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1. Introduction 
The results of least squares fit of the general linear model  

Y=Xβ+ε  (1) 
to given data set can be substantially influenced by omission or addition one or few 

observations. Therefore, the least squares method does not ensure that the regression 
model proposed is fully acceptable from the statistical and physical points of view. 
Usually one of the main problems is that all observations have not an equal influence in 
least squares fit and in the conclusions that result from such analysis.  

The detection, assessment, and understanding of influential observations are the 
major areas of interest in regression model building. It is important for a data analyst to be 
able to identify influential observations, assess and understanding their effects on various 
aspects of the analysis. They are rapidly gaining recognition and acceptance by 
practitioners as supplements to the traditional analysis of residuals. Residuals play an 
important role in regression diagnostics; no analysis is complete without a thorough 
examination of the residuals. The standard analysis of regression results is based on 
certain assumptions (for more information we refer to [1], [2]). It is necessary to check the 
validity of these assumptions before drawing conclusions from an analysis [3].  

Definitions 
An observation may not have the same influence on all regression results. Therefore, the 

observations which are used in the regression analysis can be examined under four groups. 
a) Usual observations: It is considered that the observations which have equal effects 

to the important properties as fitted values, estimated parameters of the regression analysis 
can be called usual observations.  

b) Outliers: An outlier is an observation for which the studentized residual ti* is 
large in magnitude compared to other observations in the data set. These observations 
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may indicate violation of assumptions and perhaps the need for an alternative model. 
c) High-Leverage Points: If only the space of X is considered, a high leverage 

point is an observation far from the center of X space compared to the other 
observations [4], [5], [6]. Observations far from the center of the predictors have low 
variance residuals (Var(ei)=(1-hii)σ2). This reflects the fact that such observations have 
high-leverage, that is, that they pull the regression line towards themselves. Points with 
high leverage may be regarded as outliers in the X space. The concept of leverage is 
linked entirely to the predictor variables and not to the response variable.  

d) Influential observations: Influential observations are those observations that, 
excessively influence the fitted regression equation, regression coefficients and the 
estimates of variance (σ2) compared to other observations in the data set [6]. 

Suppose we have the data points as in Figure 1 and refer to three points marked by 
letters A, B and C.If point A is considered in Figure 1, it will not be a high-leverage 
point because it is close to the center of X, but it will be clearly be an outlier and an 
influential point. It will have a large residual, and its inclusion may not change the slope 
but will chance the intercept of the fitted line. Its inclusion will also change the 
estimated error variance, and hence the variances of the estimated coefficients.  

Figure 1: An example illustrating the distinction among outliers, high-leverage 
points and influential observations. 

If point B is considered for inclusion, it will have a small residual because its Y 
position is near where the line passes through other points. It will be a high-leverage 
point because it is an outlier in X. However, it will not have a large influence on the 
fitted regression equation. It is clear that point B en example of a high-leverage point 

that is neither an outlier nor an influential point. Note also that point B is an extreme 
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point in both X and Y, yet it is not influence on the estimated regression coefficients 
(because point B is an extreme point in X space, it may however be influential on the 
standard error of the regression coefficients) 

If we consider point C, it was seen that C would be an outlier, a high-leverage 
point and an influential point. It will be an outlier because it will have a large residual. It 
will be a high-leverage point because it is an extreme point in X space. It is an 
influential observation because its inclusion will substantially chance the characteristics 
of the fitted regression equation.  

We can also note the following remarks from these definitions and Figure 1. 
-Outliers need not be influential observations. 
-Influential observations need not be outliers. 
-There is a general tendency for high-leverage points to have small residuals and to 

influence the fit disproportionately. 
-High-leverage points need not be influential observations and influential obser-

vations are not necessarily high-leverage points. However, high-leverage points are likely 
to be influential. 

-An observation might be an outlier, leverage point or influential observation 
simultaneously. 

These examples point up the fact that, examination of residuals alone may not 
detect aberrant or unusual observations such as those indicated by B in Figure 1. 
Informal graphical methods or formal testing procedures based on the residuals will fail 
to detect these unusual points. Observations with these characteristics which have small 
residuals and highly influential on the fit often occur in real-life data. Statistical 
measures for assessing leverage and influence are, therefore, needed. 

