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1.  INTRODUCTION. Let us consider the following boundary value problem  
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We assume the functions q f,  in (1) to be sufficiently smooth , and additionally the 
conditions 

q x q( ) ≥ >0 0  при x ∈[ , ]0 1 ;      (3) 

ε ∈( , ]0 1 ; ξ η ξ η≥ ≥ + >0 0 0; ; .      (4) 
are satisfied. 

We can obtain problem of type (1), (2) with ε = 1 r  if  we shall solve equation of 
sphere symmetry property ∆u qu f− =  for the sphere of radius equal to r. If r is big 
enough, then  function u(x) can form a boundary layer near the point x=1. Numerical 
solving of the similar problems (as called singularly perturbed problems) need to use 
special difference schemes which guaranteed the uniform convergence of appropriate 
solution to exact one [1]. There are two fundamental manners to construct the uniformly 
converging numerical algorithms for singularly perturbed boundary problems. The first 
of them deals with construction of the “special” difference schemes on the uniform 
grids and start from A.M.Ilyin’s investigation [2]. The second way is based on using of 
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adapted to properties of solution non-uniform grids, and is connected with 
N.S.Bakhvalov’s name historically [3]. The method [4,5], which permits to associate 
both of the ways,  was used in our paper. Firstly, the method of the discretisation keep 
particulars of the original differential problem  automatically, therefore constructed 
schemes are those of the special type. Secondly, in the framework of proposed method 
can be realized the algorithm of grid’s adapting. Furthermore, the method permits us to 
approximate a solution as well as its derivatives at the same time.  

It is necessary to remind some properties of the problem (1), (2). In particular, for 
its solution u(x) the following condition holds (see [6]): 

′ =u ( )0 0 .                     (5) 

Throughout the paper we shall assume that problem (1), (2) has a unique solution from 
the class C C1 20 1 0 1[ , ] ( , )∩ . Let the operator L  of the problem (1), (2) define by 
representations 

( ) ( )
L

L
L

v v

v x x x v q x v x
v v v

( ) ( );

( ) ( ) , ( , );
( ) ( ) ( ).
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for functions v from the above described class. Using corresponding methods from [7] 
we can prove that L  is the operator of monotonic type, therefore follow “theorem of 
compare” takes place:  

Lemma 1. Let us assume that the problem (1), (2) satisfies the conditions (3), (4). 

Then inequality L Lu x v x( ) ( )≤   follows inequality u x v x( ) ( )≤  for functions 

u v, [ , ] ( , )∈ ∩C C1 20 1 0 1  ( x ∈[ , ]0 1 ).  
Following statement guaranties a uniformly bounded (with respect to ε ) solution 

of the problem (1), (2): 

Lemma 2. Let us assume that the problem (1), (2) satisfies the conditions (3), (4). 
Then its solution can be estimated by 

( )( )u x f y q q q
y

( ) max ( )≤ + + +
≤ ≤

−

0 1 0 0 0

1
3ψ ξ η      (6) 

for any x ∈[ , ]0 1 .  

Proof. We denote 

θ ≡ q0 , A f y q
y

≡
≤ ≤

max ( )
0 1 0 , ( )B ≡ + +

−
ψ ξ ηθ θ2 1

3( ) ,  

( )
( )v x

sh x

xsh0 ( ) ≡
θ ε
θ ε
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and consider  “barrier” function  

v x A Bv x( ) ( )≡ + 0 . 

It is necessary to verify following representations now 

L Lv Bv u( ) ( ) ( )0 0 0 00= − ′ = =ε ; 

[ ]L Lv x q A B q x q v x f y u x x
y

( ) ( ) ( ) max ( ) ( ) , ( , )= + − ≥ ≥ ∈
≤ ≤0 0 0 0 1

01 ; 

( )[ ] ( )L Lv A B B cth B u( ) ( ) ( ) ( )1 3 12= + + − ≥ + + = =ξ ηθ θ ε θ ε ξ ηθ θ ψ . 

