

ISSN Online: 1309-2243

http://dergipark.org.tr/makufebed
https://doi.org/10.29048/makufebed.1003502

Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi 13(1): 9-26 (2022)

The Journal of Graduate School of Natural and Applied Sciences of Mehmet Akif Ersoy University 13(1): 9-26 (2022)

Araştırma Makalesi / Research Paper

Hasan ÖZER, https://orcid.org/0000-0002-0729-676X
İbrahim Taner OKUMUŞ, https://orcid.org/0000-0001-9495-3133

A Scalable and Efficient Port-Based Adaptive Resource Monitoring Approach
in Software Defined Networks

Hasan ÖZER 1*, İbrahim Taner OKUMUŞ 2

1Kahramanmaras Sutcu Imam University, Department of Bioengineering and Sciences, Kahramanmaras, Turkey
2Kahramanmaras Sutcu Imam University, Department of Computer Engineering, Kahramanmaras, Turkey

Geliş Tarihi (Received): 07.10.2021, Kabul Tarihi (Accepted): 01.02.2022

 Sorumlu Yazar (Corresponding author*): hozer77@gmail.com

 +90 344 3001700 +90 344 3001602

ABSTRACT

The need for communication tools is increasing from the past to the present, therefore the tools and methods in
network technologies are evolving. Depending on this development, network scale and complexity increase and the
limitations of traditional network technology are surfaced. Software-defined Network (SDN) provides a variety of
opportunities for the management and optimization of these challenges. Network resource monitoring is very
important for providing information to network applications. This study introduces an adaptive port-level bandwidth
monitoring method designed for SDN networks. The proposed approach uses a polling-based monitoring paradigm.
There is a trade-off between measurement accuracy and monitoring overhead. With this adaptive method, it is aimed
to decrease the overhead while maintaining an acceptable level of accuracy of the measurements and also to use
network resources more efficiently. The proposed adaptive monitoring approach has 46% less overhead than the
periodic polling method and 6.7% less overhead than the PayLess approach. At the same time, this approach is 5.4%
more accurate than the periodic polling approach.

Keywords: Adaptive monitoring, floodlight, SDN, SPD

Yazılım Tanımlı Ağlarda Ölçeklenebilir ve Verimli Bir Port Tabanlı Adaptif

Kaynak İzleme Yaklaşımı

ÖZ

Geçmişten günümüze iletişim araçlarına olan ihtiyaç artmakta, bu nedenle ağ teknolojilerindeki araç ve yöntemler
gelişmektedir. Bu gelişmeye bağlı olarak ağ ölçeği ve karmaşıklığı artmakta olup geleneksel ağ teknolojisinin prob-
lemleri ortaya çıkmaktadır. Yazılım Tanımlı Ağ (YTA), bu zorlukların yönetimi ve optimizasyonu için çeşitli fırsatlar
sunar. Ağ kaynaklarının izlenmesi, ağ uygulamalarına bilgi sağlamak için çok önemlidir. Bu çalışma, SDN ağları için
tasarlanmış uyarlanabilir bir bağlantı noktası düzeyi bant genişliği izleme yöntemini amaçlamaktadır. Önerilen yakla-
şım, yoklama tabanlı izleme paradigmasını kullanır. Ölçüm doğruluğu ve izleme yükü arasında bir denge bulunmak-
tadır. Bu uyarlamalı yöntemle, ölçümlerin kabul edilebilir doğruluk seviyesini korurken ek yükün azaltılması ve ayrıca
ağ kaynaklarının daha verimli kullanılması amaçlanmaktadır. Önerilen uyarlamalı izleme yaklaşımı, periyodik yoklama
yöntemine göre %46, PayLess yaklaşımına göre ise %6,7 daha az ek yük elde edilmiştir. Aynı zamanda bu yaklaşım,
periyodik yoklama yaklaşımına göre %5,4 daha doğru bir ölçüm sağlamıştır.

Anahtar Kelimeler: Uyarlamalı izleme, floodlight, YTA, SPD

https://orcid.org/0000-0002-0729-676X
https://orcid.org/0000-0001-9495-3133

Özer and Okumuş 13(1): 9-26 (2022)

A Scalable and Efficient Port-Based Adaptive Resource Monitoring Approach in Software Defined Networks

10

INTRODUCTION

Network management has a very important role in
network systems. Network monitoring is vital in
obtaining the network resource information required
for network management. This information will enable
more efficient and effective use of network resources.
The statistics at different collection levels (i.e., port,
flow) must be presented to network management
applications in an accurate and timely manner. For
example, network status statistics must be provided
accurately and timely for QoS requirements, anomaly
detection, and topology updates.

Traditional network monitoring methods can be
classified as passive and active sampling-based
methods (Huang et al., 2016; Terzi et al., 2017). Active
sampling-based methods bring network load
(overhead) to the network but are successful in
achieving high accuracy. However, passive sampling-
based methods do not bring an overhead into the
network, but they do not succeed in obtaining accuracy
(Mohan et al., 2011).

Monitoring methods should collect, process and
transmit the desired statistics at the specified collection
level and frequency, without bringing unnecessary
monitoring overhead to the network. At the same time,
these methods should be able to capture network
traffic statistics in a timely manner. Therefore, there is
a need for monitoring methods that reduce the
overhead while maintaining accuracy level of network
state.

Software Define Networking (SDN) paradigm is a
recently emerged architecture that has been widely
studied by researchers and used by vendors. By
separating the control plane and the data plane, SDN
proposes a global view on network systems and
flexibility in network management. The data plane
consists of OpenFlow (OF) switches (Open
Networking Foundation, 2015). A controller works as
the control plane.

The OF protocol can be considered as an interface
between the data plane and the control plane in SDN.
It allows communication with a secure channel
between a switch and a controller. OF can specify a
flow using the fields from the layer 2, layer 3 and layer
4 headers of a packet. A controller can query OF
switches to collect statistics of active streams on the
data plane through this protocol. OF protocol allows us
to collect statistics at different aggregation levels (i.e.,
flow, port) from the data plane.

In SDN design, packet forwarding mechanisms are
discussed in (Yang et al., 2021). On closer inspection,
routing table entries in SDN nodes are identified and
classified considering wildcard rules, their priority,
validity, placement in multiple tables and integration of
traffic statistics.

