КВАНТОВОХИМИЧЕСКИЕ РАСЧЕТЫ КОНФОРМАЦИОННЫХ, ЭЛЕКТРОННЫХ СВОЙСТВ НИКОТИНА С УЧЕТОМ ЭФФЕКТА РАСТВОРИТЕЛЯ И КОРРЕЛЯЦИИ С БИОЛОГИЧЕСКОЙ АКТИВНОСТЬЮ

Проф. др. А. Зулпукаровна ДЖУМАНАЗАРОВА

Кыргызский государственный национальный университет,

Проф. др. Усен Асанович АСАНОВ

Председатель националной аттестацинной комиссии

В настоящее время принято считать установленным существование связи между биологической активностью и различными физико-химическими характеристиками соединения, которые, в свою очередь, связаны со структурой вещества. Моделирование зависимостей «структура-активность/структура-свойство» широко используется для прогноза активности, где под активностью можно понимать, например, токсичность, фармакологическую активность, канцерогенную активность и т.д. Компьютерное моделирование позволяет кардинально уменьшить общую стоимость исследований и значительно сократить путь от серии предполагаемых структур до целевого препарата. Однако моделирование должно быть отработано для уже хорошо изученных биологически активных соединений. Таким соединением может служить никотин - холинергический агонист, механизм действия которого хорошо изучен [1].

При попытке решения вопроса соотношения структура-активность для молекулы никотина перед нами стояли следующие проблемы: 1) выбор метода расчета; 2) проблема соотношений структур соединения в газовой фазе, конденсированном состоянии и с учетом эффекта растворителя; 3) выбор конформаций соединения, отвечающих активной форме.

В решении подобных проблем методы квантовой химии в последнее время приобретают первостепенное значение. Однако, прежде чем решать эту проблему, необходимо выбрать метод, который корректно воспроизводил бы геометрические и другие характеристики изучаемой молекулы.

Поэтому для проведения указанных расчетов нами были использованы полуэмпирические методы CNDO, INDO, MINDO/3, MNDO и AM1 [2]. Использование такого большого арсенала расчетных методов объясняется тем, что каждый из полуэмпирических методов ориентирован для расчета определенного параметра молекулы и его корректное воспроизведение.

Предварительно, в качестве тестовой молекулы, указанными методами рассчитана молекула пиридина (I), для которой известны экспериментальные длины связей, углы между связями, теплота образования, дипольный момент [3]. Полученные данные приведены в таблице 1.

Рис.1.Молекула пиридина (I); атомы пронумерованы для удобства использования в нижеследующем обсуждении. Атомы водорода не показаны.

Таблица 1.Рассчитанные и экспериментальные длины связей и углы между связями молекулы пиридина (нумерация атомов аналогична вышеприведенной).

Номер	Длина связи, $\stackrel{^{0}}{A}$						
атома	эксп.[3]	CNDO	INDO	MINDO	MNDO	AM1	
				/3			
1-2 (2-6)	1,338	1,343	1,345	1,336	1,353	1,353	
1-3 (5-6)	1,394	1,381	1,384	1,407	1,411	1,395	
3-4 (4-5)	1,392	1,384	1,386	1,405	1,404	1,392	
	Углы между связями, град.						
3-1-2(5-6-	123,8	125,2	124,4	122,5	122,8	121,6	
2)							

1-3-4(4-5-	118,5	118,0	117,9	118,1	118,7	119,2
6)						
1-2-6	116,9	114,9	116,0	119,7	118,4	119,4
3-4-5	118,4	119,2	119,5	119,2	118,8	119,1
r*		0,999	0,999	0,999	0,999	0,999

В скобках приведены симметричные длины связей и углы между связями пиридина;

 ${
m r}^*$ - коэффициент корреляции между экспериментальными и рассчитанными значениями длин связей и углов между связями пиридина.

Из анализа данных табл. 1 и 2 можно сделать вывод о том, что для соединений, содержащих азот, в частности, для пиридина, значения длин связей и углов между связями использованные методы воспроизводят превосходно (значения г близки к 1), а теплоту образования наиболее корректно воспроизводит метод MINDO/3, дипольный момент – CNDO.

Таблица 2.Рассчитанные и экспериментальные теплота образования и дипольный момент молекулы пиридина.