The last inequality uses estimation  

cthz z z z z− ≥ + >1 3 0( ) ( ) ,  

which may by verify easily. Using statement of the lemma 1 and inequality 
v x x0 1 0 1( ) ( [ , ])≤ ∈  we complete proof of the lemma. 

2. SET OF THE DIFFERENCE SCHEMES for the problem (1),(2). Let s and t be 
a constants such that 0 1≤ < ≤s t . Let constants q  and f approximate function 
q x( )  and f x( )  in interval [ , ]s t ; a choice of these constants will be determine later. 

Multiplying equation (1) to − x v x2 ( ) ,  where v x( )  is sufficiently smooth testing 
function, after that integrating a result on [ , ]s t  we obtain: 
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Here we denote ϕ ε( ) ( )x u x≡ ′ . We choose testing functions v x( ) ( )0  è 

v x( ) ( )1  in identity (7) according to  

( )− ′
′
+ =ε 2 2 2 0x v x qv , x s t∈( , ) ,      (8) 

xv xv
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Here q q=

( )0  and q q= ( )1  correspond to functions v x( ) ( )0  and v x( ) ( )1  
respectively. 

Solution of the problems (8), (9)  can be found easily: 

( )
( )v x

sh t x q

xsh t s q
( )

( )

( )
( )

( )

( )
0

0

0
=

−

−

ε

ε
;   

( )
( )v x

sh x s q

xsh q t s
( )

( )

( )
( )

( )

( )
1

1

1
=

−

−

ε

ε
. (10) 

Substituting in (7) q q= ( )0 , f f= ( )0 , v v= ( )0  we obtain: 

( ) ( ) ( ) ( )[ ]ε ϕ ε γ µs s t u t u s t s t s q R tu t R su s( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )− − − + − + =2 0 0 0  

( ) ( )[ ]= − − + +( ) ( , )( ) ( ) ( ) ( )t s f R t R s s t0 0 0 0γ µ δ .  (11) 

Analogously for q q= ( )1 , f f= ( )1 , v v= ( )1  we can obtain 

( ) ( ) ( )[ ]− + − − + − + =ε ϕ ε µ γs t s u t u s t s t s q R tu t R su s( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )2 1 1 1

( ) ( )[ ]= − − + +( ) ( , )( ) ( ) ( ) ( )t s f R t R s s t1 1 1 1µ γ δ   (12) 

In  (11) and (12) we denote: 

( )R t s qk k( ) ( )≡ − ε , k = 0 1, ,  

( )µ( )z zcthz z≡ −1 2 , ( )γ ( )z z shz z≡ −1 2 .   (13) 

In order to transform the statements described above to the difference schemes for 
problem (1), (2) let consider some grid on the interval [ , ]0 1   

0 11 2= < < < < < =x x x xi N. . . . . .                 (14) 
and denote: 

h x xi i i≡ −+1 , i N= −1 2 1, ,..., ; ( )h h
i N i≡

≤ ≤
max
1

. 

Let { }v vh
i
h

i

N
≡

=1
 denote some mesh function with corresponding norm: 

v vh
h i N i

h
, max
∞ ≤ ≤

≡
1

; 

moreover, we shall denote { }( ) ( )v v x vh
i i i

N
≡ ≡

=1
 a projection of some 

continuous function v x( )  on the grid (14). Assuming in (11) and (12) s xi= , 
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t xi= +1  and do not taking into account errors of approximation ( )δ ( ) ,0
1x xi i+  and  

( )δ ( ) ,1
1x xi i+  we obtain discrete problem corresponding to (1), (2):  

( ) ( )[ ]
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Here { }u uh
i
h

i

N
≡

=1
 and { }ϕ ϕh

i
h

i

N
≡

=1
 approximate unknown mesh functions 

( )u h  and ( )ϕ h  respectively. We supply constants q k( ) , f k( ) , R k( )  ( k = 0 1, ) by 
index ‘i’  and denote  

( )Du u u hi
h

i
h

i
h

i≡ −+1 ; ( ) ( )[ ]σ γ µi i i i i ih R x R x( ) ( ) ( )0 0
1

0≡ ++ ; 

( ) ( )[ ]σ µ γi i i i i ih R x R x( ) ( ) ( )1 1
1

1≡ ++ , i N= −1 2 1, ,..., . 