In this article, we present an adaptive monitoring
approach designed for SDN. First component of the
proposed system is prediction component which
estimates the next measurement sample and let the
developed adaptive method, adjust polling period
proactively. Second, to maintain accuracy level and
reduce the overhead we adaptively adjust polling
period considering multiple parameters apart from the
estimated measurement. Basically, if the traffic level is
increasing or decreasing at a certain level that specific
line needs to be monitored more closely which results
in decreasing the polling period. This will increase the
number of polling messages. If the traffic level is stable
within certain boundaries, then monitoring period can
be increased which will decrease number of polling
messages. We implemented the proposed adaptive
monitoring approach at the port statistics level in an
SDN environment. According to the test results, it is
seen that the adaptive monitoring approach reduces
overhead by more than 56.7% compared to the
periodic monitoring approaches.

Overheads are recognized as a major concern for SDN
controllers; therefore, many studies aim to reduce
monitoring costs. Typically, these studies use a trade-
off between statistical accuracy and tracking overhead,
so accuracy is compromised to reduce monitoring
overhead. For example, transmission sampling (Li et
al., 2019), statistical hash (Yu M. et al., 2013), and
statistics estimation (Liu et al., 2016) pose problems
with accuracy, bypassing the collection of some
statistics samples.

Network monitoring is an important research area. As
monitoring requirements change, different monitoring
designs and methods are needed. Traditional network
monitoring designs basically have four different
functions: Collecting, aggregating, analyzing and
storing statistics. Gathering statistics is the most
important step. Because the analysis will be done
according to the collected statistics. Monitoring
approaches can be grouped into two types: distributed
frameworks (Phan et al., 2017) and centralized
frameworks (Shah et al., 2016).

NetFlow and sFlow (Huang et al., 2016; Terzi et al.,
2017) use traditional network monitoring techniques in
IP networks. NetFlow is widely used in network

Özer and Okumuş 13(1): 9-26 (2022)

A Scalable and Efficient Port-Based Adaptive Resource Monitoring Approach in Software Defined Networks

11

management. It offers very low overhead since it uses
a passive measurement method. However, because it
provides full access to network devices, it causes
privacy and security concerns (Su et al., 2015).
Netflow requires significant pre-license and installation
costs to integrate into a network. Another monitoring
method is sFlow, which is offered by InMon as an open
standard. It uses the time-based sampling technique
to obtain network status information. In sFlow, the
distribution is more specialized, but not adopted by
vendors.

Today, various network monitoring studies are
available on SDN networks. OpenSketch (Yu M et al.,
2013) includes three-stage pipeline architecture. This
architecture store data by integrating hash functions,
classification and a counting table. OpenSkech uses
static random-access memory (SRAM) instead of
TCAM on the switches to store all counters. Thus, it is
cheaper and more energy efficient. At the same time,
offers a good trade-off between accuracy and usage of
memory resources.

OpenTM (Tootoonchian et al., 2010) is a query-based
monitoring method that predicts the traffic matrix (TM)
by querying switches on OF networks. It periodically
queries a switch on each active stream to collect flow
level statistics. This design, despite its high accuracy,
results in a high overhead.

OpenNetMon periodically queries packet counters
from the source and destination switches, which is
appropriate for end-to-end measurement (Van et al.,
2014). The solutions offered by OpenNetMon are not
universal and are specific only to certain applications.

Sirali-Shahreza and Ganjali proposes a method that
offers packet-level information to the controller for flow
monitoring by sending part of the packets to the
controller based on a sampling method (Shirali-
Shahreza and Ganjali, 2013).

FlowSense (Yu et al., 2013) is a passive push-based
monitoring method that uses control messages
between controller and switches. Push-based
mechanisms consist of collecting measurements
asynchronously. When a flow ends, the switch sends
an OFPT FLOW REMOVED message containing flow
statistics to the controller. This message also contains
flags that indicate if the expiration was caused by
either the idle or the hard timeout (José and Pere,
2014). FlowSense uses control messages for
monitoring and calculates network usage without any
additional overhead. It uses the FlowRemoved
messages to estimate the utilization of the stream on

each link. However, FlowSense cannot capture
sudden network fluctuations. This is insufficient in
terms of the accuracy and timing of received statistics.

FlowCover (Su et al., 2014) uses a polling schema
optimizer through polling decisions, which reduces the
cost of communication between the controller and the
switches. By utilizing the full network visibility and
central control features of SDN, FlowCover performs
monitoring based on the number of active flows by
selecting target switches instead of monitoring each
stream. Although FlowCover basically reduces
communication between target switches and
controllers, it is insufficient in statistical aggregation
methods. More precise and accurate monitoring
designs are needed.

PayLess (Chowdhuryand et al., 2014) is a monitoring
framework that is designed for SDN environment. This
framework proposes an adaptive scheduling
algorithm. However, PayLess can adapt unnecessarily
when there are traffic bursts on the network. In this
case, it can reach unwanted overhead level in the
network system. Doing so may make the network
inoperable. Another drawback of PayLess is that link
capacity is not taken into account in the adaptive
monitoring approach. There is no point in frequent
monitoring unless the utilization of link capacity is
below a certain rate. Therefore, there is a need for a
new and effective adaptive monitoring method to solve
the aforementioned problems.

IPro (Castillo et al., 2020), a traffic monitoring
architecture using RL, which focuses on the problem
of control plane overheads and extra additional CPU
usage of the SDN controller. IPro uses Reinforce-
ment Learning to determine the probing interval.

TSNu (Balasubramanian et al., 2021) framework was
suggested in to deal with the admission control,
routing, and scheduling at the network level in an SDN
environment. It focuses on system reconfiguration
owing to traffic type changes and reduces the network
reconfiguration problem to a network utility
maximization problem as the rate stability constraints
meanwhile affect the network reconfiguration and
utility.

As a result, these studies increase accuracy at the
expense of an increase in network resources and
costs, or vice versa, reducing overhead. IPro (Castillo
et al., 2020) is focused on control plane overhead
using RL (Reinforcement Learning). At the same time,
Payless (Chowdhuryand et al., 2014) is an adaptive
design that has been worked on overhead. However,

Özer and Okumuş 13(1): 9-26 (2022)

A Scalable and Efficient Port-Based Adaptive Resource Monitoring Approach in Software Defined Networks

12

in our design, different parameters were used for more
efficient use of network resources, unlike these
designs. By using these parameters, a more balanced
system has been presented in terms of overhead and
accuracy.

