 葍 h_{0} ．Then one can easily see that $\left(\sum_{k=1}^{m} h_{n k}^{-1} a_{k} y_{k}\right) \in l_{\infty}$
whenever $a x$ 『 $\boldsymbol{a}_{k} x_{k}$ 回 $b s$ ．This implies that matrix $\sum_{k=n}^{m} h_{n k}^{-1} a_{k}$ is in the class $\boldsymbol{\Omega}_{0}: l_{\Theta} \boldsymbol{\ell}$ ．
Hence，the condition $\sup _{m} \sum_{k=1}^{m}\left|h_{n k}^{-1} a_{k}\right|<\infty \quad$ is satisfied，which implies that a П \boldsymbol{a}_{k}（圏 D_{5} ． In other words，
$\left\{h_{0}\right\}^{\gamma} \subset D_{1}$.

Therefore，by combining inclusions（4．5）and（4．6），we
 D_{5} ，which completes the proof．

Some Matrix Mappings Related to Hilbert Sequence Spaces

In this section，we give the characterization of the classes $\left(h_{c}: l_{p}\right)$ and $\left(h_{c}: c\right)$ ．As the following theorems can be proved using standart methods，we omit the detail．

Lemma 4．［13，p．57］The matrix mappings between $B K$－spaces are continuous．

Lemma 5．［13，p．128］$A \in\left(c: l_{p}\right)$ if and only if
$\sup _{K \in F} \sum_{n}\left|\sum_{k \in K} a_{n k}\right|^{p}<\infty, \quad 1 \leq p<\infty$ ．

Theorem 8．A 圈 $\boldsymbol{m}_{c}: l_{p} \mathbf{U}_{\mathrm{if}}$ and only if the following conditions are satisfied：
$\sup _{K \in F} \sum_{k}\left|\sum_{k \in K} \sum_{n=k}^{m} h_{n k}^{-1} a_{k n}\right|^{p}<\infty$,
$\sum_{n=k}^{m} h_{n k}^{-1} a_{k n}$ exists for all $k, n \in \mathbf{N}$
$\sum_{k} \sum_{n=k}^{m} h_{n k}^{-1} a_{k n}$ convergesfor all $n \in \mathrm{~N}$
$\sup _{m \in N} \sum_{k=1}^{m}\left|\sum_{n=k}^{m} h_{n k}^{-1} a_{k n}\right|<\infty, 1 \leq p<\infty$
and for $p \boldsymbol{F} \in$ ，conditions（5．3）and（5．5）are satisfied and
$\sup _{n \in \mathrm{~N}} \sum_{k=0}^{n}\left|\sum_{n=k}^{m} h_{n k}^{-1} a_{k n}\right|<\infty$.

Wherein $h_{n k}^{-1}$ is as defined（2．1）for every m, n ， $k \in N$ ．

Theorem 9．$A \in\left(h_{c}: c\right)$ if and only if conditions （5．3），（5．5）and（5．6）are satisfied，
$\lim _{n \rightarrow \infty} g_{n k}=\alpha_{k} \quad$ for all $k \in \mathrm{~N}$
and
$\lim _{n \rightarrow \infty} g_{n k}=\alpha$.
Where $g_{n k}=\sum_{n=k}^{m} h_{n k}^{-1} a_{k n}$
and

$$
h_{n k}^{-1}=(-1)^{n+k}(n+k-1)\binom{m+n-1}{m-k}\binom{m+k-1}{m-n}\binom{n+k-1}{n-1}^{2}
$$

for every $m, n, k \in N$.

REFERENCES

[1] Choudhary, B., Nanda, S. Functional analysis with applications. Wiley, 1989.
[2] Kırıscı, M. On The Taylor Sequence Spaces Of Nonabsolute Type Which Include The Spaces c0 AND c, Journal of Mathematical Analisys, 2, 22-35,2015.
[3] Altay, B., Basar, F. On some Euler sequence spaces of nonabsolute type. Ukrainian Mathematical Journal, 57(1), 1-17, 2005.
[4] Sengonül, M., Basar, F. Some new cesaro sequence spaces of non-absolute type which include. Soochow Journal of Mathematics, 31(1), 107-119, 2005.
[5] Altay, B., Başar, F., Mursaleen, M. On the Euler sequence spaces which include in the
spaces l_{p} and ∞ I. Information Sciences, 176(10), 1450-1462, 2006.
[6] Malkowsky, E. Recent results in the theory of matrix transformations in sequences spaces, Mat. Vesnik 49, 187-196, 1997
[7] Ng, P. N., Lee, P. Y. Cesaro sequence spaces of non-absolute type. Comment. Math. Prace Mat, 20(2), 429-433, 1978
[8] Wang, C. S. On Nörlund seqence spaces, Tamkang J. Math., 9, 269-274, 1978.
[9] Raja, P. V. K., Chakravarthy, A. S. N., Avadhani, P. S. A Cryptosystem Based on Hilbert Matrix using Cipher Block Chaining Mode. arXiv preprint arXiv:1110.1498, 2011.
[10] Tabanjeh, M. M. New Approach for the Inversion of Structured Matrices via Newton's Iteration, Advances in Linear Algebra and Matrix Theory, 5,(1) 1-15,2015.
[11] Maddox, I. J. Elements of Functional Analysis, Cambridge University Press, Cambridge 1988.
[12] Garling, D. J. H. The β-and γ-duality of sequence spaces. In Mathematical Proceedings of the Cambridge Philosophical Society, 63(4), 963-981, 1967
[13] Stieglitz, M., Tietz, H. Matrixtransformationen von folgenräumen eine ergebnisübersicht. Mathematische Zeitschrift, 154(1), 1-16, 1977