This paper provides a short survey of single points influence diagnostics, 
illustrated with the real data sample consisting of ages (Y) and otolith length (Xl) of fish 
which were taken in fisheries faculty from 138 fish respectively. It was changed the 40 
th, 80 th, and 120 th observations in data set as A, B and C points in Figure 1 to show 
how they characterize the influence of these cases in data and to test the sensitivity of 
the statistics. Hence the regression equation was fitted, the statistics were calculated, the 
influential observations were identified, and the results concluded for the real data set. 

2. Diagnostics for Identifying Unusual Observations 
It was reminded some statistics briefly for measuring the effects of a point on 

some regression results following. 
2.1. Examination of residuals 
Because of having non-constant variance and being not often indicate strongly 

deviant points, the ordinary residuals are not appropriate for diagnostic purpose. 
Therefore, a transformed version of them is preferable [7]. These are the normalized 
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residual, the standardized residual, the internally studentized residual and the externally 
studentized residual (jackknife residuals) and calculated as respectively,  

The normalized and standardized residuals are defined as respectively; 

)( ee
e

e i
in ′

=  (2) 

)/()( pnee
e

e i
is

−′
=  (3) 

It is falsely assumed that these residuals are normally distributed quantities with 
zero mean and variance equal to one, but in reality these residuals have non-constant 
variance. When these residuals are used for identifying the outliers, ±3σ is classically 
recommended as a calibration point, but this approach is quite misleading, and may 
cause wrong decisions to be taken regarding data [7]. 

The internally studentized residual 

ii

i
i hpnee

e
t

−−′
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where hii = x'i(X'X)
-1

 xi , i = 1,2,..., n. The internally studentized residuals behave much 
like a Student’s t (tn-p) random variable except for the fact that the numerator and 
denominator of ti are not independent.  

The externally studentized residual 
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i hs
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=
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where , s 2
(i) = [s2(n-p)-ei

2/(1- hii)]/(n-p-1) is the residual mean squared error estimate of 
σ2 comes from refitting model without observation i and is robust to problems of gross 
errors in the i th observation. ti* preferred over other transformed residuals [8], [9].  

-Because the ti* exactly follows a tn-p-1 distribution for which tables are readily 
available under the normality assumption, it can be simply assessed the magnitude of to 
determine if point i is an outlier.  

-ti* reflects large deviations more dramatically than do the others. 
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2.2. The Diagonal Elements of H = X(X'X) -1 X' Matrix 
The i th diagonal elements of H matrix is defined as, 

hii = x'i(X'X) -1 xi , i = 1,2,...,n  (6) 

and used for identifying high-leverage points. Leverage is the potential for an 
observation to affect the fit of the model. hii is a standardized distance of the i th 
observation to x . Large hii means the observation is far from x , small hii means it is 
near the center of the predictors [9], [10]. Thus, hii represents the high-leverage of the i 

th observation iy  in determining its own predicted value iŷ . In fact, in balanced 

design pHtrhii ==∑ )( , so the average value of the hii’s is p/n. This is a rough 
rule of thumb and some calibration points are suggested for various p and n-pin Table 1 
[6], [11]. hii values grater than calibration points in Table 1 are cause of concern.2.3.
 Mahalanobis Distance (MDi) 

Mahalanobis distance is defined as: 

nixxMD xixii ,...,2,1,)()( 1 =−Σ′−= − µµ  (7) 

where µx is the mean of X and Σ-1 is the inverse variance-covariance matrix of X and 
used as a measure of the leverage of an observation. Mahalanobis distance weights the 
distance of a data point xi from its mean µx such that observations that are on the same 
multivariate normal density contour will have the same distance [9]. Mahalanobis 

distances are approximated by the 
2

,1 pαχ −  distribution, where p is the number of 
parameters [12], [13]. 