Excluding from the equations (15) values ϕi
h  ( i N= −1 2 1, ,..., ) we can rewrite 

this problem in the traditional third-points form: 
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The first and the latter equations of this system are non-standard approximations of 
boundary conditions (5) and (2) accordingly. The following statement contains an 
estimate of convergence of a multitude of the schemes (16): 

Theorem 1. Let's assume, that for i N= −1 2 1, ,...,  the inequalities  

{ }min ,( ) ( )q qi i
0 1 0≥ >α  
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are satisfying with a constant α , independent of ε  , N , and the values ε , η   

satisfy conditions (4). Then the problem (16) has a unique solution { }u uh
i
h

i

N
=

=1
. If 

additionally for i N= −1 2 1, , . . . ,  and [ ]x x xi i∈ +, 1  the conditions  

q q x f f x Chi
k

i
k( ) ( )( ) ( )− + − ≤ , k = 0 1,     (17) 

are satisfy with a constant C , independent of ε  and N , then a solution u h  of 
the problem (16) is estimated by 

u u Chh h
h− ≤∞( ) , ,       (18) 

where C  does not depend on ε  and N . Thus, the difference scheme (16) 
converges uniformly in ε  with the first rate on any irregular grid. 

Proof. Using the appropriate statement from [7] (or discrete principle of maximum 
from [8]) we can prove, that the operator Lh  of the problem (16) is an operator of a 
monotone type for any parameters of a grid and number ε . So, for an operator Lh  the 
discrete variant of a comparison theorem (see Lemma 1) is fair. The last statement 
guarantees a unambiguous resolvability of a problem (16) and used for the proof of an 
estimate (18). 

Comparing equations (16) and equations (11), (12) of the main identity taken for 
s xi= , t xi= +1 , we come to a conclusion that grid function w u uh h h≡ −( )  
satisfies a system 
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( ) ( )

( )

L
L
L

h

h
i i i i i

h
N N N

w x x
w x x x x i N
w x x

1
0

1 2
0

1
1

1
1

1

2 3 1
=
= + = −
=









+ −

−

δ
δ δ
ηδ

( )

( ) ( )

( )

, ;
, , , , ,..., ;

, .
    (19) 

Inequality (6) of a lemma 2 and the estimates (17) allow to prove inequalities 

( )δ σ( ) ( ),k
i i i

kx x Ch+ ≤1      ( i N k= − =1 2 1 0 1, , ... , ; , ), (20) 

where C  does not depend of h  and ε .  On the other hand, by virtue of definition 
(16) of operator Lh  we obtain 
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Comparing the formulas (19), (20), (21), we have 
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L Lh
i
h h

i
hw Ch≤ −( )α 1 , i N= 1 2, ,..., . 

The last evaluation, because of a comparison theorem, results in an inequality (18), 
thereby proving the theorem. 

After solving a system (16) we can, in case of necessity, to calculate derivatives of 
the solution, using the formulas (15). For an example we shall consider the following 
variant of choice of parameters in a multitude (16): 

q q x q q x
f f x f f x i N

i i i i

i i i i

( ) ( )

( ) ( )

( ) , ( );
( ) , ( ) , , ,..., .

