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Abstract 

 

In this paper, we study home healthcare routing and scheduling problem where multiple hospitals serve patients. In the public 

hospitals in healthcare system of Türkiye, patients requiring home healthcare are assigned to the hospital that serves their place 

of residence.  This can cause the workload of hospitals to become unbalanced in terms of the time needed for both traveling and 

operation. The aim of this paper is to generate routes with a balanced workload for hospitals, giving consideration to the time 

windows of patients and the working hours of health workers. Firstly, we construct a mathematical model which can solve toy 

and small-scale problems whilst taking into account the importance of a balanced workload. Then, a Tabu Search with a Variable 

Neighborhood Search (TS-VNS) algorithm is developed to solve large-scale problems. The performance of the TS-VNS 

algorithm is tested by comparing the results of the mathematical model with the generated test problems at a small scale. 

Additionally, large-scale test problems from the literature are sourced for the problem and solved by the TS-VNS algorithm. The 

results demonstrate the efficiency of the TS-VNS algorithm. 
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1.  INTRODUCTION  

There are many patients who are unable to go to hospitals for 

various reasons, such as old age, and home healthcare (HHC) 

has a significant impact on their well-being as it has been 

shown that life quality increases with HHC [1]. Since the 

population of people over 60 years is more than 1 billion and 

the rate of population aging is higher than ever before [2], 

HHC services will become increasingly important in the 

future. In fact, the size of the global HHC market was $345.6 

billion in 2022, and it is expected to grow at an annual rate 

of 7.9% from 2022 to 2030 [3]. 

In HHC services, the scheduling of appointments is 

complicated by the fact that a suitable time has to be found 

between two parties: the patients, with their preferred time 

windows, and the caregivers, such as nurses, doctors, 

physiotherapists, with their own hours of working and busy 

schedules. Additionally, all routes start from and end at the 

related hospital, pharmacy, laboratory, etc., but the order in 

which patients are visited (the routes) presents an 

optimization problem. All these operations in HHC service 

were first modeled as a Vehicle Routing Problem (VRP) with 

time windows by [4] (see also [5, 6, 7, 8, 9] for detailed 

survey). Generally, the objective is to minimize the total cost 

(time) of all the routes. 

In the public hospitals HHC system of Türkiye, each hospital 

that has caregivers for HHC serves a predetermined area, and 

patients are assigned to whichever hospital covers their place 

of residence. Given that hospitals have different capacities 

and that each area hosts a varied number of patients, 

hospitals are often burdened with unbalanced workloads and 

this may impact the quality of HHC offered by the hospitals 

that handle relatively more patients. In an attempt to address 

this issue, we propose a new problem for HHC with multi 

hospital and time windows under balanced workload of 

objectives. This problem is referred to as the multi-hospital 

home-healthcare routing problem with balanced workload 

(MH-HHCRP-BW). The basic constraints of MH-HHCRP-

BW are no route between hospitals, each route starts from 

and ends at the hospital, and each patient is served once. 

Additionally, the working hours and the time schedule for 

each patient is taken into account with time windows 

constraints. 

Firstly, we develop a mathematical model for MH-HHCRP-

BW. Then, since the model can solve the problem with a 

limited number of patients and hospitals, we propose a 

hybrid of a Tabu Search and Variable Neighborhood Search 

(TS-VNS) algorithm since VNS provides the flexibility of 

designing of neighborhood structures and TS prevents cycles 

in the search space. 
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Additionally, we generate some small problems to solve by 

both the mathematical model and TS-VNS. Then, we 

compare the performance of the TS-VNS with the solutions 

obtained from mathematical model. Finally, multi-depot 

VRP test problems with time windows are modified to 

generate a large-scale data set, and then, these problems are 

solved by TS-VNS. 

The main contribution of this paper can be summarized as 

follows: 1) We create a multi-hospital HHC model. 2) We 

aim to generate solutions with balanced workloads among 

hospitals. 3) We model the problem as a mixed-integer 

mathematical model. 4) We propose a TS-VNS algorithm 

with a new insertion operator to solve the problem within a 

reasonable time. 5) We generate new small-scale test 

problems and modify the large-scale from the literature for 

the problem, which we refer to as MH-HHCRP-BW. 

The rest of the paper is organized as follows: A literature 

review is given in Section 2. The mathematical model of the 

problem is described in detail in Section 3. The TS-VNS 

algorithm is explained in Section 4. The computational 

results are given in Section 5. Finally, some conclusions are 

drawn in Section 6. 

2.  LITERATURE REVIEW 

Bredstöm and Rönnqvist [10] studied the formulation of a 

combined VRP with time windows and additional temporal 

constraints and presented a home healthcare problem as a 

VRP. Furthermore, they proposed balancing constraints for 

vehicles; however, they optimized balance service duration 

or traveling time and model the problem for one hospital. In 

this paper, we extend the problem for multiple hospitals and 

we balance the workload in both service duration and 

traveling time. 