2.4. Weighted Squared Standardized Distance (WSSDi) 
Weighted sum of squared distance is a measure of the sum of squared distance of 

xij from the average of the j th variable, Xj, weighted by the relative importance of the j 
th variable and defined as, 

2

1

2 / Y

k

j
iji scWSSD ∑

=

=  , i=1,2,…, n (8) 

where )(ˆ
jijjij xxc −= β , i=1,2,…,n, j=1,2,…,k, where jx  is the average of the j th 

column of X and used as a measure of the leverage of an observation. In simple 
regression case WSSDi is equivalent hii and for this reason, the calibration point for hii in 
Table 1 can be used for WSSDi [6]. 
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 Condition  Calibration point 
p<6 and (n-p)>12 3p/n 
2<p<6 and (n-p)>30 2.5p/n 
6≤ p<15 and (n-p)>30 2p/n 

If 

p>15 and (n-p)>30 

Then 

1.5p/n 

Table 1: The calibration points of hii, and WSSDi statistics for various p and n-p. 
2.5. Andrews-Pregibon Statistic (APi) 

The Andrews-Pregibon Statistic is based on the volume of the confidence 
ellipsoids and calculated as 

APi = 1- hii - (ei
2
 /e'e) = 1 - hii* (9) 

where hii* = hii + (ei
2
 /e'e). APi measures the influence of the i th observation on the 

estimated parameters by combining the residual sum of squares and the volume of the 
confidence ellipsoids when the i th observation is omitted. It is used 1-(2(p+1)/n) as a 
calibration point for APi statistic. 

2.6. Cook Statistic (Ci)  

This statistic is proposed by [14] and calculated as 

Ci = (ti
2 /p)( hii /(1- hii)) (10) 

where ti is the internally studentized residual in Equation 4. Ci measures the overall 
influence of each observation on the regression coefficients, including the intercept. The 
usual criterion is that a point is influential if exceeds the median of the Fp,n-p distribution 
[15] or 1/Fn-p,p.  

2.7. Likelihood Distance (LDi)  

Likelihood Distance Statistic for the influence of the i th observation on only β̂  , 

s
2
 and ( β̂ , s

2
 ) simultaneously are measured by the following equations  

LDi(β) = n log[pCi /(n-p)+1] = n log[bihii /(1-hii)+1] (11) 

LDi(σ
2
)= n log[n/(n-1)]+n log(1-bi)+bi(n-1)/(1-bi)-1 (12) 

LDi(β,σ
2
)=n log[n/(n-1)]+n log(1-bi)+bi(n-1)/[(1-bi)(1-hii)]-1 (13) 

where bi= ti

2
/(n-p) . LDi(β) and LDi(σ2) use

2
,1 pαχ −  and LDi(β,σ2) uses

2
1,1 +− pαχ  as 

a calibration point.  
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2.8. Covariance Ratio Statistic (CVRi)  

CVRi examines how the precision of the parameter estimates change with the 

removal of the i th observation. The CVRi measures the change in |(var( β̂ )| and 

considers the ratio of det(s
2
(i)(X'(i)X(i))

-1
) to det(s2(X'X)

-1
):  

CVRi = det {s
2
(i)(X'(i)X(i))

-1
} / det {s2(X'X)

-1
}   

= (s
2
(i) /s

2
)

p /(1-hii) = {(n-p- ti
2
)/(n-p-1)}

p /(1-hii) (14) 

When all observations have equal influence on the covariance matrix, CVRi is 
approximately equal to one. If |CVRi-1|≥3p/n than the ith observation is influential on 
parameter estimates and estimated variance of regression coefficients. 

2.9. Welsch-Kuh Statistic (WKi)  

This statistic is calculated as  

WKi= |ti*|(hii /(1-hii))
1/2

 (15) 

and measures how many standard errors iŷ  moves when the the i th observation is 

omitted [9]. It was called as DFFITSi by [16] and if WKi >2(p/n)
1/2

 than the i th 

observation is influential on iŷ .  

2.10. Cook-Weisberg Statistic (CWi)  

This statistic is proposed by [17] as 

CWi = (-1/2)log(CVRi)+(p/2)log[(F(α,p,n-p))/(F(α,p,n-p-1))] (16) 

and measures the influence of the i th observation on the volume of confidence 
ellipsoid for β. If this quantity is large and positive, then deletion of i th observation 
will result in a substantial decrease in volume of confidence ellipsoid and if it is large 
and negative, the case will result in a substantial increase in volume of confidence 
ellipsoid.  