	ΔH , ккал/моль	μ , D	Эксперимент [3],		
			ΔH , ккал/мо	ль μ , D	
MINDO/3	34,30	1,308	34,6	2,22	
MNDO	28,72	1,965			
AM1	30,26	1,934			
CNDO	*	2,168			
INDO	*	2,106			

^{*}Расчетная схема этих методов не предусматривает расчет теплоты образования.

Молекула никотина относится к конформационно гибким молекулам, задача моделирования биологической активности которых представляет наибольшую трудность [4]. Дело в том, что в процессе прохождения этапов сложного биологического взаимодействия молекула может претерпевать конформационные изменения. Поэтому в итоге невозможно точно определить, какой же из конформеров является «жизненно важным» для успешного протекания всего

процесса — они все важны. Решением этой проблемы, по-видимому, может явиться рассмотрение набора энергетически приемлемых конформеров. При этом необходимо учитывать тот факт, что каждый из этих конформеров может существовать какой-то период времени в процессе взаимодействия и может играть критическую роль для успеха всего процесса. При рассмотрении набора конформеров каждый из которых описан своим набором дескрипторов, всем конформерам приписывается одно и то же значение экспериментально измеренной активности вещества. Вследствие этого возникает неоднозначная зависимость между активностью и конкретным дескриптором [5].

Ранее, в работе [6], при рассмотрении вопросов, касающихся особенностей электронного строения молекул, проявляющих холинергическую активность, в частности, никотина, были рассмотрены расчетные данные заселенностей, распределения зарядов и межатомных расстояний иона никотина в сравнении с указанными характеристиками ацетилхолина, которые приведены на рис.2,3,4.

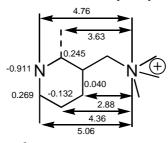


Рис.2. Межатомные расстояния (A) и зарядовое распределение для конформера 120° иона никотиния.

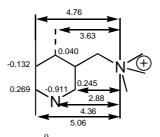
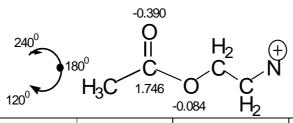



Рис.3. Межатомные расстояния (A) и зарядовое распределение для конформера 300° иона никотиния.

Ацетильная гр. Углы вращения,	$ \stackrel{\bullet}{N}_{D0} $ $ = 0, A $	$\nearrow_{\mathbf{N}}_{\mathbf{A0}}$ $> =, \overset{\scriptscriptstyle{0}}{A}$	Ф до -C- °, A
град			
120	4,93	4,52	3,33
180	5,97	4,52	3,33
240	5,40	4,52	3,33

Рис.4. Межатомные расстояния (A) и предпочтительные конформации апетилхолина.

Условия соответствия с ацетилхолином, как видно из вышеприведенных рисунков 2,3,4, были найдены для ротамера со 120 градусами в ионе никотина. Пиридиновый атом азота имел значительный отрицательный заряд и расстояние 4,76 A от четвертичного азота, что аналогично ситуации в ацетилхолине, в котором отрицательно заряженный карбонильный атом кислорода находится на расстоянии 4,93 A от четвертичного азота, когда ацильная группа находится в 120 градусах по отношению к эфирной кислород-углеродной связи.

Однако недостатком работы [6] является то, что во-первых, расчеты были выполнены расширенным методом Хюккеля (РМХ), который, как известно, является весьма грубым приближением; поэтому необходимо проведение расчетов с помощью методов, учитывающих хотя бы все валентные электроны. Во-вторых, расчеты были выполнены для иона никотина, в то время как известно, что в не ионизованном состоянии никотин проявляет большую активность. Втретьих, не был учтен эффект растворителя, что также важно при проведении подобных расчетов и обсуждении результатов.

Поэтому нами предпринята попытка расчета молекулы никотина с помощью метода MINDO/3 (поскольку он наиболее корректно воспроизводит теплоту образования, табл.1) с учетом эффекта растворителя. Известно, что конформационно подвижная никотиновая молекула (свободное вращение вокруг связи C_5 — C_7), может существовать [8] в цис- (рис.5, II) и транс-форме (рис.5, III).