0 1
1

0 1
1 1 2 1

= =
= = = −





+

+

  (22) 

In this case difference scheme from (16) satisfies the conditions of the theorem 1 
and looks rather simply ( ,0;1,...,2,1, =−== ηNihhi  1=ξ ): 
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Let's mark, that this scheme is not conservative. The conservatism of the scheme 
guarantees choice of parameters under the formulas  

( )
( )
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≡+==
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.1,...,2,1,2)()(
,2)()(

211
)1()0(

211
)1()0(

Nifxfxfff
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iiiii

iiiii  (23) 

3. NUMERICAL EXAMPLES. Let's present results of numerical experiments 
permitting to compare new and well-known schemes.  

The experiments deals with a calculation of orders of  uniform convergence and 
classical convergence in according with the following algorithm (see also [1,9]). Let 

)(xvε  is solution of an initial differential problem dependent on a parameter ( ]1,0∈ε  

and determined on an interval [0,1]; { }N

i
h

i
h vv

1, =
≡ εε  is a mesh function approximating 

( )ixvε  in the uniform grid hixi )1( −=   ( 11,1,2,..,= += hNNi ) and 

calculated for { }kjhHh j ,...,1,020 =≡∈  and 

{ }mjE j ,...,1,020 =≡∈ εε . Let's designate: 

( ) ( )
∞

−≡
,

,
h

hh vvh εεεδ ,   ( )εδ
ε

,max),()( hvhh
E∈

≡∆≡∆ . 
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The experimental orders of uniform  and classical convergence  (" p "  and " 0p " )  
were determined by the formulas 

( ) ( )[ ]







∆∆= ∑

−

=

+
1

0

1
00 221ln
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1 k
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jj hh
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for 8,7,21,81 00 ==== mkh ε .  
In case of a constant coefficients obtained in section 2 schemes (15) reduce to the 

exact solution of a problem (1)-(2). Therefore the problem (1)-(2) tests with 
coefficients: 

2
00)( xbqxq += , 

0
2

0
22

00
22

00 )1()31210(2)( uxbxxqaxxafxf −−−+−+= ε  

for 1.0,10,1,1 0000 ==== bafq  and 1,5.0,5 === ψηξ . 

Here )(0 xu  is the solution of a problem: 

( )[ ]( )( ) ( ) ( )( ) 22
0 )1(101115.0561)( xxxshxshctgxu −+⋅−++−= εεεεε

The quantities (24) and (25) were calculated for )()( xuxv ≡ε  and 

)()()( xuxxv ′≡≡ εϕε . Table 1 allows us to analyse of experimentally determined 

orders of convergence’s of the difference schemes for the functions )(xu  and )(xϕ . 
Samarskiy’s well-known scheme [8] and scheme (16) with parameters (22) and (23) 
were tested here. Approximate solutions, which were found by means of corresponding 
difference schemes, were used for calculation of derivatives. In case of the scheme of 
Samarskiy for calculation of a derivative in internal points of a grid was used the 
central-difference approximation, the boundary values of a derivative were calculated 
with use of a directed difference (right point) and under the formula:  

( ) 6)0()0()0()0( fuqhu +=′ . 
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Table 1. The experimental order of convergence 

 
  u x( )   ϕ( )x  

Scheme uniform  
converge
nce 

classical  
converge
nce 

uniform  
converge
nce 

classica
l  
conver

Samarskiy 

[8] 

0.30 1.10 0.23 0.98 

(15), (22) 1.22 2.00 0.84 1.97 

(15), (23) 1.06 1.99 0.99 1.98 

 
The analysis of table allows to make a conclusion that the above described 

experiment confirms the statement of the theorem 1 about uniform convergence’s (with 
the first order) solution of a difference problem (16) to a solution of an initial problem 
(1), (2). Moreover, by results of this experiment the hypothesis about uniform 
convergence’s (with the first order) streams can be formulated. 

 
 
 
 

    

0 0. 1
-
2

0

2

4

6

8

0 0. 1
-
4

-
2

0

2

4

6
u(x) ϕ (x)

x
 

Solution of a problem: u(x)  and )(xu ′= εϕ . Number of knots - 9, ε  = 1/4, 
1000 === bqf , 1000 =a , 1==ηξ  10=ψ . The continuous line corresponds to a 

exact solution, ‘*’ - solution  on the scheme A, dotted line – on the scheme B and ‘o’ – 
on the scheme C. 
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