2.11. Welsch Statistic (Wi) 

Welsch statistic has suggested by [18] as 

Wi = WKi [(n-1)/(1-hii)]
1/2 (17) 

and measures the influence of the i th observation on both s
2
 and estimation of 

regression coefficient β. Welsch statistic uses 3p
1/2

 if n>15 as a calibration point and 
gives more emphasis to high-leverage points. 
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2.12. Modified Cook Statistic (Ci*) 

Cook statistic has modified by replacing s
2
 by s

2
(i) , taking the square root of Ci 

and adjusting Ci for the sample size. Thus, 

Ci* = WKi [(n-p)/p)]
1/2 (18) 

and this modification improves Ci in following ways; 

- Ci* gives more emphasis to extreme points, 

- Ci* becomes more suitable and identical for graphical displays. 

Ci* statistic uses 2[(n-p)/n]
1/2

 as a calibration point and measures the influence of 

the i th observation on both s
2
 and estimation of regression coefficient β. 

2.13. DFBETASj,i Statistic  

DFBETASj,i is calculated as 

)/()ˆˆ( )()(, jjiijjij CsDFBETAS ββ −=  (19) 

where Cjj is the j th diagonal elements of matrix C=(X’X)
–1

, jβ̂  and )(
ˆ

ijβ  are the 

estimates of βj obtained from the full data and the data without the i th observation, 
respectively. This statistic measures the influence of the i th observation on the 
estimation of j th regression coefficient βj. This means that DFBETASj,i measures how 
many standard errors βj moves when the i th observation is omitted [9]. Ci is roughly the 
average of the squares of the DFBETASj,i. If |DFBETASj,i|>2n

1/2
 than the i th observation 

is influential on the j th regression coefficient βj. 

The calibration points, some common properties and differences of the statistics 
given above were summarized in Table 2. 

Used statistics and formula Calibration
point 

Common propertiesand differences of 
the statistics 

)( ee
e

e i
in ′

=  3σ 

)/()( pnee
e

e i
is

−′
=  3σ 

1) Each is a transformed version of the 
ordinary residuals.  
2) They identify outliers. 
3) Using ein and eis may cause wrong 
decisions to be taken regarding data. 
Because, they don’t have constant 
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e
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*  tn-p-1 

variance. 
4) ti*is monotonic transformation of ti , 

2
* 1

i
ii tpn

pntt
−−
−−

=  

5)if rank(X(i))=p, and ε∼Nn(0,σ2), then ti* 
is distributed as tn-p-1. and reflects large 
deviations more dramatically than the 
others. 
6) ti ≈≈ tn-p [9]. 

hii = x'i(X'X) -1 xi Table 1 

()( 1
ixii xxMD µ −Σ′−= −

 
Table 1 

2

1

2 / Y

k

j
iji scWSSD ∑

=

=  Table 1 

1) They identify high-leverage points. 
2) hii ignores the information contained 
in Y. 

3) 
nn

MD
hii i 1

1

2

+
−

=  

4) pHtrhii ==∑ )( 5) In simple 
regression case, WSSDi is equivalent to 
hii. 

LDi(σ2) =nlog[n/(n-
1)]+nlog[1-bi]  
 +bi(n-1)/(1-bi)-1 

χ α1
2
− , p  

1) LDi (σ2) is based on maximum 
likelihood function. 
2) It uses s as the estimate of σ  instead 
of s(i). 
3) It is only one statistic which measures 
the influence of an observation on 
variance(σ2) only. 
4) Its values are influenced by outliers but 
not influenced by high leverage points. 