Учет эффекта растворителя при расчетах сам по себе является большой проблемой и находится на стадии разработки [7]. Тем не менее, в программе [2], включающей в себя все полуэмпирические методы, предлагается способ учета молекул воды в приближении супермолекулы. С использованием данной методики нами проведены расчеты вышеуказанных конформаций никотина. Для расчета геометрий этих соединений задавались стандартные значения длин связей, углов между связями, и затем геометрия полностью оптимизировалась; оптимизированные геометрии рассчитывались в приближении супермолекуы с добавлением 5, 15, 30 молекул воды [2]. Результаты расчетов представлены в табл.3, 4 и 5.

Рис.5.Молекула никотина в цис- (II) и транс- (III) форме. Атомы никотина пронумерованы для удобства использования в дальнейшем обсуждении. Атомы водорода не показаны.

Таблица 3.Теплоты образования (ΔH , ккал/моль) цис- и транс-никотина в газовой фазе и с учетом эффекта молекул воды, рассчитанные методом MINDO/3.

	цис-				транс-			
ΔH ,	газ.ф.	5	15	30	газ.ф.	5	15	30
ккал/	47,73	-217,87	-754,60	-	46,92	-220,31	-754,44	-
моль				1558,04				1558,11

Из табл. 3 следует, что для всех случаев (и в газовой фазе, и с учетом различного числа молекул воды) энергии транс- и цис- конформаций различаются незначительно, что, во-первых, соответствует утверждению в работе [8], и вовторых, говорит о том, что они легко переходят друг в друга. Тем не менее, на основании приведенных данных можно сделать вывод, что транс-конформация никотина является более предпочтительной.

В табл.4 приведены кристаллографические экспериментальные длины связей и линейные углы молекулы никотина [9], а также их соответствующие рассчитанные значения для транс- и цис- конформаций никотина в газовой фазе и с учетом 5, 10, 30 молекул воды. В скобках даны соответствующие значения длин связей и линейных углов для транс-конформации. Количество учитываемых молекул воды выбрано произвольно, поскольку о способе сольватации никотина в литературе не имеется сведений. Несмотря на то, что полученные данные для газовой фазы и с учетом молекул воды для длин связей и линейных углов отличаются незначительно, мы их в табл. 4 приводим полностью, поскольку такие расчеты проведены впервые и сравнение их с данными в конденсированном состоянии молекулы никотина представляет определенный интерес. Сравнение имеющихся данных с рассчитанными проводится как для цис-, так и для трансконформации, поскольку из экспериментальных данных не ясно, в какой конформации находится молекула в кристаллическом состоянии. Проведен корреляционный анализ между значениями длин связей и линейных углов молекулы в кристалле и соответствующими данными в газовой фазе и с учетом молекул воды. Значения коэффициентов полученных корреляций г приведены также в табл.4. Как показывают коэффициенты корреляций, между значениями длин связей и линейных углов никотина в кристалле и их соответствующими значениями, полученными в газовой фазе и с молекулами воды, существует слабая корреляция. Следовательно, указанные характеристики молекулы в конденсированном состоянии, в газовой фазе и растворителе Однако, рассчитанные величины этих параметров для молекулы никотина в газовой фазе и с учетом молекул воды практически совпадают.

В этой же таблице приведены значения расстояний между двумя молекулами азота: пирролидинового и пиридинового N_2-N_{11},A , поскольку известно, что величина этого расстояния играет существенную роль в проявлении инсектицидной активности никотином. Как указано в работе [6], это расстояние должно составлять приблизительно 4,93 A, что соотносится с активными центрами ацетилхолина – химического медиатора нервных импульсов.

Таблица 4. Экспериментальные и рассчитанные методами MINDO/3 длины связей и углы между связями молекул цис-, транс-никотина в газовой фазе и с учетом молекул воды (нумерация атомов аналогична на рис.5)

Номер	Длина связи, $\stackrel{^{0}}{A}$					
атома	эксп.	газовая	м Молекулы воды			
	крист.[9]	фаза	5	15	30	
1-2	1,33	1,33(1,33)*	1,34(1,34) *	1,34(1,33) *	1,34(1,33) *	
1-3	1,38	1,40(1,40)	1,40(1,40)	1,40(1,40)	1,40(1,40)	
3-4	1,37	1,40(1,41)	1,41(1,41)	1,41(1,40)	1,41(1,40)	

