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ABSTRACT 
 
The use of random numbers to represent uncertainty and unpredictability is essential in many industries. This is 
crucial in disciplines such as computer science, cryptography and statistics, where the use of randomness helps to 
guarantee the security and reliability of systems and procedures. In computer science, random number generation is 
used to generate passwords, keys and other security tokens, as well as to add randomness to algorithms and simu-
lations. According to recent research, the hardware random number generators used in billions of IoT devices do not 
generate enough entropy. This paper describes how raw data collected by IoT system sensors can be used to gen-
erate random numbers for cryptography systems and also examines the consequences of these random numbers. 
Colour, light and camera are used as sensors. Monobit and poker test results are analysed to measure the quality of 
randomness. Sequences were obtained with the method that gave quality values as a result of the analysis and these 
sequences were entered into the NIST and FIPS 140-1 randomness test packages. When the results of these two 
tests were analysed, it was observed that the sequences passed all tests successfully. 
 
Anahtar Kelimeler: Cryptography, internet of things, light sensor, random number generators, webcam sensor 

 

 
Rastgele Sayı Üretimi için Tesla Küresi Kullanılabilir mi? 

 
ÖZ 
 
Belirsizliği ve öngörülemezliği temsil etmek için rasgele sayıların kullanılması birçok endüstride esastır. Bu, rastgelelik 
kullanımının sistemlerin ve prosedürlerin güvenliğini ve güvenilirliğini garanti etmeye yardımcı olduğu bilgisayar bilimi, 
kriptografi ve istatistik gibi disiplinlerde çok önemlidir. Bilgisayar biliminde, rastgele sayı üretimi parolalar, anahtarlar 
ve diğer güvenlik belirteçleri oluşturmak ve ayrıca algoritmalara ve simülasyonlara rastgelelik eklemek için kullanılır. 
Son araştırmalara göre milyarlarca Nesnelerin İnterneti cihazında kullanılan donanımsal rastgele sayı üreteçleri yeterli 
entropi üretmiyor. Bu makale, IoT sistem sensörleri tarafından toplanan ham verilerin kriptografi sistemleri için rast-
gele sayılar oluşturmak üzere nasıl kullanılabileceğini açıklamakta ve ayrıca bu rastgele sayıların sonuçlarını incele-
mektedir. Sensör olarak renk, ışık ve kamera kullanılmıştır. Rastgelelik kalitesini ölçmek maksadıyla monobit ve poker 
test sonuçları analiz edilmiştir. Analiz sonucu kaliteli değerler veren yöntem ile diziler elde edilip NIST ve FIPS 140-1 
rastgelelik test paketlerine bu diziler sokulmuştur. Bu iki testin sonuçları irdelendiğinde ise bütün testlerden başarıyla 
geçtiği gözlemlenmiştir.  
 
Keywords: Kriptografi, nesnelerin interneti, ışık sensörü, rastgele sayı üreteçleri, webcam sensörü  
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INTRODUCTION 

The term "Internet of Things," or IoT in short, is derived 
from the phrases "object" and "internet" and is one of 
the subjects that has been the subject of numerous 
studies in recent years. There are billions of users 
worldwide who use the global system of connected 
computer networks known as the Internet. By facilitat-
ing the transmission of information between individu-
als, this global system has become a crucial compo-
nent of our daily lives. The Internet of Things is the 
most used terminology, although it has terminological 
counterparts such as Internet of Everything (IoE), Web 
of Things (WoT), Web of Everything (WoE), and Ma-
chine to Machine (M2M) (Gözüaçık, 2015). The idea of 
the Internet of Things (IoT) has come to mean a net-
work of interconnected devices that can interact with 
one another by connecting to the internet without the 
help of a third party. IoT devices can access cloud-
based resources to collect data and extract the col-
lected data, make authorisation arrangements, and 
make decisions by analysing the collected data with 
the help of algorithms (Conti et al., 2018).  
 