The rest of this article is structured as follows. Related
work is provided in section 2, proposed adaptive
monitoring approach is presented in section 3, analysis
and test results are provided in section 4 and section
5 is the discussion and concluding remarks.

MATERIAL AND METHOD

Material

In traditional network architectures, the fact that the
data plane and the control plane have an integrated
structure poses a problem in both resource utilization
and network management. In contrast, in SDN
architecture, network policies and management are
centralized by a controller. Thus, it provides a global
view of the network and provides more flexibility, easier
manageability and effective resource usage compared
to traditional networks.

By using statistics collection mechanisms provided by
OF switches (Open Networking Foundation, 2015),
over a specific network topology, statistics from
switches can be obtained. There are two basic types
of statistics collection messages provided by OF:

STATISTICS REQUEST MESSAGE: Message
for requesting statistical data for ports, flows,
etc. from switches.

STATISTICS REPLY MESSAGE: Message for
replying to a statistics request by providing
requested statistical data for ports, flows, etc.

An OF switch maintains counters for each port, flow
table/entry, queue, group, group bucket, meter and
meter table. It also features the ability to combine
multiple streams into a group and monitor aggregate
statistics to track statistics for multiple streams. Table
1 shows the Per Port counters for the OF protocol
(Open Networking Foundation, 2015).

Table 1. Counters

Per Port

Counter Bits

Received Packets 64 Required

Transmitted Packets 64 Required

Received Bytes 64 Optional

Transmitted Bytes 64 Optional

Receive Drops 64 Optional

Transmit Drops 64 Optional

Receive Errors 64 Optional

Transmit Errors 64 Optional

Receive Frame Alignment Errors 64 Optional

Receive Overrun Errors 64 Optional

Receive CRC Errors 64 Optional

Collisions 64 Optional

Duration (seconds) 32 Required

Duration (nanoseconds) 32 Optional

OF messages allow us to continuously query statistics
using port_stat_request messages from each switch
for each switch port. Switches return port statistics
using port_stats_reply message. This message
contains all the implemented counter values shown in
Table 1. In order to follow link capacity usage, we
follow Received Bytes and Transmitted Bytes portions.
Information provided with Received Bytes is the
number of bytes received by that port from the epoch
time, which is the time when that port starts
functioning. By using two consecutive statistics
information and the message interval, it is possible to
calculate number of bytes received and transmitted
within that time interval. This information naturally does
not provide us with instant link utilization at every
instant of time within that interval but the average
utilization. Thus, by comparing the values of multiple
different samples taken at a given frequency, it is
possible to follow the link usage of the link connected
to that port.

Accurate measurement of network resources has an
important place in network management. For example,
as network traffic flows through hundreds of links and
network devices, a congestion or collapse in them may
cause the network to become inoperable and crash
completely if it is not properly and timely intervened.
Using network monitoring techniques, the network

Özer and Okumuş 13(1): 9-26 (2022)

A Scalable and Efficient Port-Based Adaptive Resource Monitoring Approach in Software Defined Networks

13

resources must be allocated in a balanced manner
according to the bandwidth consumption on each link.
There are two types of active monitoring techniques
(Hernandez et al., 2001). One is conventional
sampling and the other is adaptive sampling
technique. Conventional sampling is a traditional
sampling technique that is used to monitor and collect
samples with a fixed frequency. In such a sampling
technique, if the sampling frequency is decreased, it
cannot accurately capture the fluctuations in the
network thus accuracy reduces, and if it is increased,
it results in too much overhead because high
frequency will cause too many probe messages and
replies to appear on the network with the benefit of
increased accuracy. Therefore, this sampling
technique is not very efficient and scalable in a
dynamic and quickly changing environment. In the
adaptive sampling technique, sampling frequency is
dynamically adjusted according to the sampling data
monitored.

In adaptive monitoring, monitoring frequency is based
on the status of the current network load. More
specifically, when traffic load is low on the network
there is no need to monitor with high sampling
frequency. In this case, since the link utilization is low,
high accuracy is not vital, low frequency will decrease
the number of polling and reply messages which
means reduced overhead. If the link utilization is high,
accurate measurement becomes important. In this
case, the sampling frequency will be increased to
obtain more sampling data for accuracy and close
monitoring of changes in the traffic. Developed
algorithms determine how and when to change the

sampling frequencies to monitor the network
resources.

Many monitoring techniques have been introduced,
but many have not demonstrated the effect of link ca-
pacity on sampling techniques and have not consid-
ered the efficiency and scalability of the developed ap-
proaches. For example, if the ratio of existing network
traffic to link capacity is low, we do not need to monitor
closely. However, if the link capacity reaches a critical
threshold, we should be able to monitor resource us-
age more closely to quickly react to the changes in the
network and plan resource allocations more effec-
tively.

The adaptive approach takes a decision to correctly
set the polling interval regarding overhead. Figure 1
shows the working principle of our adaptive approach.
If we explain in more detail. 1- Control Plane receive
statistical information from the data plane in a specific
polling interval. Since this collected information closely
affects the network status information, a different
situation of the network occurs. 2- Management plane
extracts these statistics to determine a new network
condition by analyzing the current overhead. 3-
Management plane sends decision plane to decide this
new network status. 4- Decision plane takes such a
state to calculate the reward. Based on this incoming
reward, the decision plane sets a new polling interval
to minimize overhead. 5- Decision plane transmits this
new polling interval to the Control plane. The Control
panel applies this polling interval, which affects the
new network status. Figure 2 introduces and details
the Adaptive Approach architecture.

Özer and Okumuş 13(1): 9-26 (2022)

A Scalable and Efficient Port-Based Adaptive Resource Monitoring Approach in Software Defined Networks

14

Figure 1. Adaptive approach high-level operation

Figure 2. Adaptive approach architecture

Özer and Okumuş 13(1): 9-26 (2022)

A Scalable and Efficient Port-Based Adaptive Resource Monitoring Approach in Software Defined Networks

15

Method

We present a scalable and efficient adaptive Port-level
network resource monitoring approach for SDN
networks. In our model switch set is denoted as
vertices, with k=|V|. The switches form the forwarding
plane of the SDN network. Topology is modeled as a

𝐺 = (𝑉, 𝐸), where E is a set of links connecting

switches.

In this approach, we follow active statistics collection
paradigm and collect statistics periodically by sending
requests to switches and getting replies with statistics
data. We modeled our system to work with port level
statistics.