4-5	1,42	1,43(1,42)	1,42(1,42)	1,42(1,42)	1,42(1,42)
5-6	1,40	1,43(1,43)	1,43(1,43)	1,43(1,43)	1,43(1,43)
2-6	1,34	1,33(1,34)	1,33(1,33)	1,33(1,33)	1,33(1,33)
5-7	1,50	1,53(1,53)	1,53(1,53)	1,53(1,53)	1,53(1,53)
7-8	1,50	1,54(1,54)	1,54(1,54)	1,54(1,54)	1,54(1,54)
8-9	1,33	, , ,	, , , ,		
9-10	/	1,52(1,52)	1,51(1,52)	1,51(1,52)	1,52(1,52)
	1,54	1,51(1,51)	1,52(1,51)	1,52(1,51)	1,52(1,51)
10-11	1,50	1,44(1,44)	1,44(1,44)	1,44(1,44)	1,44(1,44)
11-12	1,44	1,42(1,42)	1,41(1,42)	1,41(1,41)	1,41(1,41)
7-11	1,51	1,46(1,46)	1,46(1,46)	1,46(1,46)	1,46(1,46)
r		0,89(0,89)	0,89(0,88)	0,90(0,89)	0,90(0,89)
		Углы м	ежду связями, град	Į.	
2-1-3	121,6	121,4(124,0)*	121,4(121,3) *	121,4(121,4) *	121,5(121,4) *
1-3-4	119,8	117,7(117,9)	117,8(118,1)	117,8(117,8)	117,8(117,8)
3-4-5	120,3	122,6(122,2)	122,5(122,3)	122,5(122,4)	122,5(122,4)
4-5-6	114,9	112,9(113,1)	113,0(113,0)	113,0(113,0)	113,1(113,0)
5-6-2	124,6	125,0(124,9)	124,9(125,2)	125,0(125,2)	125,0(125,2)
6-2-1	118,8	120,4(120,4)	120,4(120,2)	120,3(120,4)	120,4(120,4)
4-5-7	121,0	121,4(121,8)	121,8(121,3)	122,0(122,3)	122,3(122,3)
6-5-7	124,0	125,7(125,7)	125,2(125,7)	124,9(124,7)	124,7(124,7)
5-7-11	109,9	115,9(115,3)	115,7(121,3)	115,4(116,0)	116,0(116,0)
5-7-8	118,2	119,7(119,5)	119,1(119,1)	118,5(118,2)	118,2(118,2)
7-8-9	104,4	107,9(108,1)	108,2(108,2)	108,3(108,2)	108,3(108,2)
8-7-11	106,1	103,9(104,2)	103,9(103,9)	103,9(106,6)	104,1(106,6)
8-9-10	107,2	106,6(106,7)	106,5(106,5)	106,4(106,6)	106,4(106,6)
9-10-11	105,0	106,6(106,7)	106,8(106,8)	106,8(106,8)	106,8(106,8)
10-11-12	111,9	118,3(120,5)	118,6(118,6)	118,8(119,8)	119,7(119,8)
10-11-7	99,9	113,4(114,1)	114,0(114,0)	114,3(114,0)	114,2(114,0)
7-11-12	113,8	125,6(123,8)	124,9(124,9)	125,4(124,2)	124,7(124,2)
r		0,81 (0,82)	0,81(0,78)	0,80(0,82)	0,80(0,82)
N ₂ -	4,77	4,61(4,75)	4,58(4,87)	4,45(4,87)	4,50(4,83)
$N_{11}(\stackrel{\scriptscriptstyle{0}}{A})$					

^{*}В скобках приведены результаты расчетов, полученные для транс-изомера.

Анализ значений расстояний между этими атомами азота в табл.4 показывает, что наиболее близкие значения к вышеприведенной величине имеют транс-конформации никотина, поэтому можно сделать вывод о том, что среди конформеров никотина транс-конформация, вероятно, играет более существенную роль в проявлении инсектицидной активности. Из таблицы 3 по величине значений энергий также можно определить, что транс-конформация никотина является более предпочтительной, чем цис-конформация.

Таблица 5.Рассчитанные методом MINDO/3 значения двугранных углов транс-, цис-никотина в газовой фазе и с учетом молекул воды (нумерация атомов аналогична на рис.5).