Random number generation is critical in many fields 
because it is used to simulate uncertainty and unpre-
dictability. This is important in fields such as computer 
science, cryptography, and statistics, where random-
ness is used to ensure the security and reliability of 
systems and processes. In computer science, random 
number generation is used to create randomness in al-
gorithms and simulations, as well as to generate pass-
words, keys, and other types of security tokens. In 
cryptography, random numbers are used to generate 
secure keys for encrypting and decrypting data, as well 
as to create random challenges in authentication pro-
tocols. In statistics, random number generation is used 
to sample data and to perform statistical tests. Overall, 
random number generation is a critical component of 
many systems and processes that rely on uncertainty 
and unpredictability to function correctly and securely. 
The raw data needed by random number generators in 
cryptographic systems can be obtained using the infor-
mation gathered. This article will describe how these 
raw data can be utilised to create fixed-length keys that 
can be incorporated into algorithms that will protect the 
security of vital communication systems. 
 
For the generation of random numbers, random se-
quences were obtained with the data taken from nature 
with the help of some sensors. The values obtained by 
using sensors such as temperature, pressure, light, 
gas, humidity and pH (Rehman et al., 2020), (Sunny et 
al., 2020), (Üçgün et al., 2020) can be used as seed 
values for random number generators. Ansari et al. 

created a real random number generator using ldr and 
sound sensors connected to an Arduino microcom-
puter (Ansari et al., 2022). Tuncer and Genç proposed 
a random number generator based on the GPS sensor 
in mobile phones and human movement (Genç and 
Arslan Tuncer, 2019). Yaşar et al.  (2021) used the 
random function of the C programming language and 
the sha256 summarisation algorithm to generate ran-
dom integers. In his research, Chen obtained random 
numbers with video and audio noise with a camera 
(Chen, 2013). Etem and Kaya created the random 
number generator for their research without the need 
for any hardware, using the LCG (Linear Congruential 
Generator) algorithm with Trivium as the postproces-
sor (Etem and Kaya, 2020). By raising the electrical 
voltage, Nikola Tesla, who was born in 1856 in the Ser-
bian village of Similjan, made it possible to transmit 
electrical power wirelessly with a low output current 
density (Sezgin, 2021).  Raw data from the Tesla 
sphere in the physical environment will be collected as 
a noise source using IoT devices or sensors. The ob-
tained values will then be converted into digital data 
using a Raspberry Pi device, and if necessary, they will 
be subjected to post processing algorithms to produce 
fixed length number sequences. 
 
Secure communication system architecture, encryp-
tion methods, and random number generators (RNG) 
are the foundations of cryptography. Private keys and 
secret keys are generated using the distinctive random 
numbers produced by the RNG. RNGs are divided into 
two groups: real and pseudo. Because they are sim-
pler to operate, pseudo random number generators 
are selected more often. Because the quick generation 
of random numbers without the need for any hardware 
is a significant cost benefit. On the other hand, true 
random number generators, which are crucial for se-
cure communication systems, incorporate non-deter-
ministic numbers as a noise source. Expensive gear is 
needed to capture the genuine unpredictability of the 
environment. The random numbers that will be pro-
duced must exhibit high statistics, be unpredictable, 
have a consistent structure, and use hardware rather 
than pseudo RSUs in terms of confidentiality. Some 
mathematical conditions (randomness tests) must be 
satisfied if the produced numbers are used in sensitive 
contexts, such as cryptography systems. The general 
encryption structure of a text message between a 
sender and a recipient is depicted in Figure 1. 
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Figure 1. General structure of encryption 

 

As shown in Figure 1, the encryption process is initi-
ated for the text to be encrypted with the help of the 
key. In this paper, we will talk about how to make the 
secure key that encryption techniques need.  
 
Previous studies used either internal or external meth-
ods to obtain the seed values for random number gen-
erators. Post-processing algorithms use input varia-
bles like the system clock, mouse movements, CPU 
data, image or sound data, random functions in pro-
gramming languages, etc. as seeds. After some time, 
the numbers generated in this manner begin to repeat 
and exhibit predictable behaviour. In this project, raw 
data were obtained with the movements and intensity 
of the radiations in the Tesla sphere. It has been ob-
served that the raw data obtained do not repeat and 
continue to be produced unpredictably. The fact that 
the system is autonomous, that is, it can work without 
external human intervention, is another point that sets 
the system apart from other studies. When the litera-
ture was analysed, it was seen that a project similar to 
the Tesla sphere as a noise source was not carried 
out. If the NIST test suite results are analysed, it will be 
understood that completely random sequences are 
generated. In this project, the values obtained from the 
Tesla sphere (Sunny, 2020), which was used by Nicola 
Tesla in 1891 to transmit electricity wirelessly as a 
noise source, will be converted into digital data. After 
being subjected to a post-processing algorithm with a 
minicomputer (raspberry pi), fixed-length, unique, un-
predictable, and chaos-based number sequences will 
be obtained. The chaotic environment needed for ran-
dom number generation is created by gathering infor-
mation from electrical radiations that are randomly dis-
tributed across the sphere, from its centre outward. 
The input source's chaotic character will guarantee the 
development of irregular, independent sequences. It is 
predicted that it will close the knowledge gap in this 
area and help with the issue of acquiring the seed 
value of the random number generators used today. 
 