Lanzarone and Matta [11] dealt with home healthcare 

problem by only considering the patient-nurse assignment 

under the objective function-balancing maximum over 

workload of nurses. Each nurse has a predetermined 

workload and if this workload is not exceeded for each nurse, 

then the value of the objective function is zero whether the 

workload between nurses is balanced or not. Carello et al. 

[12] studied a patient-nurse assignment problem, where they 

addressed the problem from the perspectives of patients, 

nurses, and service providers. To solve the problem, they 

employed integer linear programming and utilized different 

objective functions to optimize the assignment process. 

Yuan et al. [13] worked on the HHC problem in the case of 

patients’ stochastic service times and caregivers’ skill 

requirements. A stochastic model was proposed and, while 

column generation was used to solve the master problem, a 

label algorithm was developed to solve the pricing sub-

problem. Rest and Hirsch [14] considered the problem with 

time-dependent public transport since most of the caregivers 

from the Austrian Red Cross in Vienna use a combination of 

public transport and walking. Then, they proposed a tabu 

search to solve the problem. 

Shi et al. [15] dealt with a HHC problem with fuzzy demands 

related to the quantity of drugs required for each customer 

and designed a fuzzy change constraint model. Additionally, 

a hybrid genetic algorithm integrated with stochastic 

simulation methods was developed. Masmoudi and 

Cheikhrouhou [16] considered HHC for one hospital with a 

heterogeneous fleet and a lunch break under the objective of 

cost minimization. They introduced a mathematical model 

and developed the Adaptive Large Neighborhood Search. 

Liu et al. [17] dealt with stochastic travel and service time 

and proposed a method that combines a branch-and-price 

algorithm and a discrete approximation method. 

Bahadori-Chinibelagh et al. [18] proposed a multi-depot 

VRP with time windows model for HHC where depots are 

pharmacies. Each route starts from a pharmacy and ends at 

the related laboratory. The objective is to minimize the total 

cost. Additionally, two constructive heuristics were 

developed. Our study differs from it in terms of the objective 

function and the fact that each route starts from and ends at 

the related hospital. 

Tanoumand and Ünlüyurt [19] considered new resource 

constraints: there are two types of personnel providing the 

service, but the number of personnel is limited. Then, they 

proposed an exact algorithm, the branch-and-price 

algorithm, to solve the problem. Li et al. [20] extended the 

problem for outpatient services and considered a new 

objective: minimizing the waiting times for outpatients. 

Then, they adopted an outer-approximation method and 

developed a hybrid genetic algorithm. 

Besides these studies, in order to solve the HHC routing 

problem, Allaoua [21] proposed a matheuristic based on the 

decomposition of mathematical programming. Cappanera et 

al. [22] conducted a study that involves scheduling, 

assignment, and routing decisions for random requests. To 

address this complex problem, they employed a matheuristic 

approach. Frifita et al. [23] developed a general variable 

neighborhood search (see also [24] for a detailed survey 

about variable neighborhood search in healthcare 

management). Rahimian et al. [25] proposed a hybrid 

approach that combines integer programming and variable 

neighborhood search methods. Riazi et al. [26] studied 

decomposition and distributed algorithms, and Riazi et al. 

[27] proposed a gossip-column generation algorithm. 

Moussavi et al. [28] proposed a new mathematical 

formulation and then developed a matheuristic approach 

based on the decomposition of the mathematical 

formulation.  Grenouilleau et al. [29] presented a set 

partitioning heuristic based on a set partitioning formulation 

and a large neighborhood search framework, and 

Grenouilleau et al. [30] developed new decomposition 

methods for predefined visits. Shahnejat-Bushehri et al. [31] 

conducted a study that involves random travel and 

transaction times. They employed three different meta-

heuristic algorithms (i.ei. simulated anneling, genetic 

algorithm, and memtic algorithm) to address this problem 

with the objective of minimizing the total processing time. 

Dekhici et al. [32] solved the home-care problem by utilizing 

the firefly algorithm, which is a metaheuristic algorithm. 

They modeled the problem as a vehicle routing problem with 

time windows, where the objective function aimed to 

minimize the total route time. Hassani et al. [33] introduced 

the differential evaluation algorithm as a solution approach 
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for a nurse scheduling problem. The objective of their 

proposed algorithm is to minimize the overall cost, which 

includes various factors such as overtime, undertime, 

employment, and other related costs. 

Furthermore, the HHC problem can also have multiple 

objectives. Rasmussen et al. [34] considered three 

objectives: minimizing the total cost, maximizing 

preference-based visits of caregiving sans patients, and 

maximizing the number of visited patients. Nickel et al. [35] 

dealt with the HHC problem by minimizing four objectives: 

the number of unscheduled tasks, the nurse-patient loyalty 

and overtime study, and the distance travelled by all nurses. 

It should be noted that only total overtime study and distance 

travelled is aimed to be minimized and the workload 

balanced is not taken into consideration. Mankowska et al. 

[36] considered minimizing three objectives: the total 

distance travelled, the total tardiness of services and the 

maximal tardiness observed overall service operation. The 

third objective function is similar to our objective function, 

however the tardiness is determined if a service lasts after the 

time windows of a patient. Thus, if all services can be 

scheduled between time windows of patients, then the value 

of the third objective function is equal to zero whether the 

workload is balanced or not.  Braekers et al. [37] studied the 

HHC routing problem with two objectives: minimizing the 

cost and customer inconvenience. They applied an 

𝜖−constraint method to solve their mathematical model and 

also developed a metaheuristic based on a multi-directional 

local search. 

