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Abstract 

 

In this study, the incommensurate fractional-order King Cobra (IFKC) chaotic system has been investigated. Through 

bifurcation diagrams and Lyapunov exponent spectra, it has been determined that the IFKC system exhibits rich dynamics. 

Subsequently, using the Proportional Tilt Integral Derivative (P-TID) control method, synchronization of two IFKC chaotic 

systems with different initial values has been achieved. Upon examination of the obtained simulation results, it has been 

demonstrated that the identified IFKC chaotic system and the P-TID controller can be effectively utilized for secure 

communication.   
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1.  INTRODUCTION  

The foundations of fractional calculus were laid 

approximately 300 years ago. Fractional-order analysis 

offers new perspectives for observing, modeling, and 

controlling the nature around us [1]. For this reason, many 

systems in fields such as physics [2], engineering [3], 

mathematical biology [4], health [5], computer science [6], 

and more can be described with the help of fractional 

derivatives.  

Chaos theory has been meticulously examined and studied 

by numerous researchers since Lorenz's work in 1963. 

Particularly, the study of chaos in fractional dynamic 

systems in recent years has become an interesting topic. 

Therefore, fractional-order analyses have been carried out 

on well-known systems such as Lorenz, Chua, Chen, 

Rössler, Rucklidge, investigating chaotic behaviors [7-11].  

After demonstrating that the dynamic behaviors of chaotic 

systems can be further diversified through fractional 

analysis, many researchers have explored the control and 

synchronization of fractional chaotic systems. The 

synchronization of chaotic systems forms the basis of 

chaotic masking, a chaotic-based secure communication 

method. Therefore, in chaotic masking, which is one of the 

chaotic-based secure communication methods, 

synchronization and control play a crucial role. The 

fundamental aim of synchronization is to ensure that two 

chaotic systems exhibit the same dynamic behavior after a 

certain period of time, facilitated by a designed controller. 

In the literature, various classical methods have been 

employed for controlling or synchronizing chaotic systems, 

such as fractional-order PID [12], sliding mode [13], or 

optimal controllers [14]. Additionally, for the 

synchronization of chaotic systems, methods like time-

delay feedback [15], active [16], passive [17], and adaptive 

control methods [18], linear quadratic regulator [19] as well 

as Lyapunov’s direct control method [20], have been used. 

When examining synchronization studies in the literature, it 

is observed that many studies involving fractional-order 

chaotic systems have utilized the commensurate fractional-

order method. However, it has been reported that more 

complex chaotic behaviors can be obtained through 

incommensurate fractional-order analysis [21]. In this 

study, an analysis of the previously unexplored 

incommensurate behavior of the fractional-order King 

Cobra chaotic system [22] has been conducted. Chaotic 

behaviors have been identified using bifurcation diagrams 

and Lyapunov spectra. Moreover, synchronization of two 

chaotic systems has been achieved using the P-TID 

controllers, which is not widely employed in the literature 

for chaos control and synchronization.  

The organization of this paper is structured as follows:  In 

Section 2, the dynamic analysis of IFKC chaotic system is 

conducted using bifurcation diagrams and Lyapunov 

spectra. In Section 3, two IFKC chaotic systems with 

different initial conditions are synchronized using the P-

TID control method.   Finally, conclusions are drawn in 

Section 4.  
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2.  DYNAMIC ANALYSES OF THE IFKC SYSTEM 

Factional derivatives and integrals have gained significance 

in engineering and mathematics, proving invaluable for 

scientists and researchers engaged in practical, real-world 

applications. One widely recognized fractional operator is 

Caputo's fractional derivative, introduced by Caputo in 

1967 and applied in this paper. In the context of both 

continuous-time and discrete-time systems, the utilization 

of Caputo's differential operator facilitates the 

establishment of initial conditions for initial-value 

problems. The Caputo’s derivative with starting point 0, of 

order q is defined as below [23]: 

 q m q mD x J x  (1) 

Here, m represents the integer closest to q, with m>q, and J
a 

denotes the a
th

 order Riemann-Liouville integral operator, 

expressed as [24] 
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where (.) is the Euler’s gamma function. Using the q
th

 

order Caputo fractional derivative, the King Cobra system 

is defined as follows 
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where parameters a, b, c, d, h, and k are set to 10, 1, 5, -1, -

5, and -6. Based on the theorem that defines the requisite 

condition for the existence of a double-scroll attractor in 

fractional-order systems [25], the system (3) demonstrates 

chaotic behavior when the commensurate fractional-order q 

value exceeds 0.8849 [22]. Hereby, if (3) is considered as 

commensurate fractional-order while q1=q2=q3=0.95, the 

2D phase portraits of the system are shown in Figure 1. 