In adaptive monitoring method, the first step is to
estimate the value of the next measurement sample
that will be received during the next polling sequence.
Based on this information polling frequency will be
determined. Studies showed that in active monitoring
there is a trade-off between accuracy and overhead
(Özer and Okumuş, 2019). Prediction based adaptivity
allows the system to proactively adjust the polling
frequency which will let the system compensate
sudden burst while decreasing the overhead. For this
purpose, we present a Sample Predict Design (SPD).
Equation. 1 provides the calculations of sample
prediction. There are n active samples in the network

𝑆𝑆𝑎𝑚𝑝𝑙𝑒𝑠 = 𝑆1, 𝑆2, 𝑆3, . . . , 𝑆𝑛. Here 𝑆𝑛 denotes past n

samples where n is the latest sample received and

𝑆𝑃𝑟𝑒𝑑𝑖𝑐𝑡 denotes the estimated value of the next

sample to be received. In this calculation, we used a

moving average filter to calculate 𝑆𝐴𝑣𝑔. In this filter,

considering that n last samples are present, 1 to n-1 of
these samples are used. Prediction is made based on

𝑆𝐴𝑣𝑔 and the latest sample obtained which is 𝑆𝑛. α-

filter is used for 𝑆𝑃𝑟𝑒𝑑𝑖𝑐𝑡 calculation.

𝑆𝐴𝑣𝑔 =
1

𝑛 − 1
∑

𝑛−1

𝑖=1

𝑆𝑖

𝑆𝑃𝑟𝑒𝑑𝑖𝑐𝑡 = (1 − 𝜆) × 𝑆𝑛 + 𝜆 × 𝑆𝐴𝑣𝑔)

(1)

In Equation 1, where λ is the weight factor 0 < 𝜆 < 1

(e.g., λ = 0.125). By adjusting the value of λ, the weight
of the most recent sample and average of the previous
samples can be changed. Lower λ will increase the

weight of 𝑆𝑛 and decrease the weight of 𝑆𝐴𝑣𝑔.

The second step is to incorporate the rate of change of
traffic into the adaptive method. Because this rate will
enable us to monitor the instant movement of network
traffic. This rate will help us decide how fast we need
to monitor the traffic so that we can respond to sudden
changes in the network conditions more quickly. In
Equation.2, we calculated the ratio of traffic change
(F). The F shows us whether there is a significant traffic

fluctuation on the link or not. Here 𝐿𝑐 denotes the link

capacity. The important point here is that we consider

𝑆𝑃𝑟𝑒𝑑𝑖𝑐𝑡 and 𝑆𝐴𝑣𝑔 when calculating the rate of traffic

change with respect to the link capacity because it has
a more representative effect. Thus, unnecessary
polling will be prevented as a result of short time
bursts.

𝐹 = |
𝑆𝑃𝑟𝑒𝑑𝑖𝑐𝑡−𝑆𝐴𝑣𝑔

𝐿𝑐
|) (2)

We could determine our sampling period adaptively
according to the traffic change ratio F, but one of our
important purposes is to add the effect of the link
capacity to our adaptive sampling method. If we
explain in more detail, the traffic change ratio F gives
us information about the current traffic trend, whether
the traffic is stable or changing (increasing or
decreasing). However, this ratio is of no importance if
the utilization of the link is low. For example, for a link
that has a capacity of 1 Gbps, 100 Mbps traffic
utilization does not require close monitoring of that link.
However, if we do not consider link utilization in
adaptive monitoring, traffic fluctuations on a low
utilized link will cause an increase in polling frequency
which in turn leads to increased overhead and reduced
efficiency. Therefore, if we establish a weighted
relationship between the link utilization and the ratio of
traffic change, we will adjust polling interval more
realistically, which is necessary for our adaptive
design’s scalability and efficiency. As a third step, this

relation is provided in Equation 3. 𝐿𝑐 denotes the link

capacity and 𝐿𝑟𝑎𝑡𝑖𝑜 denotes the predicted link

utilization for the next polling period. Again, by using
an α-filter we incorporate link utilization and traffic
fluctuation in the calculation of F’ which is the main
indicator to adjust the polling frequency in presented
adaptive approach.

𝐿𝑟𝑎𝑡𝑖𝑜 = (
𝑆𝑃𝑟𝑒𝑑𝑖𝑐𝑡
𝐿𝑐

)

𝐹′ = 𝛽 × 𝐹 + (1 − 𝛽) × 𝐿𝑟𝑎𝑡𝑖𝑜)

(3)

Özer and Okumuş 13(1): 9-26 (2022)

A Scalable and Efficient Port-Based Adaptive Resource Monitoring Approach in Software Defined Networks

16

Where β is the weight factor 0 < 𝛽 < 1 (e.g., β= 0.5).

By adjusting the value of β, the weight of the ratio of
traffic change and current link utilization ratio can be
changed.

OF port statistics request is sent to a switch and switch
returns the statistics for each active port on it.
Depending on these values, polling frequency will be
determined. However, since the statistics for each port
will be different there will be different polling
frequencies for each port on a single switch. Since it is
not feasible to send statistical request messages
separately for each port in terms of overhead and
scalability., we need to employ a mechanism to reduce
the polling frequency to a single one that will be used
to poll the statistics from that switch for all the ports.
Since we need to monitor the most highly utilized and
highly fluctuating ports closely, we chose to select the
port that has the maximum utilization and maximum
fluctuation to calculate the polling frequency and that
frequency will be used to get statistics from that

particular switch. 𝐹′ is calculated separately for each

port. Since 𝐹′ is the main parameter to determine next

polling frequency, and higher 𝐹′ indicates high

utilization and high fluctuation, we select the highest 𝐹′
among the ports and use that as 𝐹′𝑠𝑤 to calculate

switch polling frequency (Equation.4)

𝐹′𝑠𝑤 = 𝑀𝐴𝑋(𝐹′) = (𝐹′𝑖: 𝐹′𝑖 ≥ 𝐹′𝑗 , 𝑖 ≠ 𝑗∀𝑖, 𝑗 ∈ 𝑛) (4)

Where 𝐹′𝑖 is the value for ith port and is the 𝐹′𝑗 value

for jth port and 𝐹′𝑠𝑤 is the maximum of those port 𝐹′
values selected to represent switch.