 
MATERIAL AND METHOD 
 
To make the secret information between two or more 
communicating points unintelligible, cryptology, which 

is a cipher science, encrypts it using a variety of tech-
niques. The secret information is subsequently de-
crypted on the receiving side. It is a collection of ap-
proaches and applications built on high-level mathe-
matical ideas (Yalman and Ertürk, 2016). 
 
The phrases "secret" and "writing," which refer to se-
cret writing, are the roots of the word "cryptography." 
A sender runs the risk of having his communication in-
tercepted and changed when using open networks to 
convey it to a recipient. Plain text is the message that 
is in danger here. Encryption is the process of masking 
a message's content. The plaintext is transformed 
through this procedure into an encrypted format that is 
incomprehensible to others. This data could be either 
encrypted data for storage or a message that is en-
crypted for transmission. Decryption is the procedure 
through which the receiving party transforms the cipher 
text back into plain text (Atar et al., 2017). The process 
of looking for the ciphertext's solution is known as 
cryptanalysis. Finding potential flaws in cryptographic 
systems and information breaches is the fundamental 
goal of cryptanalysis, which is based on exceedingly 
complex mathematical calculations.  
 
The encryption algorithms used worldwide and their 
types, random number generators and their types, the 
sensors used to obtain raw data in the project and the 
randomness tests of the sequences obtained after 
post-processing are explained in the following sub-
headings. 
 
 
Encryption Algorithms   

Encryption is the process of masking a message's con-
tent. The plaintext is transformed through this proce-
dure into an encrypted format that is incomprehensible 
to others. This data could be either encrypted data for 
storage or a message that is encrypted for transmis-
sion. Decryption is the procedure through which the re-
ceiving party transforms the cipher text back into plain 
text (Atar et al., 2017). In symmetric encryption meth-
ods, the encryption algorithm subjects the encrypted 
message to several procedures before it can be trans-
ferred. Symmetric key encryption techniques use the 
same keys for encryption and decryption (Yılmaz and 
Ballı, 2016). AES (Advanced Encryption Standard), 
DES (Data Encryption Standard), and 3DES are pop-
ular symmetric encryption techniques today (Triple 
DES). Public key encryption is another name for asym-
metric encryption methods. For encryption and decryp-
tion, there is a public key and a private key. Asymmet-
ric encryption techniques boost the computer's pro-
cessing capability by using very big prime numbers 
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(Atar et al., 2017). Asymmetric cryptography uses pub-
lic key infrastructure because long keys and lengthy 
computations are required (Maqsood et al., 2017). The 
most popular symmetric encryption technique in use 
right now is called the Advanced Encryption Standard. 
AES is a highly effective symmetric key block cipher in 
terms of both security and performance. The key sizes 
that can be used for encryption and decryption are 
128, 192, and 256 bits (Abood, 2018). Some of the 
main characteristics of an encryption algorithm are the 
following: Confidentiality, integrity, irrefutability, acces-
sibility and identity control (Coşkun and Ülker, 2013).  
 
 
Random Number Generators 

Wherever unpredictability is required, such as in com-
puter games, games of chance, and encryption, ran-
dom number generators can be utilized. Figure 2 illus-
trates the division of random number generation into 
"real" and "pseudo" categories. Pseudo RNGs use al-
gorithms to generate their output, therefore after a 
while the output data starts to repeat itself on a regular 
basis. The output data is anticipated to be non-periodic 
since the source of randomness in a true RNG is 
based on a chaotic source of uncertainty (Tavas, 
2011). 
 