As illustrated in Figure 1, the system (3) is verified as a 

chaotic attractor and y-z phase portrait looks like a face of 

King Cobra at angry. However, the study in reference [22] 

has investigated the King Cobra chaotic system only by 

commensurate fractional-order analysis. In this study, the 

incommensurate fractional-order analysis is employed to 

discover a new chaotic response in the King Cobra system 

which has not been previously studied for this particular 

system. The effects of the incommensurate orders on the 

King Cobra chaotic system are investigated. The primary 

objective is to add dynamic richness to the system by 

selecting distinct fractional orders for each state equation. 

Hereby, the system involves more parameters to be adjusted 

in order to identify a wider range of chaotic behaviors. The 

bifurcation diagram is evaluated firstly, when ‘a’ is set as 

bifurcation parameters and incommensurate fractional 

orders q1, q2, q3 are selected as 0.96, 0.97, 0.98, 

respectively. The bifurcation diagram of the system (3) is 

plotted in Figure 2 setting the initial conditions (x0, y0, z0) = 

(0.1 ,1, 0.1) and change the parameter a ∈ [4, 8]. 

It can be seen that when a is between 5.45 and 7.05, the 

incommensurate fractional-order system is in chaotic state. 

Setting the system parameter a=7, the initial value [x0, y0, 

z0]=[0.1, 1, 0.1] and q1=0.96, q2=0.97, q3=0.98 the 

Lyapunov exponent is obtained as drawn in Figure 3. Note 

that the extended Benettion-Wolf algorithm for 

incommensurate fractional-order systems is used to 

determine Lyapunov exponents [26]. As highlighted in 

Refs. [23] and [26], the result of Lyapunov spectra depends 

highly on the Gramm-Schmidt coefficient in the algorithm. 

In this study, the Gramm-Schmidt coefficient is chosen as 

0.9 with an integration step of 0.01. The corresponding 

Lyapunov exponents are obtained as L1=0.44, L2=-0.03, 

L3=-13.21. The system exhibits chaotic behavior in this 

case due to the presence of Lyapunov exponents as (+, 0, -) 

[27]. 

 

 

 
Figure 1. Phase planes of the system (3) when 

q1=q2=q3=0.95, a=6, b=1, c=5, d=-1, h=-5 and k=-6. 
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(a) 

 
(b) 

Figure 2. Bifurcation diagram of the system (3) when 

q1=0.96, q2=0.97, q3=0.98, b=1, c=5, d=-1, h=-5, k=-6 and 

(a) a ∈ [0,10], (b) a ∈ [5,8]. 

 
Figure 3. Lyapunov spectra of the system (3) when 

q1=0.96, q2=0.97, q3=0.98, a=7, b=1, c=5, d=-1, h=-5 and 

k=-6. 

 

 

 
Figure 4. Phase planes of the system (3) when q1=0.96, 

q2=0.97, q3=0.98, a=7, b=1, c=5, d=-1, h=-5 and k=-6. 

Based on the incommensurate fractional-order analysis 

outcomes derived from bifurcation diagram and Lyapunov 

spectra, chaotic sequences are obtained by assigning the 

particular values to the system parameter a=7 and q1=0.96, 

q2=0.97, q3=0.98. In Figure 4, phase portraits obtained by 

corresponding bifurcation diagram and Lyapunov spectra is 

provided. It is demonstrated through phase portraits that the 

Lyapunov exponent spectra are consistent with bifurcation 

diagram. The varying incommensurate fractional-order of 

equations has significant impact on the dynamic 

characteristics of the system. Consequently, more complex 

dynamic behaviors become observable when the system 

orders are incommensurate.  

3.  SYNCHRONIZATION 

In chaos-based secure communication systems, the chaotic 

masking method is widely employed [20]. In this method, 

the signal generated by the chaotic system is added to the 

information signal and transmitted over a certain 

communication channel. On the receiver side, a second 
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chaotic system is also operated. The signal generated by 

secondary chaotic system operating on the receiver is 

subtracted from the incoming information signal to obtain 

the data. However, if the secondary chaotic system 

successfully synchronizes with the primary chaotic system, 

the information signal is obtained correctly. Therefore, 

chaotic synchronization has attracted the attention of many 

researchers and plays a crucial role, especially in chaotic 

masking methods. The purpose of synchronization is to 

ensure that the two chaotic systems in both the receiver and 

transmitter exhibit the same dynamic behavior once they 

are synchronized [28]. In this study, the synchronization of 

two distinct IFKC systems with different initial conditions 

has been realized using the P-TID controller. 