 WKi =ti*( hii/(1-hii))1/2 2(p/n)1/2 

1)uses s(i) as the estimate of σ  instead of s. 
2) It is only one statistic which measures 
the influence of an observation on 
predicted values 

DFBETASj,i=(ti*Cij)/{(1-
hii)C'jCj}1/2 2/n1/2 

1) DFBETASj, i statistic uses s(i) as the 
estimate of σ  instead of s. 
2) Its values are influenced by outliers 
and high leverage points. 
3)It measures influence of i th 
Observation on βj 
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Table 2: The summaries of the statistics for identifying outliers, 
high-leverage points and influential observations. 

Used statistics and formula Calibration 
point 

Common propertiesand differences of the 
statistics 

LDi(β) =nlog[bihii/(1-hii)+1] 
 = n log[pCi /(n-p)+1] 

χ α1
2
− , p  

CVRi ={(n-p-ti
2)/(n-p-1)}p/(1-

hii) 
|CVR-
1|≥3p/n 

1,,

,,log
2

)log(
2
1

−−

−+−=
pnp

pnp
ii F

FpCVRCW
α

α

 
-- 

Ci = (ti
2 /p)( hii /(1- hii)) 1/Fα,n-p,p 

1)They use s as the estimate of σ  instead 
of s(i) which is robust to problems of 
gross errors in the i th observation.  
2) They measure the influence of an obser-
vation on regression coefficients (β) only. 
3) They are effective in the detection of 
observations that have influenced on the 
parameter estimates. 
4) LDi (β) is based on maximum 
likelihood function. 
5) Ci is based on confidence ellipsoids and 
when n is large, Ci has smaller values. 
6) CVRi statistic is more sensitive to the 
high leverage point and outliers then the 
other statistics thereby reduces the ability 
of CVRi to detect influential observations. 
However, it is the most suggested 
statistics in this group because of 
identifying influential observations 
successfully in the data set [4], [19]. 

APi = 1- hii-(ei
2/e'e) =1-hii* 1-

[2(p+1)/n]

LDi(β,σ2)=nlog[n/(n-
1)]+nlog(1-bi) 
 +bi(n-1)/[(1-bi)(1-hii)]-1 

χ α1 1
2
− +, p  

Wi =WKi[(n-1)/(1-hii)] 1/2 3p1/2 

1) Wi and Ci* statistics use s(i) as the 
estimate of σ  instead of s. 
2) They measure the influence of an obser-
vation on both regression coefficients(β) and 
variance(σ2) simultaneously. 
3) Their values are influenced by outliers 
and high leverage points. 
4) LDi(β, σ2) is based on maximum 
likelihood function and if hii=0 then 
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Ci* = WKi [(n-p)/p)]1/2  2[(n-p)/n] 

1/2 

LDi(β, σ2)=LDi(σ2)[20] 
5) APi statistic is based on confidence 
ellipsoid and 0≤APi≤1. 
6) Wi uses X'(i)X(i) matrix in calculations 
and more sensitive to the high leverage point 
then the other statistics. 
7) Ci* statistic is more suitable for the 
graphical examinations (as normal 
probability plots) in balanced cases (hii=p/n) 
and when squared values of Ci*. 

Table 2:(Cont.) 

3. Discussion and Classification 
An observation may not have the same influence on all regression results and 

several statistical measures have been proposed in the literature for identifying 
influential observations in linear regression analysis as it was seen above. A 
classifications have been done according to base of the measures as a) measures based 
on residuals, b) measures based on influence curve, c) measures based on volume of 
confidence ellipsoids, d) measures based on the Likelihood function, e) measures based 
on the subset of the regression coefficients by [6]. But these classifications are not 
helpful for the users in practice. Because, there are measures, which based on the same 
base, but measure the influence on different results of the regression. This situation get 
mixed up the analyst’s mind dial with the subject if it is necessary to examine all of 
these measures or not. The users usually want to know what the statistics measure, not 
that the statistics based on. Thus, here it is important that the question “Influence on 
what?” In this study, the classification approach of the statistics is based on this 
question’s answer. 

The primary goal of the analysis may provide the answer to the question of which 
influence to consider. For example, if β̂  is of primary concern, then measuring the 

influence of the observations on β̂  is appropriate, whereas if prediction is primary 
goal, then measuring influence on the predicted values may be more appropriate than 
measuring influence on β̂ . So, it is not necessary to examine all of these statistics for 
measuring an observation influence. First, It must be selected the statistic among them 
according to our major concerns about regression results. In that case, the statistics that 
are used for identifying of influential observations might be classified according to 
measuring the influence on which results of the regression.  