 

Figure 2. Types of random number generators 

 

Systems that produce random numbers deterministi-
cally are known as pseudo RNGs. They have benefits 
over actual random number generators, including ease 
of creation and an inexpensive cost. By examining its 
value at any time when the algorithm is compromised, 
the subsequent outputs can be anticipated (Demirkol, 
2007). In secure communication systems that demand 
confidentiality, this prediction may result in significant 
security issues (Huang et al., 2020). True RNGs are 
systems that employ the chaotic randomness of nature 
to produce numbers by post-processing with an algo-
rithm. For instance, statistical data gathered by remote 
monitoring of a plant in an agricultural field or random 
raw data that cannot be predicted with data obtained 
from the measurement sensor attached to an animal's 

foot can be obtained. The numbers exhibiting poor sta-
tistical features are post-processed to demonstrate 
greater statistics after the sampling procedure 
(Yosunlu and Avaroğlu, 2020). 
 

Testing for randomness ensures that the post-pro-
cessed datasets from the entropy source are accurate 
and realistic.  Bit sequences obtained using various 
sensing sources (camera and light sensor) and meth-
odologies (mode method, last bit extraction, and hash 
algorithms) will be examined in this research paper's 
monobit and poker test findings. The ratio of ones to 
zeros in a sequence is compared in the monobit test. 
If there are more than 9725 ones in a sequence of 
20000 bits, the test is successful. If there are fewer 
than 9725, the test is unsuccessful (Luengo et al., 
2022). Post processing algorithms will be employed to 
refine the raw data and boost unpredictability. One of 
the most popular post-processing techniques, the 
XOR algorithm, can be characterized as two-bit inputs 
producing a one bit output. The hash algorithms uti-
lized in this paper are sha256 and md5. 
 
 
Experimental Study  

Three different sensors were used with Raspberry Pi 
to obtain data from the physical world. A Tesla sphere, 
which transmits electricity wirelessly by radiation out-
side the sphere, was used as a noise source. In the 
following sub-headings, the system structure designed 
with colour, camera and light sensors and the raw data 
obtained are explained. 
 
 
RGB Colour Sensor 

In this section, the raw data from the Tesla sphere uti-
lized as an entropy source that was collected by the 
TCS34725 colour sensor connected to the Raspberry 
Pi will be analysed. This sensor additionally measures 
colour temperature and colour irradiance in addition to 
colour values. By combining the primary colours of red, 
green, and blue, colour sensors try to get colour values 
between 0 and 255. These sensors compare the light 
from the sensor striking the substance with the light 
values received by reflecting off the material to arrive 
at the result. Male-female intermediate cables are 
used to link the GND, SCL, SDA, and 3V3 pins on the 
colour sensor to the corresponding pins on the Rasp-
berry Pi device on the breadboard. Figure 3 depicts the 
overall appearance of the experimental set created 
with the Raspberry Pi 4, TCS34725 RGB Sensor, 
Tesla Sphere, Monitor, Keyboard and Mouse. 
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Figure 3. General view of the RGB sensor system 

 

A small sphere in the Tesla sphere's centre randomly 
emits electrical radiations of various colours in the di-
rection of the glass sphere outside. To extract three 
red, green, and blue values between 0 and 255 from 
the colour sensor, a Python coding procedure was 
used. Raw data were gathered from the Tesla sphere 
in the real world using a colour sensor as a noise 
source, and the values obtained were then trans-
formed using a Raspberry Pi device into the numerical 
colour values in Table 1. 
 

Table 1. Raw data from the RGB sensor 

NU.  
COLOUR 

 HEXADECİMAL CODE  
R-G-B  

VALUES  

1  FFFFFF  (255,255,255)  
2  2D2D2D  (45,45,45)  
3  FFFFFF  (255,255,255)  
4  FFFFFF  (255,255,255)  
5  5C5C5C  (92,92,92)  
6  5C1010  (92,16,16)  
7  5C1010  (92,16,16)  
8  5C1010  (92,16,16)  

 

Raw data including RGB values of (45,45,45), colour 
temperature of 1391.0K, and colour light intensity of 
17.566 lux were evaluated. The raw data collected at 
any given time was noted to be high-quality numbers, 
but as time went on, the data produced correlated out-
comes and the same values overlapped. The 
(92,16,16) values acquired from the colour sensor 
were thought to be unsuitable for use as random num-
ber generator seeds because they overlap, are not 
changeable, and have a relationship to one another. 
As a result, the RGB sensor test results are not listed 
under the heading "Analysis Results." 