3.1.  P-TID Controller 

The TID controller is one of the fractional-order control 

structures. In this structure, which combines fractional-

order control with the classical PID controller, there is a 

tilted fraction known as the tilted factor. It is known that 

with the inclusion of the tilt component, the P-TID 

controller exhibits better tracking dynamics and is more 

effective against disturbances [29]. Therefore, the P-TID 

controller has been preferred in this study. The general 

function of the P-TID controller in the Laplace domain is 

provided in Eq. (4) [30]. 

 
1/ 1n

C p t i dG k k s k s k s      (4) 

In the given equation, the controller parameters kp, kt, ki, kd, 

are respectively the gains of the tilt, integral, and derivative 

components. In the tilt component given by 1/ns , the 

coefficient n is a real positive number and is usually chosen 

between 2 and 3.  

3.2.  Design of error system 

After defining the controller, two IFKC systems, each with 

distinct initial conditions, are established, wherein 

secondary system requires synchronization with the 

primary system. The primary and secondary systems are 

denoted with subscripts 1 and 2, respectively. The primary 

system is formulated as below: 
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 Then, the secondary system is specified as follows: 
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where u1, u2, u3 are control signals to be designed. 

Synchronization errors are calculated by subtracting state 

responses of secondary system from primary system as 

e1=x1-x2, e2=y1-y2 and e3=z1-z2. Consequently, the error 

system takes the form as defined below: 
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 (7) 

In this synchronization design, each state is synchronized 

by distinct P-TID controllers defined by u1, u2 and u3. The 

aim is to minimize e1, e2 and e3, since the controllers are 

activated so that both systems given in (5) and (6) are 

synchronized.  

3.3.  Numerical Simulations 

As detailed in dynamic analysis, incommensurate 

fractional-orders q1, q2, q3 are selected 0.96, 0.97 and 0.98, 

respectively. The controller parameters are determined by 

trial-error method and the best tracking dynamics are 

observed while kp, kt, ki and kd parameters are chosen as 1.5, 

0. 1, 0.7, 0.5 respectively. The tilted factor n is set to 0.15. 

Note that, each P-TID controller is equivalent but takes 

distinct error signals as input and controller parameters are 

determined by a trial-and-error method. 

To demonstrate the synchronization of the system (7), 

numerical simulations are carried out using the MATLAB 

program [31]. Note that, despite Caputos’s derivate is 

employed in dynamical analysis, the synchronization 

studies use the memory principle of Grünwald-Letnikow 

fractional-order solver definition code provided in [32] with 

a fixed step size tstep=5e-3. Prior to synchronization, the 

initial conditions for the primary and secondary systems are 

set as x1(0)=0.1, y1(0)=1, z1(0)=0.1 and x2(0)=0, y2(0)=-0.5, 

z2(0)=0, respectively. During the numerical simulations, the 

P-TID controllers are activated at t(s)=20, initiating the 

synchronization process. The synchronization error 

functions ex (t), ey (t) and ez (t) are depicted in Figure 5.  

As anticipated, the corresponding Figure 5 shows the 

successful control achieved by the designed P-TID 

controller over the synchronization of IFKC chaotic system. 

After the controllers are activated at t(s)=20, all of the error 

functions go to zero which yields effective synchronization 

as illustrated in Figure 6.  
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Figure 5. Error functions ex (t), ey (t) and ez (t) of P-TID 

based synchronization.   

 

 

 

 
Figure 6. Time series of P-TID-based synchronization. 

4.  CONCLUSION 

In this study, incommensurate fractional-order analysis of 

King Cobra system is realized. The increased dynamic 

diversity is contributed by the varying fractional-order 

values of the presented system. Points of chaos in the 

system due to parameter changes are identified through 

bifurcation diagram analyses and Lyapunov spectra. Due to 

these analyses, more complex chaotic behavior is observed 

when fractional-orders are chosen as q1=0.96, q2=0.97 and 

q3=0.98. Later, two IFKC chaotic systems, each initialized 

with distinct initial conditions, are synchronized. In this 

context, the secondary system achieves synchronization 

with the primary system through the utilization of a P-TID 

controller. The obtained time series of P-TID-based 

synchronization demonstrate that the established system 
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can be employed for further secure communication studies. 

However, controller performance may be improved through 

future research using optimization methods. 

Author contributions: Concept – H.C., A.G.; Data 

Collection & Processing – H.C., A.G.; Literature Search – 

H.C., A.G.; Writing – H.C., A.G. 

Conflict of Interest: No conflict of interest was declared 

by the authors.  