These statistics can be classified according to common properties and differences 
in Table 2 as follows;  
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1. The statistics detect outlier. 
2. The statistics detect high-leverage points. 

3. The statistics measure influence on β̂ . 

4. The statistics measure influence on variance (s
2
). 

5. The statistics measure influence on ŷ . 

6. The statistics measure influence on β̂  and s
2
. 

The classification of the statistics according to the approach above, some purpose 
of the identification of the observation, used statistics and some important results are 
given in Table 3. 

Now, the analyst can select and use the statistics suitable for his/her purpose easier 
instead of using all statistics. Thus, being much of the statistics will not get mixed up 
the analyst’s mind. In some groups, there were more than one statistics and these 
statistics might behave different. Because of that, the same observations might be 
identified as influential by the same group statistics; the different observations might 
also be influential. That is, an observation might be influential according to one 
statistics; the same observation might not be influential according to the other statistics. 
This could be cause a contradiction among the same group statistics. In this situation, it 
is necessary to compare ability of the same group statistics each other and to identify the 
best one in the same groups. For this purpose, the values of some observations were 
changed in data according to definition of the unusual observations and compared 
ability of the same group statistics each other. In addition to these results, after 
examination of some important properties of the statistics and literatures, the sensitive 
statistics are proposed among the statistics placed in same groups (bold in Table 3). 

4. Illustrative Example 
In this section, we report the results of the statistics explained above for a 

numerical example. The data which were taken in fisheries faculty from 138 fish, of 
which ages (Y) and otolith length (X1) respectively, are used (Figure 2). It was changed 
the 40th, 80th, and 120th observations in data set according to definition of the unusual 
observations as A, B and C points in Figure 1 for testing the sensitivity of the statistics 
and comparing ability of the same group statistics each other. For the data set the 
regression equation was fitted and the statistics, which were given, before were 
calculated, the influential observations were identified (Table 4) and concluded. 
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Observation The purpose of the 
identification Used statistic 

Effects on results 
when omitting 
from the data 

Outlier 

-to indicate violation of 
assumptions-to need 
transformation on data 
or not 
-to identify the 
sufficiency of the model 

ein 
eis 
ti 
ti* 

-change intercept 
-change the 
variance of 
regression 
coefficients 
-change s2. 

High-Leverage  
Points 

- to identify the 
observations(with high 
leverage) far from the 
center of X space 

hii 
MDi  
WSSDi  

- change the 
standard error of 
the regression 
coefficients 

-to identify the influence 
on estimation of β̂ . 

LDi (β)  
CVRi  
CWi  
Ci 

-Change the 
variance of reg-
ression coefficients 
-Change the reg-
ression coefficients. 

-to identify the influence 
on variance (s2) LD i (σ2) 

-change variance 
(s2). 

-to identify the influence 
on ŷ   WKi -change ŷ  

-to identify the influence on 
estimation of β̂  and s2. 

APi 
LDi(β,σ2) 
Wi 
Ci* 

-change the 
regression 
coefficients and 
variance (s2). 

Influential  
Observations 

-to identify influence of i 
th observation on the j th 
regression coefficient 
β̂ j . 

DFBETASj,i  
-change the 
regression 
coefficients 

Table 3: The classification of the statistics according to measuring the influence on 
which results of the regression: the observations, the purpose of the identification, used 
statistics, and some effects on results when omitting from the data in regression 
analysis. In bold statistics are proposed 
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Figure 2: Scatter plot of the data (otolith length versus fish age) and fitted line 

Table 4 shows the outliers, high-leverage points and influential observations for 
the data according to calibration points for all used statistics. Two outliers 
(observations 40 and 80) and one high-leverage point (observation 120) were detected 
in 138 data values. The observations 40th 80th and 120th are influential on β̂  

according to statistics measure influence on β̂ . According to the statistics measure 

influence on variance (s
2
), observations 40th and 80th are influential on variance. The 

observation 105th is influential on ŷ  in addition to the observations 40th, 80th and 
120th, according to the WKi statistics measure influence on ŷ . According to the 

statistics measure influence on β̂  and s
2
, the observations 63th, 64th, and 105th are 

influential on β̂  and s
2
 in addition to the observations 40th, 80th and 120th. The results 

of the DFBETASj.i statistics shows that the observations 3th, 4th, 40th, 61th, 63th, 64 th, 

80th, 105th and 120th are influential on jβ̂ . 