To decide the value of the polling interval we follow the

change in 𝐹′𝑠𝑤. This value is the difference between

previously calculated 𝐹′𝑠𝑤 which will be denoted as

𝐹′𝑠𝑤𝑜𝑙𝑑 and current 𝐹′𝑠𝑤:

 𝛥𝐹′𝑠𝑤 = |𝐹′𝑠𝑤𝑜𝑙𝑑 − 𝐹′𝑠𝑤| (5)

Equation.5 shows us the trend of the traffic, whether it
is increasing, decreasing or stable. If the traffic trend is
increasing or decreasing, we need to monitor traffic
more closely. However, the main idea of the adaptivity
is to decrease the monitoring frequency, if the traffic is
stable. However, in order to prevent unnecessary
fluctuations in polling frequency with small increase
and decrease of the value of 𝛥𝐹′𝑠𝑤 we use a buffer

(𝛥𝐹′𝑠𝑤𝑇ℎ) so that if the change in the traffic is below a
threshold value, we can treat the traffic as stable.

Table 2. shows the parameters and conditions to adjust
the sampling period. There is a limit on the minimum

and maximum value of the polling period. 𝛵𝑚𝑖𝑛

denotes the minimum value of polling period and 𝛵𝑚𝑎𝑥

denotes the maximum value of polling period. 𝛵𝑐𝑢𝑟𝑟𝑒𝑛𝑡
denotes present polling period and 𝛵𝑛𝑒𝑥𝑡 is the polling

period that will be used for the next polling sequence.

If the link utilization is below 𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 we don’t need

to monitor the link closely and polling period is set to

be the maximum value 𝛵𝑚𝑎𝑥. If link utilization is above

𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, then we need to look at the trend of 𝐹′𝑠𝑤

which is denoted as 𝛥𝐹′𝑠𝑤. If 𝛥𝐹′𝑠𝑤 is below

𝛥𝐹′𝑠𝑤𝑇ℎ then traffic on the link is stable and we can

loosen the monitoring frequency which means getting

fewer samples. To achieve this, we multiply 𝛵𝑐𝑢𝑟𝑟𝑒𝑛𝑡
with ω, where 0 < 𝜔 < 10, to gradually increase

polling period until it reaches 𝛵𝑚𝑎𝑥. If 𝛥𝐹′𝑠𝑤 is above

𝛥𝐹′𝑠𝑤𝑇ℎ, that means traffic is either increasing or

decreasing rapidly which means that we need to
monitor link utilization more closely so that we can
more accurately follow the actual traffic on the link. To

achieve this, we divide 𝛵𝑐𝑢𝑟𝑟𝑒𝑛𝑡 with φ, where 0 <
𝜑 < 10, to gradually decrease polling period until it

reaches 𝑇𝑚𝑖𝑛. Table 2 summarizes the conditions and

actions to be taken and adaptive monitoring algorithm
is given in Adaptive Monitoring Algorithm.

Table 2. Sampling period condition

Link Ratio Traffic Fluctuation Adaptive Calculation

 𝐿𝑟𝑎𝑡𝑖𝑜 < 𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 - 𝛵𝑛𝑒𝑥𝑡 = 𝛵𝑚𝑎𝑥

𝐿𝑟𝑎𝑡𝑖𝑜 > 𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝛥𝐹′𝑠𝑤 ⩾ 𝛥𝐹′𝑠𝑤𝑇ℎ 𝛵𝑛𝑒𝑥𝑡 = 𝑚𝑎𝑥(𝑇𝑚𝑖𝑛 , 1 𝜑⁄ × 𝛵𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

𝛥𝐹′𝑠𝑤 < 𝛥𝐹′𝑠𝑤𝑇ℎ 𝛵𝑛𝑒𝑥𝑡 = 𝑚𝑖𝑛(𝑇𝑚𝑎𝑥 , 𝜔 × 𝛵𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

Özer and Okumuş 13(1): 9-26 (2022)

A Scalable and Efficient Port-Based Adaptive Resource Monitoring Approach in Software Defined Networks

17

Adaptive Monitoring Algorithm:

1 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑇𝑚𝑎𝑥
2 while true

3 port_stat_request to 𝑣𝑖
4 port_stat_reply from 𝑣𝑖 // Message contains statistical information;

5 Store 𝑆𝑖
6 count_samples++
7 if count_samples < n continue //wait to get n samples before starting calculations
8 else //Samples are ready, start adaptive calculations
9 𝑆𝐴𝑣𝑔 = (𝑆1 + 𝑆2 + 𝑆3+. . . . +𝑆𝑛) (𝑛 − 1)⁄
10 𝑆𝑃𝑟𝑒𝑑𝑖𝑐𝑡 = (1 − 𝜆) × 𝑆𝑛 + 𝜆 × 𝑆𝐴𝑣𝑔
11 𝐹 = (𝑆𝑃𝑟𝑒𝑑𝑖𝑐𝑡 − 𝑆𝐴𝑣𝑔) 𝐿𝑐⁄
12 𝐿𝑟𝑎𝑡𝑖𝑜 = 𝑆𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝐿𝑐⁄
13 𝐹′ = 𝛽 × 𝐹 + (1 − 𝛽) × 𝐿𝑟𝑎𝑡𝑖𝑜
14 if 𝐿𝑟𝑎𝑡𝑖𝑜 < 𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then // Link usage is below threshold
15 𝛵𝑛𝑒𝑥𝑡 = 𝛵𝑚𝑎𝑥
16 end if
17 else //Link usage is above threshold
18 if 𝛥𝐹𝑠𝑤 < 𝛥𝐹′𝑠𝑤𝑇ℎ then //Traffic change is below threshold
19 𝛵𝑛𝑒𝑥𝑡 = 𝜔 × 𝛵𝑙𝑎𝑠𝑡
20 if 𝛵𝑛𝑒𝑥𝑡 ⩾ 𝛵𝑚𝑎𝑥 then
21 𝛵𝑛𝑒𝑥𝑡 = 𝛵𝑚𝑎𝑥
22 end if
23 end if
24 else 𝛵𝑛𝑒𝑥𝑡 = 1 𝜑⁄ × 𝛵𝑙𝑎𝑠𝑡 //Traffic change is above threshold
25 if 𝛵𝑛𝑒𝑥𝑡 < 𝛵𝑚𝑖𝑛 then
26 𝛵𝑛𝑒𝑥𝑡 = 𝛵𝑚𝑖𝑛
27 end if
28 end else
29 end else
30 end else
31 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑇𝑛𝑒𝑥𝑡 // Polling period is set
32 Wait for 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 seconds
33 end while

FINDINGS

Experiment Setup

For the experiments, we used Mininet (The Mininet
Platform) to set up a network topology with virtual
hosts and switches. Mininet is a network emulator
which creates a network of virtual hosts, switches,
controllers, and links. Hosts in Mininet run standard
Linux network software, and switches support OF.
There are various open-source controllers available
(e.g., Floodlight (Floodlight, 2017), NOX (NOX, 2008),
POX (POX, 2017), etc.). Floodlight is one of the
popular controllers currently used in the SDN
environment which is a Java-based OF controller that

supports physical and virtual OF switches. In the test
setup, we used Floodlight as a controller.