Financial Disclosure: The authors declared that this study 

has received no financial support.  

REFERENCES  

[1] M. Demirtas, E. Ilten, and H. Calgan, “Pareto-based 

multi-objective optimization for fractional order PI
λ
 

speed control of induction motor by using Elman 

Neural Network,” Arab. J. Sci. Eng., vol. 44, no. 3, 

pp. 2165–2175, 2019. 

[2] Z. Wei, A. Akgul, U. E. Kocamaz, I. Moroz, and W. 

Zhang, “Control, electronic circuit application and 

fractional-order analysis of hidden chaotic attractors in 

the self-exciting homopolar disc dynamo,” Chaos, 

Solitons & Fractals, vol. 111, pp. 157–168, 2018. 

[3] E. Ilten and M. Demirtas, “Fractional order super-

twisting sliding mode observer for sensorless control 

of induction motor,” COMPEL - Int. J. Comput. Math. 

Electr. Electron. Eng., vol. 38, no. 2, pp. 878–892, 

Mar. 2019.  

[4] M. Odabaşı, “Exact analytical solutions of the 

fractional biological population model, fractional EW 

and modified EW equations,” An Int. J. Optim. 

Control Theor. Appl., vol. 11, no. 1, pp. 52–58, 2021. 

[5] A. A. Hamou, R. R. Q. Rasul, Z. Hammouch, and N. 

Özdemir, “Analysis and dynamics of a mathematical 

model to predict unreported cases of COVID-19 

epidemic in Morocco,” Comput. Appl. Math., vol. 41, 

no. 6, p. 289, 2022. 

[6] D. Avcı and F. Soytürk, “Optimal control strategies 

for a computer network under virus threat,” J. 

Comput. Appl. Math., vol. 419, p. 114740, 2023. 

[7] I. Grigorenko and E. Grigorenko, “Chaotic dynamics 

of the fractional Lorenz system,” Phys. Rev. Lett., vol. 

91, no. 3, p. 34101, 2003. 

[8] T. T. Hartley, C. F. Lorenzo, and H. K. Qammer, 

“Chaos in a fractional order Chua’s system,” IEEE 

Trans. Circuits Syst. I Fundam. Theory Appl., vol. 42, 

no. 8, pp. 485–490, 1995. 

[9] A. Gokyildirim, H. Calgan, and M. Demirtas, 

“Fractional-Order sliding mode control of a 4D 

memristive chaotic system,” J. Vib. Control, p. 

10775463231166188, 2023. 

[10] A. Akgul, C. Arslan, and B. Arıcıoglu, “Design of an 

interface for random number generators based on 

integer and fractional order chaotic systems,” Chaos 

Theory Appl., vol. 1, no. 1, pp. 1–18, 2019. 

[11] A. Akgul, Y. Adiyaman, A. Gokyildirim, B. 

Aricioglu, M. A. Pala, and M. E. Cimen, “Electronic 

circuit implementations of a fractional-order chaotic 

system and observing the escape from chaos,” J. 

Circuits, Syst. Comput., vol. 32, no. 05, p. 2350085, 

Mar. 2023. 

[12] O. Atan, M. Turk, and R. Tuntas, “Fractional order 

controller design for fractional order chaotic 

synchronization.,” Int. J. Nat. Eng. Sci., vol. 7, no. 3, 

2013. 

[13] G. Xu, S. Zhao, and Y. Cheng, “Chaotic 

synchronization based on improved global nonlinear 

integral sliding mode control☆,” Comput. Electr. 

Eng., vol. 96, p. 107497, 2021. 

[14] F. Motallebzadeh, M. R. J. Motlagh, and Z. R. 

Cherati, “Synchronization of different-order chaotic 

systems: Adaptive active vs. optimal control,” 

Commun. Nonlinear Sci. Numer. Simul., vol. 17, no. 

9, pp. 3643–3657, 2012. 

[15] C. Ge, C. Hua, and X. Guan, “Master-slave 

synchronization criteria of Lur’e systems with time-

delay feedback control,” Appl. Math. Comput., vol. 

244, pp. 895–902, 2014. 

[16] S. Çiçek, A. Ferikoglu, and I. Pehlivan, “A new 3D 

chaotic system: Dynamical analysis, electronic circuit 

design, active control synchronization and chaotic 

masking communication application,” Optik (Stuttg)., 

vol. 127, no. 8, pp. 4024–4030, 2016. 

[17] S. Keyong, B. Ruixuan, G. Wang, W. Qiutong, and Z. 