WEBCAM Sensor 

In this section, the raw data from the Tesla sphere uti-
lized as an entropy source that was collected by the 
webcam sensor attached to the Raspberry Pi com-
puter will be analysed. The movements of the electrical 
radiations in the Tesla sphere were detected using the 
webcam attached to the Raspberry Pi through a USB 
port, and raw data with x and y coordinate values were 
collected. Figure 4 depicts the overall perspective of 
the experimental setup created using a Raspberry Pi 
4, Webcam, Tesla Globe, Monitor, Keyboard and 
mouse. 
 

 

Figure 4. General view of the webcam sensor system 

 

The sphere's radiations are identified using OpenCV, 
a Python computer language package, and the raw 
data collected from the moving area's x and y coordi-
nates is then examined. Intel introduced OpenCV, an 
open-source visual library, in 1999. On the Raspberry 
Pi computer, the necessary installation processes for 
the OpenCV library, which is utilized in both academic 
work and commercial applications, were carried out. 
Following the library's installation, a program in the Py-
thon programming language was created that locates 
moving areas, grids them in, and outputs the weight 
point's x and y coordinates, as shown in Table 2. 
 

Table 2. Raw data from the Webcam 

NU.  
X COORDI-

NATE  
Y COORDI-

NATE  
ELAPSED TIME 

(sec)  

1  324  305  0.10  

2  282  302  0.091  

3  197  121  0.078  

4  193  82  0.088  

5  212  108  0.082  

6  260  329  0.078  

7  364  133  0.067  

8  354  151  0.096  
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The information gathered in the table above serves as 
the random number generator's seed values. These 
variables were used to generate outputs of fixed length 
using 4 distinct techniques. The first approach entails 
translating the remainder (Mod 16) into the hexadeci-
mal number system after dividing the x and y coordi-
nate values by 16, respectively. In Table 2, the remain-
ders that were produced after applying the Mod 16 
method to the numbers in the second row (282 and 
302) correspond to the hexadecimal values "10" and 
"e," respectively. According to the residual values ob-
tained using this method, the x and y coordinates pro-
duced when the webcam sensor detects movement 
provide an eight-bit output (1010, 1110). Until the 
specified fixed key length is reached, the motion de-
tection cycle is repeated. The second method involves 
converting the coordinate values to a binary number 
system and taking the last bit.  
  

The third-row values (197 and 121) in Table 2 have last 
bit values of "1" for both coordinate data (after conver-
sion to binary by the last bit method). According to the 
final bit values discovered using this method, the x and 
y coordinates formed when the webcam sensor de-
tects movement generate a two-bit long output. Until 
the specified fixed key length is reached, the motion 
detection cycle is repeated. The coordinate values are 
entered into the Md5 and Sha256 hash algorithms to 
complete the third and fourth methods. After using 
XOR post processing, the output is obtained by inde-
pendently summing the x and y coordinate values. 
These techniques produced 1024-bit outputs, which 
were then submitted to a monobit randomness test to 
ensure their randomness. The section under "Analysis 
Results" will assess the test results. 
 
 
Light Sensor  

This part will analyse the unprocessed data collected 
by the LDR sensor attached to the Raspberry Pi from 
the Tesla sphere used as an entropy source. Utilized 
by the Raspberry Pi device, the LDR is a sensor that 
gauges light intensity in proportion to the amount of 
light that strikes it. The amount of light hitting the LDR 
will determine how much energy the capacitor re-
ceives. The time until logic 1 will provide the light in-
tensity since the Raspberry Pi will identify the capacitor 
charging as logic 1 when it happens. Male-female in-
termediate wires on the breadboard are used to link 
the light sensor and capacitor to the Raspberry Pi de-
vice's GND, GPIO3, and 3V3 pins. The light values dis-
played in Table 5 were collected from the Tesla 
sphere, which serves as the noise source. Figure 5 

shows how the experiment set made with the Rasp-
berry Pi 4, LDR Sensor, Tesla Globe, Monitor, Key-
board and Mouse looks as a whole.  
 