We used two different topologies and traffic patterns
for two different scenarios. In the first scenario, the
topology and traffic pattern used is the same the one
used in PayLess (Chowdhuryand et al., 2014) to be
able to compare the results of two studies. Iperf is used
for traffic generation. UDP traffic is used for the tests.
UDP traffic maintains a steady traffic rate. Thus, since
we know exact traffic rate at certain instance, we will
have a chance to compare the measurement value
with the rate of the actual traffic. TCP traffic behavior is
not predictable and steady. Traffic rate changes
according to the network conditions and it will not be

Özer and Okumuş 13(1): 9-26 (2022)

A Scalable and Efficient Port-Based Adaptive Resource Monitoring Approach in Software Defined Networks

18

possible to know exact traffic rate at a certain instance.

In the tests we set the initial polling interval to 5s. 𝛵𝑚𝑖𝑛

and 𝛵𝑚𝑎𝑥 polling intervals are set to 1s and 5s

respectively. We tested fixed period polling and
adaptive polling approaches. For the fixed period
polling case polling interval of 1s is used. We used n,
number of past samples to be used in prediction as 6

and set 𝜔 and 𝜑 to 2 and 6 respectively. The reason

to use a larger fixed value for 𝜑 is because it adapts

better to the sudden changes in traffic.

Evaluation metrics used at the test cases are accuracy
and overhead. Accuracy is the similarity between the
actual link usage in the Network and the link utilization
measured in the SDN environment with different meas-
urement methods. Overhead is calculated from the
number of FlowStatisticsRequest messages sent from
the controller to switches.

Figure 3. Topology 1

Figure 4. Traffic timing diagram1

Özer and Okumuş 13(1): 9-26 (2022)

A Scalable and Efficient Port-Based Adaptive Resource Monitoring Approach in Software Defined Networks

19

Figure 5. Topology 2

Figure 6. Traffic timing diagram 2

Figure 7. Traffic timing diagram 3

Findings of Survey

Prediction Phase

Since the algorithm starts with predicting the next

sample value, we start with analyzing the effect of 𝜆

(Eq1) on the accuracy of prediction (𝑆𝑃𝑟𝑒𝑑𝑖𝑐𝑡). Table 4

and Figure 8 shows the average error and overhead

rate of 𝑆𝑃𝑟𝑒𝑑𝑖𝑐𝑡 for different 𝜆 values. Results show

that smaller 𝜆 results in more accurate estimation

however it results in more overhead which shows the

trade-off between accuracy and overhead. 𝜆 value can

be used to adjust the amount of trade-off between
accuracy and overhead. In order to see the effects of
other parameters on more accurate measurement, the

𝜆 value is used as 0.125 in all scenarios.

Özer and Okumuş 13(1): 9-26 (2022)

A Scalable and Efficient Port-Based Adaptive Resource Monitoring Approach in Software Defined Networks

20

Table 3. Effect of 𝜆 on 𝑆𝑃𝑟𝑒𝑑𝑖𝑐𝑡 error rate

Values of 𝜆 Error rate (%) Overhead

0.125 12 39

0.325 32 29

0.525 62 25

0.925 82 10

In order to fully demonstrate the effect of 𝜆 value on

𝑆𝑃𝑟𝑒𝑑𝑖𝑐𝑡, sudden fluctuations in network traffic have

been addressed. In network traffic that is already

stable, 𝑆𝑃𝑟𝑒𝑑𝑖𝑐𝑡 closely follows the actual traffic. If the

traffic fluctuation is high, it takes time to adapt to the
actual traffic which causes prediction error.

Figure 9 shows the actual measured values from the
switches and the prediction values calculated. These

values show us how close the estimated values are
with the actual values. Thus, it will enable us to achieve
significant accuracy for our adaptive design.

Figure 8. Effect of 𝜆 on 𝑆𝑃𝑟𝑒𝑑𝑖𝑐𝑡 error rate (%) and

overhead

Figure 9. Utilization Measurements

Scenario 1

Our aim in this scenario is to observe the error and

overhead effect of 𝛥𝐹′𝑠𝑤𝑇ℎ value. To get the results

we have created a liner-topology as shown in Figure 5
and the traffic timing diagram as shown in Figure 7
UDP flows for a total duration of 65s between hosts
were generated.

Table 5 and Figure 10 shows the error and overhead

effect of the 𝛥𝐹′𝑠𝑤𝑇ℎ value. As it can be seen from

Figure 11, with each traffic fluctuation, higher 𝛥𝐹′𝑠𝑤𝑇ℎ

value causes higher error. In contrast, also from Table
5 and Figure 10, number of polling messages

decreases with higher 𝛥𝐹′𝑠𝑤𝑇ℎ value. It is clear from

these results that there is a trade-off between accuracy

and overhead depending on the value of 𝛥𝐹′𝑠𝑤𝑇ℎ

Özer and Okumuş 13(1): 9-26 (2022)

A Scalable and Efficient Port-Based Adaptive Resource Monitoring Approach in Software Defined Networks

21

Table 5. The effect of 𝛥𝐹′𝑠𝑤𝑇ℎ on overhead and

error

Values of 𝛥𝐹′𝑠𝑤𝑇ℎ Error rate (%) Overhead

0.05 15.2 30

0.1 16 20

0.15 20.3 16

0.2 19.9 14

Figure 10. Overhead and Error (%) effect of 𝛥𝐹′𝑠𝑤𝑇ℎ

Figure 11. Error effect of 𝛥𝐹′𝑠𝑤𝑇ℎ

Figure 12. Messaging timing diagram

Özer and Okumuş 13(1): 9-26 (2022)

A Scalable and Efficient Port-Based Adaptive Resource Monitoring Approach in Software Defined Networks

22

Figure 12 shows the timing diagram of messages sent
by periodic polling approach and adaptive approach.
Each dot in the figure represents a sent message. The
figure shows that number of messages sent by
adaptive approach changes over time and is less than
the number of messages sent by periodic polling
approach.