Yi, “Passive synchronization control for integer-order 

chaotic systems and fractional-order chaotic systems,” 

in 2019 Chinese Control Conference (CCC), 2019, pp. 

1115–1119. 

[18] Z.-A. S. A. Rahman, H. A. A. Al-Kashoash, S. M. 

Ramadhan, and Y. I. A. Al-Yasir, “Adaptive control 

synchronization of a novel memristive chaotic system 

for secure communication applications,” Inventions, 

vol. 4, no. 2, p. 30, 2019. 

[19] P. Alexander, S. Emiroğlu, S. Kanagaraj, A. Akgul, 

and K. Rajagopal, “Infinite coexisting attractors in an 

autonomous hyperchaotic megastable oscillator and 

linear quadratic regulator-based control and 

synchronization,” Eur. Phys. J. B, vol. 96, no. 1, p. 12, 

2023. 

[20] A. Gokyildirim, U. E. Kocamaz, Y. Uyaroglu, and H. 

Calgan, “A novel five-term 3D chaotic system with 

cubic nonlinearity and its microcontroller-based 

secure communication implementation,” AEU - Int. J. 

Electron. Commun., vol. 160, p. 154497, Feb. 2023. 

[21] C. Ma, J. Mou, J. Liu, F. Yang, H. Yan, and X. Zhao, 

“Coexistence of multiple attractors for an 

incommensurate fractional-order chaotic system,” Eur. 

Phys. J. Plus, vol. 135, pp. 1–21, 2020. 

[22] P. Muthukumar, P. Balasubramaniam, and K. 

Ratnavelu, “Synchronization and an application of a 

novel fractional order King Cobra chaotic system,” 

Chaos An Interdiscip. J. Nonlinear Sci., vol. 24, no. 3, 

2014. 

Abdullah GÖKYILDIRIM, Haris ÇALGAN

Synchronization of Incommensurate Fractional-Order King Cobra Chaotic System

Academic Platform Journal of Engineering and Smart Systems (APJESS) 11(3), 184-190, 2023 189



 

 

[23] A. Gokyildirim, “Circuit realization of the fractional-

order Sprott K chaotic system with standard 

components,” Fractal Fract., vol. 7, no. 6, p. 470, 

2023. 

[24] K. Rajagopal et al., “Multistability and coexisting 

attractors in a new circulant chaotic system,” Int. J. 

Bifurc. Chaos, vol. 29, no. 13, p. 1950174, 2019. 

[25] M. S. Tavazoei and M. Haeri, “A necessary condition 

for double scroll attractor existence in fractional-order 

systems,” Phys. Lett. A, vol. 367, no. 1–2, pp. 102–

113, 2007. 

[26] M.-F. Danca, “Matlab code for Lyapunov exponents 

of fractional-order systems, part ii: The 

noncommensurate case,” Int. J. Bifurc. Chaos, vol. 31, 

no. 12, p. 2150187, 2021. 

[27] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. 

Vastano, “Determining Lyapunov exponents from a 

time series,” Phys. D Nonlinear Phenom., vol. 16, no. 

3, pp. 285–317, Jul. 1985. 

[28] S. Emiroglu, A. Akgül, Y. Adıyaman, T. E. Gümüş, 

Y. Uyaroglu, and M. A. Yalçın, “A new hyperchaotic 

system from T chaotic system: dynamical analysis, 

circuit implementation, control and synchronization,” 

Circuit World, vol. 48, no. 2, pp. 265–277, 2022. 

[29] H. Calgan and M. Demirtas, “Design and 

implementation of fault tolerant fractional order 

controllers for the output power of self-excited 

induction generator,” Electr. Eng., vol. 103, no. 5, pp. 

2373–2389, 2021. 

[30] T. Amieur, M. Bechouat, M. Sedraoui, S. Kahla, and 

H. Guessoum, “A new robust tilt-PID controller based 

upon an automatic selection of adjustable fractional 

weights for permanent magnet synchronous motor 

drive control,” Electr. Eng., pp. 1–18, 2021. 

[31] S. Matlab, “Matlab,” MathWorks, Natick, MA, 2012. 

[32] H. Li, Y. Shen, Y. Han, J. Dong, and J. Li, 

“Determining Lyapunov exponents of fractional-order 

systems: A general method based on memory 

principle,” Chaos, Solitons & Fractals, vol. 168, p. 

113167, 2023. 

 

 

 

 

 

 

 

Abdullah GÖKYILDIRIM, Haris ÇALGAN

Synchronization of Incommensurate Fractional-Order King Cobra Chaotic System

Academic Platform Journal of Engineering and Smart Systems (APJESS) 11(3), 184-190, 2023 190