 

Figure 5. General view of the LDR sensor system 

 

Table 3. Raw data from the LDR sensor 

NU.  
MEASURED LIGHT  

INTENSITY  
ELAPSED TIME 

(sec) 

1  1090  0.1021  

2  1067  0.1019  

3  1098  0.1017  

4  1094  0.1019  

5  638  0.1023  

6  654  0.1023  

7  1102  0.1020  

8  1061  0.1021  

  
The data obtained in Table 3 serves as the random 
number generator's seed values. Using these data, 
four distinct strategies, were used to produce outputs 
of fixed length. The first technique is the remainder 
(mod 16), which is achieved by dividing the light values 
by 16. The second approach involves converting the 
light values to binary and obtaining the final bit. The 
third and fourth methods are obtained by using the 
Md5 and Sha256 hash algorithms, respectively. These 
techniques led to the creation of 1024 bit outputs, sim-
ilar to those used in the webcam sensor section, which 
were then subjected to a monobit randomness test in 
order to verify the unpredictability. The section under 
"Analysis Results" will assess the test results. 
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Monobit Test Analysis Results  

The monobit test results from three different sources 
(Pseudo, Webcam, and LDR Sensor) are compared in 
this study. The frequency test, sometimes referred to 
as the monobit test, is discovered by counting the oc-
currences of the integers 0 and 1 in the sequence. 512-
bit values should be one- and 512-bit values should be 
zero in the 1024-bit long outputs acquired from the 
sensors in the preceding section. The 1024-bit se-
quence's monobit test result, which was produced us-
ing the Random function in the Python programming 
language to produce pseudorandom numbers, is 
shown in Table 4 and shown graphically in Figure 6. 
The distance between one and zero for the 1024-bit 
sequence is 34. 
 

Table 4. Monobit test of pseudo random number 
generation 

NUMBER  EXPECTED  OBSERVED  

Number of 1’s  512  495  

Number of 0’s  512  529  

 

 

 

Figure 6. Monobit test chart of pseudo random num-
ber generation 

 

The monobit test results of the output sequences pro-
duced by four different techniques using a length of 
1024 bits are given in Table 5. The graphical represen-
tation is shown in Figure 7, and raw data with x and y 
coordinate values were obtained by detecting the 
movements of the electrical radiations in the Tesla 
sphere using the Webcam sensor. The difference be-
tween one and zero for the 1024-bit sequence using 
the Mod 16 approach is 10, the Md5 method is 20, the 
Sha256 method is 18, and the sequence created by 
omitting the last bits has a difference of 24. The se-
quence acquired using the Mod 16 approach was 
found to be the most similar to the expected values, 
while the sequence obtained using the last bit method 
was found to be the furthest from them. In this test, it 
was found that, in comparison to the pseudorandom 

number produced by the computer, the numbers gen-
erated by all techniques employing the Webcam sen-
sor produced good results. 
 

Table 5. Monobit test with webcam  

NUMBER 
EX-

PECTED  
OBSERVED  

  Mod 
16  

Md5  Sha256  
End 
Bits  

Number of 
1’s  

512  507   522   521   524  

Number of 
0’s  

512  517   502   503  500  

  
 
 

 

Figure 7. Monobit test chart with webcam 

 

Table 6 lists the findings of the 1024-bit long arrays' 
monobit tests, which were conducted using 4 different 
techniques to gauge the radiation strength in the Tesla 
sphere using an LDR sensor. Figure 8 shows a graph-
ical representation of the data. When using the Mod 16 
method, the difference between one and zero for the 
1024-bit array is seen to be 22, when using the Md5 
method it is 12 and the Sha256 method to be 32, and 
when using the array created by eliminating the final 
few bits it is 16. The sequence acquired using the Md5 
method was found to be the most similar to the ex-
pected values, while the sequence obtained using the 
Sha256 approach was found to be the furthest from 
them. In this experiment, it was found that the numbers 
generated using any of the LDR sensor's methods per-
formed better than the pseudorandom numbers pro-
duced by the computer. 
 