Scenario 2

In scenario 2, we aim to show the effect of 𝛽 from Eq.

3 on the error and overhead. To get the results we
created a linear-topology via Mininet in Figure 5 and
the timing diagram of the traffic is shown in Figure 6
UDP flows for a total duration of 120s between hosts
were generated using Iperf. Based on the results

obtained in Scenario 1, 𝐿𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and 𝛥𝐹′𝑠𝑤𝑇ℎ was

set at 0.01, 0.05 respectively. Value of β is started from
0.125 and increased by 0.1 on each run.

Figure 13 shows the error and overhead effect of the

𝛽 value of the adaptive approach. Table 6 summarizes

the error value (%) for different 𝛽 values. As it can be

seen from Table 6 as the value 𝛽 increases error

increases. The least overhead is observed at value
0.625 and least error is observed at 0.125. Figs. 14-15

shows the change of error over time for different 𝛽

values. At the beginning, error value is high. That
region can be considered as warm up region for
adaptive approach to adapt to the traffic. In every 20
sec traffic increases. Each traffic fluctuation causes
increased error and adaptive approach quickly catches
up with the actual traffic.

Table 5. Effect of 𝛽 on Error

Value of 𝛽 Error (%) Overhead

0.125 5.9 47

0.225 7.8 45

0.325 12.2 44

0.425 12.3 42

0.525 7.4 43

0.625 9.4 37

0.725 9.8 46

0.825 15.3 47

Figure 13. Overhead and Error (%) Effect of 𝛽

Özer and Okumuş 13(1): 9-26 (2022)

A Scalable and Efficient Port-Based Adaptive Resource Monitoring Approach in Software Defined Networks

23

Figure 14. The change of Error over time for different 𝛽 values

Figure 15. The change of Error over time for different 𝛽 values

We also analyzed the effect of 𝐿𝑟𝑎𝑡𝑖𝑜 on polling

message overhead. Figure 16 presents the number of

messages sent for different 𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 values. 𝛽 and

𝛥𝐹′𝑠𝑤𝑇ℎ was set to 0.125, 0.05 respectively.

𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 started from 10% of link capacity and

increased by 10% on each run up to 50%. As

𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 value increases gradually, the overhead on

the system is decreasing. Our argument is that close
monitoring is not necessary if the link utilization is low,
but close monitoring is required when link utilization
reaches a critical threshold. The threshold can be
adjusted based on the network administrator’s
priorities

Özer and Okumuş 13(1): 9-26 (2022)

A Scalable and Efficient Port-Based Adaptive Resource Monitoring Approach in Software Defined Networks

24

Figure 16. Overhead effect on 𝐿𝑟𝑎𝑡𝑖𝑜 values of 𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Scenario 3

In order to compare the results of the adaptive
approaches to other studies, 3 level three topology
was created via Mininnet in Figure 3 and traffic timing
diagram as shown in Figure 4 which are the same as
PayLess [16] study. In this scenario UDP flows for a
total duration of 60s between hosts were generated
using Iperf. Figure 4 shows also the timing diagram;
start, throughput and end time for each stream.

For link utilization, we used the monitoring results of
the most heavily used link which is the one between
switches s1 and s3 in Figure 4. Results are gathered
and compared using two different techniques (periodic
and adaptive polling) and also compared to actual

traffic. 𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝛽 and 𝛥𝐹′𝑠𝑤𝑇ℎ was set to 0.01,

0.125 and 0.05 respectively.

As seen in Figure 17, adaptive and periodic polling
techniques closely follow actual traffic. Table 7
summarizes the results of the measurements. When
we compare both polling techniques with respect to
actual traffic, it is seen that adaptive polling is more
accurate than periodic polling. When we compare the
overhead among PayLess, periodic probe and the
adaptive design, the adaptive approach achieved
6.7% less overhead than PayLess and 43.3% less
overhead than periodic polling. With respect to actual
traffic, on average adaptive algorithm achieved 5.4%
more accurate results compared to periodic polling.

Figure 17. Utilization measurements (UDP)

Özer and Okumuş 13(1): 9-26 (2022)

A Scalable and Efficient Port-Based Adaptive Resource Monitoring Approach in Software Defined Networks

25

Table 6. Comparison of Adaptive design, Periodic
polling and PayLess measurement

Polling technique Accuracy (%) Overhead (%)

Adaptive (UDP) 62.6 43.3

Adaptive (TCP) 43.8 59.5

Periodic 57.2 100

PayLess - 50

CONCLUSION

In the study, we have introduced an adaptive
monitoring approach for SDN. With this approach, we
aimed to collect port-based statistics with low
overhead and high accuracy. Presented adaptive
monitoring approach uses past traffic patterns to
predict the next traffic behavior to adjust polling rate
and also takes into account the link capacity, utilization
rate and fluctuations in traffic to dynamically adjust
polling period to increase the efficiency of the
monitoring mechanism. By employing these
techniques decreased monitoring overhead was
achieved while maintaining an acceptable accuracy.
All the measurement approaches eventually provide
average traffic passed between a given period of time.
Our goal in this study is to provide a parametric
dynamic adaptive mechanism that can be used under
different network conditions. Parameters in the
proposed approach can be adjusted accordingly if
accuracy is more important than overhead or vice
versa.

We created different scenarios to analyze the adaptive
approach over the parameters used. At the same time,
we made observations on different traffic patterns to

make these analyzes more accurate. For 𝐹′, we

showed the trade-off between the current link usage

ratio and the network traffic change ratio. Using the 𝛽

parameter, we observed how these two ratios affect

the outcome in network monitoring. For 𝛥𝐹, we

showed that there is a trade-off between the traffic
exchange rate and the overhead it brings to the system

using the 𝛥𝐹′𝑠𝑤𝑇ℎ parameter. For 𝐿𝑟𝑎𝑡𝑖𝑜, Using the

𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 value, we can set a particular link usage

threshold. Thus, we can provide more stable network
management by not making unnecessary queries.