Атомы	Газовая фаза	Молекулы воды				
		5	15	30		
4-5-7-8	-134,4(57,1)*	-129,0(72,2)*	-119,0(67,7)*	-119,4(67,6)*		
5-7-8-9	-143,2(-134,9)	-137,9(-133,84)	-134,8(-135,0)	-129,6(-		
				132,4)		
7-8-9-10	6,7(1,8)	4,4(1,9)	3,5(2,8)	-0,5(1,2)		
8-9-10-11	1,8(1,9)	0,5(0,2)	-0,3(0,3)	1,0(0,6)		
9-10-11-7	-10,5(-5,2)	-5,6(-2,3)	-3,3(-3,5)	-1,3(-2,4)		
9-10-11-	-172,9(-171,8)	-168,6(-167,4)	-170,2(-168,4)	-168,7(-		
12				167,2)		
6-5-7-8	44,4(-122,2)	49,0(-105,8)	60,3(-110,6)	59,6(-110,7)		
6-5-7-11	-80,8(112,7)	-75,9(129,1)	-64,8(124,8)	-64,5(124,9)		
5-7-11-12	-51,7(-55,0)	-57,7(-60,2)	-57,4(-59,2)	-60,8(-61,7)		

^{*} В скобках приведены результаты расчетов, полученные для транс-изомера.

Хотя длины связей и линейные углы меняются незначительно, однако двугранные углы между связями в пирролидиновом кольце меняются таким образом, что после оптимизации оно значительно уплощается по сравнению с газовой фазой (табл.5). Пиридиновое кольцо в обоих случаях остается плоским.

Известно, что значения зарядов на атомах соединений также играют большую роль в проявлении биологической активности. По этой причине нами были проанализированы заряды на атомах молекулы никотина, полученные методом MINDO/3. Но прежде необходимо убедиться в корректности воспроизведения зарядов на атомах с помощью данного метода. Поэтому нами были предприняты попытки найти линейные корреляции между рассчитанными методом MINDO/3 зарядами на атомах углерода никотина и соответствующими значениями $^{13}\,C$ химических сдвигов, известных из экспериментальных данных [10]. Однако такие попытки не привели к ожидаемому успеху.

Таким образом, при расчете геометрических параметров и энергий конформационно гибких молекул, обладающих биологической активностью типа никотина, метод MINDO/3 представляется наиболее подходящим. Согласно расчетным данным, вероятно, транс-конформация никотина вносит более существенный вклад в проявление инсектицидной активности никотином,

поскольку она энергетически наиболее выгодна, и в этой конформации никотина расстояние между атомами азота наиболее близко к значению 4,93 A для ацетилхолина. Учет влияния молекул воды на длины связей и линейные углы в конформациях никотина в приближении супермолекулы по методике [2] не обнаруживает значительных изменений по сравнению с расчетными данными в газовой фазе, однако, они отличаются от параметров в кристаллическом состоянии.

ËÈÒÅĐÀÒÓĐÀ

- 1. Д.А.Харкевич. Фармакология. (Москва, «Медицина», 1993), с.92.
- 2. HyperChem[™], Release 2 for Windows Molecular System. Serial № 51010000501. Copyright © 1991 Hypercube, Inc. And Autodesk, Inc.
 - 3. M.J.S.Dewar, D.M.Storch. J.Am.Chem.Soc. (v.107, 1985), p.3898-3902.
- 4. У.Буркерт, Н.Элинджер. Молекулярная механика. (Москва, "Мир", 1986), с.364.
- 5. А.Л.Осипов "Математическое моделирование физико-химических свойств органических веществ с использованием фактографических банков данных". Internet, http://src.nsu.ru/win/conf/nit /96/ notasect1/node 76.html.
 - 6. L.B.Kier. Mol.Pharmacol., (v.4, 1968), p.70-76.
- 7. В.И.Минкин, Б.Я.Симкин, Р.М.Миняев. «Квантовая химия органических соединений. Механизмы реакций». (Москва, «Химия», 1986), с.85.
- 8. K.R.Crinoweth, B.Ternai, L.S.Simeral, G.E.Maciel. Mol.Pharmmacol., (N 2, 1973), p.144-151.
 - 9. M.R.Udupa, B.Krebs. Inorg.Chim.Acta, (v.40, 1980), p.161-164.
- 10. T.R. Simpson, J.C.Craig, W.D.Kumler. J. Pharm.Science, (v.56, 1967), p.708-713.