 
 
 

470 480 490 500 510 520 530 540

Number of 0's

Number of 1's

Observed Expected

480 490 500 510 520 530

Mod 16

MD5

SHA256

End Bits

Number of Observed 1's

Number of Observed 0's

Expected Number of 0 and 1
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Table 6. Monobit test with LDR sensor 

NUM-
BER 

EX-
PECTED  

OBSERVED  

  Mod 16  Md5  Sha256  
End 
Bits  

Number of 
1’s  

512  501  506  528  520  

Number of 
0’s  

512  523  518  496  504  

 

 

 

Figure 8. Monobit test chart with LDR sensor 

 

Poker Test Analysis Results  

The poker test results from three different sources 
(Pseudo, Webcam, and LDR Sensor) are compared in 
this study. In this test, 5000 numbers are produced by 
dividing a random sequence of 20000 bits into blocks 
of four bits. Numbers are expressed in the 
hexadecimal base using these four bits. The computed 
poker value must fall between 1.03 and 57.4 in order 
to pass the test.   
Table 7 and Figure 9 show the poker test outcome for 
the 20000-bit sequence produced by the Random 

function in the Python computer language, which 
generates pseudo-random numbers. The poker value 
for a 20000-bit sequence was found to be 13.9904. 
 

Table 7. Poker test of pseudo random number gen-
eration 

NUMBER  EXPECTED  OBSERVED  

Poker Values (X)  1.03 < X < 57.4  13.9904  

 

 

 

Figure 9. Poker test chart of pseudo random number 
generation 

 

After using a webcam sensor to monitor the movement 
of electrical radiations in the Tesla sphere and obtain-
ing raw data with x and y coordinate values, the results 
of the poker test for 20000-bit output sequences gen-
erated by four different methods are shown in Table 8 
and the graphical representation is shown in Figure 10. 
The poker value of the 20000-bit sequence is 21.4720 
for the Mod 16 technique, 0.8256 for the Md5 method, 
-5.1647 for the Sha256 approach and 10.1504 for the 
sequence produced by skipping the last bits. It is ob-
served that Mod16 and the last bits method passed the 
test successfully. 
 

 
Table 8. Poker test with Webcam 

  EXPECTED  OBSERVED  

   Mod 16  Md5  Sha256  End Bits  

Poker Value (X)  1.03 < X < 57.4   21.472  0.8256   -5.1647   10.1504  

 

480 500 520 540

Mod 16

MD5

SHA256

End Bit

Number of Observed 1's

Number of Observed 0's

Expected Number of 0 and 1

-10 10 30 50 70

Poker Values of Pseudo
RNG

Poker Values Expected Maximum

Expected Minimum
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Figure 10. Poker test chart with Webcam 

The poker test results for 20000-bit long sequences 
obtained using 4 different techniques by measuring the 
radiation intensity in the Tesla sphere with the LDR 
sensor are given in Table 9 and the graphical repre-
sentation is given in Figure 11. The poker value of the 
20000-bit sequence is 16.3392 for the Mod 16 tech-
nique, -54.4511 for the Md5 method, -5.8944 for the 
Sha256 approach and 20.3136 for the sequence pro-
duced by taking the last bits. It is observed that the last 
bits and mod 16 method passed the test successfully. 

 
Table 9. Monobit test with LDR sensor 

  EXPECTED  OBSERVED  

   Mod 16  Md5  Sha256  End Bits  

Poker Value (x)  1.03 < X < 57.4  16.3392  -54.4511  -5.8944  20.3136  

 

 

Figure 11. Monobit test chart with LDR sensor 

 

When the data from the RGB, camera, and LDR sen-
sors are analysed, it is seen that the RGB values are 
the same and the output values are similar, even if the 
LDR sensor values are different. When compared to 
the other two sensors, the camera sensor produced 

raw data of higher quality since it collected two distinct 
x and y values in each cycle that were unrelated to one 
another. When the approaches were analysed, it was 
found that the Mod 16 method produced better results 
and that the Md5 and Sha256 methods failed some 
tests. 
 
 
Statistical Test Results 
 

On a 20000 long produced sequence, the FIPS 140-1 
test suite checks for randomness. There are tests for 
monobit, poker, runs, and long runs in this test suite.  
The system clock was used as a post-processing step 
to add more randomization to the Mod 16 method's raw 
value results. The positive outcomes of this test using 
the camera sensor and Mod 16 technique are dis-
played in Table 10 below. 
 