FEN BİLİMLERİ DERGİSİ 
A Classification of Single Influential Observation 

Statistics in Regression Analysis 

 

15

 

Observation Used Statistic Calibration 
Point 

Influential Observation 
Numbers 

ein 1.9021 40,80 
eis 1.9021 40,80 
ti 1.9700 40,80 Outlier 

ti* 1.9700 40,80 
hii 0.0360 120 
MDi  0.0360 120 

High-Leverage  
Points 

WSSDi 0.0360 120 
LDi (β) 0.1026 40,80 
CVRi 0.0435 40,80,120 
CWi --- 40,80 
Ci 0.0513  40,80 
LD i (σ2) 0.1026 40,80 
WKi 0.2400 40,80,105,120 
APi 0.9565 40,63,80,120 
LDi(β,σ2) 0.3518 40,80 
Wi 4.2426 40,80 
Ci* 1.9854  40,63,64,80,105,120 
DFBETAS0,i 0.1703 3,4,40,63,64,80,105,120 

Influential  
Observations 

DFBETAS1,i 0.1703 3,4,40,61,63,64,80,105,120 

Table 4: Influential observation numbers according to the different statistics in 
data. In bold statistics are proposed. 

It was seen from the result in Table 4 that the observations that we changed their 
values for testing the sensitivity of the statistics in the data are generally determined by 
all of the statistics. Although LDi (β), CWi and Ci are influenced from the outliers more 
than the statistic CVRi , they are not influenced from high-leverage points among the 

statistics measure influence on β̂ . The statistic CVRi is influenced from both outliers 
and high-leverage points differently. Both LD(σ2) and WKi statistics are influenced 
from both outliers and high-leverage points similarly. From the statistics group measure 
influence on β̂  and s

2
, although the LDi(β,σ2) and Wi, are influenced from the outliers 

more than the statistics APi and Ci* similarly, they are not influenced from high-leverage 
points. The statistics APi and Ci* are influenced from both outliers and high-leverage 
points differently. 
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The statistic CVRi from the statistics measure influence on β̂  and the statistic Ci* 

from the statistics measure influence on β̂  and s
2
 are more sensitive to unusual obser-

vations than the others because of influenced from both outliers and high-leverage points. 

to identify outlier  ti* 
to identify high-leverage point  hii 
to identify the influence of an 
observation on regression 
coefficients 

 
CVRi 

to identify the influence of an 
observation on variance(σ2) 

Then it 
might used LDi(σ2) 

to identify the influence of an 
observation on predicted values  WKi 

to identify the influence of an 
observation on both regression 
coefficients(β) and variance(σ2) 

 
Ci* 

If your 
purpose is  

to identify the influence of i th 
observation on j th β 

 DFBETASj,i 

Table 5: The proposed statistics according to the purpose. 

5. Conclusion 
There are three main stages for fitting a regression model by least squares 

regression analysis. i) The identification of the data quality for a proposed model, ii) the 
model quality for a given data set, and iii) a fulfillment of all least squares assumptions. 
Examination of the influential observations has an important place as a diagnostic 
strategy in all of the stages. Here, it might be suggested to use given in Table 5 for 
identifying of influential observations according to your purpose among the statistics 
given above; 

Many authors also suggested the same statistics for these purposes [5], [6], [19]. 
As a result; it should be noted that, outliers or high leverage points should not be 

automatically rejected but rather should receive special attention and careful 
examination to determine the cause of their peculiarities. If these points are truly 
genuine observations, they may indicate violation of assumptions and perhaps the need 
for an alternative model. 
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