We have evaluated and compared the performance of
proposed adaptive monitoring approach with PayLess
and periodic polling methods. Results show that the
proposed adaptive approach can provide higher

statistical collection accuracy than periodic inquiries
(within the appropriate interrogation range). Proposed
adaptive monitoring approach caused 46% less
overhead than the periodic polling method and 6.7%
less overhead than PayLess approach. At the same
time accuracy of the proposed method is 5.4% better
than periodic polling approach.

It is necessary to investigate the dynamic updating of
the parametric values used in the continuation of the
study. In this way, the relationship between accuracy
and additional load can be adjusted automatically
according to the system condition. At the same time, it
is necessary to examine the gains to be gained when
this proposed approach is adapted to the selective
tracking approach to monitoring critical keys, not all
keys. This proposed approach will be used instead of
classical periodic monitoring methods in applications
such as traffic engineering and service quality, and
more efficient use of the network will be ensured.

REFERENCES

Balasubramanian, V., Aloqaily, M., Reisslein, M. (2021). An

SDN architecture for time sensitive industrial IoT. Com-
puter Networks, 186; DOI: 10.1016/j.com-
net.2020.107739

Castillo, E.F., Rendon, O.M.C., Ordonez, A., Granville, L.Z.
(2020). IPro: An approach for intelligent SDN monitoring
Computer Networks, 170; DOI: 10.1016/j.com-
net.2020.107108

Chowdhury, S.R., Bari, M.F., Ahmed, R., Boutaba, R. (2014).
Payless: A low cost network monitoring framework for
software defined networks. Network Operations and
Management Symposium (NOMS), IEEE, 1–9.

Floodlight Controller (2017). http://www.projectfloodlight.org.
(Accessed Date: March 12, 2017)

Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M.,
McKeown, N., Shenker, S. (2008). NOX: towards an op-
erating system for networks. SIGCOMM Computer Com-
munication Review, 38(3):105-110.

Hernandez, E.A., Chidester, M.C., George, A.D. (2001).
Adaptive sampling for network management. Journal of
Network and Systems Management, 9(4): 409–434.

Huang, L., Zhi, X., Gao, Q., Kausar, S., Zheng, S. (2016).
Design and implementation of multicast routing system
 over SDN and sFlow. 8th IEEE International Confer-

ence on Communication Software and Networks, 524‐
529.

José, S.V., Pere, B.R. (2017). Reinventing NetFlow for
OpenFlow Software-Defined Networks. In: arXiv preprint
arXiv:1702.06803.

Mohan, V., Reddy, YJ., Kalpana, K. (2011). Active and pas-
sive network measurements: a survey. International
Journal of Computer Science and Information Technolo-
gies, 2(4): 1372-1385.

Özer and Okumuş 13(1): 9-26 (2022)

A Scalable and Efficient Port-Based Adaptive Resource Monitoring Approach in Software Defined Networks

26

Open Networking Foundation. OpenFlow Switch Specifica-
tion Version 1.5.1. 2015. https://opennetworking.org/wp-
content/uploads/2014/10/openflow-switch-v1.5.1.pdf
(Accessed Date: March 04, 2019).

Özer, H., Okumuş, İ.T. (2019). Yazılım tanımlı ağlarda
izleme. Kahramanmaraş Sütçü İmam Üniversitesi
Mühendislik Bilimleri Dergisi, 22: 26-33.

Phan, XT., Martinez-Casanueva, ID., Fukuda, K. (2017).
Adaptive and distributed monitoring mechanism in soft-
ware-defined networks. 13th International Con-
ference on Network and Service Management
(CNSM),1–5.

POX Controller (2017). https://github.com/noxrepo/pox (Ac-
cessed Date: July 12, 2017)

Shah, S. A. R., Bae, S., Jaikar, A., Noh, S.-Y. (2016). An
adaptive load monitoring solution for logically centralized
sdn controller. 18th Asia-Pacific Network Operations and
Management Symposium (APNOMS), 1–6.

Shirali-Shahreza, S., Ganjali, Y. (2013). Empowering Soft-
ware Defined Network controller with packet-level infor-
mation. 2013 IEEE International Conference on Commu-
nications Workshops (ICC), 1335-1339.

Yang, L., Ng, B., Seah, W.K., Groves, L., Singh, D. (2021).
A survey on network forwarding in Software-Defined Net-
working. Journal of Network and Computer Applications,
176; DOI: 10.1016/j.jnca.2020.102947

Li, M., Chen, C., Hua, C., Guan, X. (2019). CFlow: A learn-
ing-based compressive flow statistics collection scheme
for SDNs. IEEE International Conference on Communi-
cations (ICC), 1–6

Liu, C., Malboubi, A., Chuah, C.-N. (2016). OpenMeasure:
Adaptive flow measurement & inference with online

learning in SDN. IEEE Conference on Computer Com-
munications Workshops (INFOCOM WKSHPS), 47–52.

Su, Z., Wang, T., Xia, Y., Hamdi, M. (2014). FlowCover: low-
cost flow monitoring scheme in software defined net-
works. IEEE GLOBECOM'14, 1956-1961.

Su, Z., Wang, T., Xia, Y., Hamdi, M. (2015). Cemon: a cost‐
effective flow monitoring system in software defined net-
works. Computer Networks, 92:101‐115.

Terzi, D., Terzi, R., Sagiroglu, S. (2017). Big data analytics
for network anomaly detection from NetFlow data. (UB-
MK'17) 2nd International Conference on Computer Sci-

ence and Engineering, 592‐597.
The Mininet Platform (2018). http://mininet.org (Accessed

Date: December 12, 2018)
Tootoonchian, A., Ghobadi, M., Ganjali, Y. (2010). OpenTM:

Traffic matrix estimator for OpenFlow networks. Proceed-
ings of the 11th International Conference on Passive and
Active Measurement, 201–210.

Van Adrichem, N.L., Doerr, C., Kuipers, F.A. (2014). Open-
NetMon: Network monitoring in openflow software-de-
fined networks. IEEE Network Operations and Manage-
ment Symposium (NOMS), DOI: 10.1109/NOMS.2014.
6838228

Yu, C., Lumezanu, C., Zhang, Y., Singh, V., Jiang, G., Madh-
yastha, HV. (2013). FlowSense: Monitoring network utili-
zation with zero measurement cost, Passive and active
measurement (PAM), 7799: 31–41.

Yu, M., Jose, L., Miao, R. (2013). Software defined traffic
measurement with OpenSketch. The 10th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion, NSDI’13, 29–42.

http://mininet.org/