 
Table 10. FIPS test results 

Test Expected Result 

Monobit 9654< X <10346 10037 

Poker 1.03< X <57.4 7.98 

Run 

Block Length Block Number Range 0’s Number 1’s Number 

1 2267-2733 2494 2520 
2 1079-1421 1247 1191 
3 502-748 662 649 
4 223-402 297 328 
5 90-223 153 150 
6 90-223 148 163 

-10 10 30 50 70

Mod 16

MD5

SHA256

End Bit

Poker Values Expected Maximum

Expected Minimum

-60 -10 40 90

Mod 16

MD5

SHA256

End Bit

Poker Values Expected Maximum Expected Minimum



Arslan and Kırbaş  14(1): 185-195 (2023) 

   
Can Tesla Sphere be used for Random Number Generation? 

 

194 

Long Run <= 34 Passed 

One million long produced sequences are used in the 
NIST 800-22 test set to evaluate randomness. This 
test suite consists of 16 different tests, and for each 
test to be deemed successful, the P value must be less 

than 0.01 at that stage. Table 11 displays the produc-
tive outcomes of this test using the camera sensor and 
Mod 16 technique. 
 

 
Table 11. NIST test results 

No. Test Name P Value Result 

1 Frequency 0.7634 Successful 
2 Block Frequency 0.1559 Successful 
3 Run 0.8625 Successful 
4 Test for the Longest Run of Ones in a Block 0.7775 Successful 
5 Binary Matrix Rank 0.4399 Successful 
6 Discrete Fourier Transform  0.6872 Successful 
7 Non-Overlapping Template Mathing 0.7312 Successful 
8 Overlapping Template Mathing 0.0478 Successful 
9 Maurer's Universal Statistical 0.3666 Successful 
10 Linear Complexity 0.8760 Successful 
11 Serial - 1  0.8307 Successful 
12 Serial - 2 0.8601 Successful 
13 Approximate Entropy 0.8676 Successful 
14 Cumulative Sums 0.9532 Successful 
15 Random Excursions (x=+1) 0.3708 Successful 
16 Random Excursions Variant (x=-1) 0.6782 Successful 

 

The arrays, which give quality results with the Mod 16 
technique, have been put into the NIST test suite, 
which is the most difficult test suite that controls ran-
domness in the world, and also into the FIPS 140 test 
suite. One million sequences were produced for the 
NIST suite and twenty thousand sequences were pro-
duced for the FIPS test suite. It was observed that the 
sequences produced successfully passed all the tests 
in these two test packages. 
 

CONCLUSION 

In cryptographic applications, randomness is the most 
crucial element of security and confidentiality. There-
fore, the security of the entire system is significantly 
impacted by the quality of random number generators 
utilized in various communication contexts. Because 
these two can be combined, random numbers can be 
generated as actual, fake, or hybrid. To assess the 
quality of these generated numbers, several statistical 
tests are performed. The entropy of the noise source 
is intimately related to the security of RNGs. By getting 
the seed value from the physical world using IoT sen-
sors, this study aims to improve entropy levels. The 
sensors created in the Raspberry Pi environment were 
used to collect raw data from the Tesla sphere, the 
source of the noise. Eight different readings were col-
lected using these two sensors, and they were then 

examined using the Mod 16, Last Bits, Sha256, and 
Md5 techniques. The raw data obtained with the Mod 
16 approach and the camera sensor produced supe-
rior results than the other methods, according to the 
assessments with the Monobit and Poker tests.  
 
As a result, it has been discovered through this project 
that seed values for random number generation can be 
derived from the sensors of IoT systems, which are 
currently evolving quickly and which we will encounter 
more frequently in the future in our daily lives. In the 
study of (Genç and Arslan Tuncer, 2019), which ob-
tains random numbers with position values consisting 
of human movements, in order to generate numbers, 
the human must move, provided that it is not too small, 
and no data can be obtained while in a stationary po-
sition. Similarly, in the study of (Zhang et al., 2014), it 
is necessary to intervene in the camera with external 
human intervention in order to generate seed values. 
In contrast to the studies in the literature, using the 
Tesla sphere as the noise source creates a chaotic en-
vironment where random, non-repeating data are col-
lected in the next step. It has been shown that the keys 
that come from the electrical radiations in the centre of 
the sphere are more accurate than the keys that come 
from pseudo-random number generators.  The one 
million long bit string generated for the NIST random-
ness tests passed all of these tests. The low cost of the 
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sensor and noise source sphere is another point that 
sets the project apart. 
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