Moreover, Hertz and Lahrichi [38] studied the problem for 

balancing workload of both service time and traveling time. 

Yalcindag et al. [39] proposed a data-driven method to 

estimate the travel times and dealt with the HHC problem 

with balancing the workload. Yalcindag et al. [40] presented 

a two-stage approach for addressing a home health care 

problem. This approach gradually combines the stages of 

assignment, planning, and scheduling decisions. The 

objective of the proposed model is to balance the workloads 

of operators, taking into account both travel time and service 

time. Decerle et al. [41] considered three objective functions: 

balancing the workload, and minimizing both the total time 

and patients’ dissatisfaction. They formulated the problem 

and then developed a hybrid memetic-ant colony 

optimization algorithm. Kandakoglu et al. [42] tackled the 

scheduling and routing problem of home health nurses by 

employing a mixed-integer linear programming algorithm. 

The objective of their study was to balance the workload 

among the nurses effectively. Gomes et al. [43] focused on 

addressing a multi-objective problem in a system that 

involves patient-caregiver loyalty and dynamic patient 

numbers. Their study aimed to optimize multiple objectives, 

including workload balancing, minimizing total travel time, 

and minimizing the variation in visiting hours. Yang et al. 

[44] dealt with three objectives: minimizing the route cost, 

improving service consistency and balancing the workload. 

Additionally, the travel and service time were considered to 

be uncertain, so a multi-objective artificial bee colony 

framework was developed to solve the problem.  The 

workload objective of these three studies [34-44] is similar 

to our work, but those covered the case of only one hospital. 

We summarized the literature in Table 1 and it is shown from 

Table 1, the problem MH-HHCRP-BW defined in this paper 

cover all the criteria: balance workload for both service 

duration and traveling time, and multiple hospital. It is seen 

from Table 1 that there are studies that deal with balancing 

the workload taking into consideration only service duration 

or only travelling time or both of them. However, all these 

problems are for one hospital. A HHC system may have 

multiple hospitals, e.g., the main motivation of this paper, 

public hospitals in Türkiye. Addition, there are private 

healthcare companies having multiple affiliates in an area 

and providing services for HHC. Thus, balancing the 

workload for only one hospital of the healthcare systems 

having multiple hospitals is not sufficient to be fair among 

healthcare workers of the relevant healthcare system. 

According to best of our knowledge, our study is the first 

considering all these criteria, especially for multiple 

hospitals. 

Table 1. Literature Review 

Study 

Balance the 

Workload 

Multiple 

Hospital 

Service 

Duration 

Travelling 

Time 

 

Bredstöm and Rönnqvist 

[10] 
– + – 

Lanzarone and Matta 

[11] 
+ – – 

Carello et al. [12] + – – 

Yuan et al. [13] – – – 

Rest and Hirsch [14] – – – 

Shi et al. [15] – – – 

Masmoudi and 

Cheikhrouhou [16] 
– – – 

Liu et al. [17] – – – 

Bahadori-Chinibelagh et 

al. [18] 
– – + 

Tanoumand and 

Ünlüyurt [19] 
– – – 

Li et al. [20] – – – 

Allaoua [21] – – – 

Cappanera et al. [22]  + + – 

Frifita et al. [23] – – – 

Rahimian et al. [25] – – – 

Riazi et al. [26] – – – 

Riazi et al. [27] – – – 

Moussavi et al. [28] – – – 

Grenouilleau et al. [29] – – – 

Grenouilleau et al. [30] – – – 

Shahnejat-Bushehri et 

al. [31] 
– – – 

Dekhici et al. [32] – – – 

Hassani et al. [33]  – – – 

Rasmussen et al. [34] – – – 

Nicket et al. [35] – – – 

Mankowska et al. [36] – – – 

Braekers et al. [37] – – – 

Hertz and Lahrichi [38] + + – 

Yalcindag et al. [39] + + – 

Yalcindag et al. [40] + + – 

Decerle et al. [41] + + – 

Kandakoglu et al. [42] + + – 

Gomes et al. [43] + + – 

Yang et al. [44] + + – 

This study + + + 

Gülçin DİNÇ YALÇIN, Tuğçe YAVUZ, Şüheda ALTINTAŞ

Home Healthcare Routing Problem for Multiple Hospitals with Balanced Workload

Academic Platform Journal of Engineering and Smart Systems (APJESS) 11(3), 135-150, 2023 137



 

 

3.  PROBLEM DESCRIPTION AND 

MATHEMATICAL MODEL  

In the MH-HHCRP-BW, the assumptions are: there is more 

than one hospital; patients and caregivers have time 

windows; each patient is visited at one time by one caregiver; 

a route between the hospitals is not allowed; and each route 

starts from and ends at a hospital. A demonstration of the 

problem is given in Figure 1. The pentagons and circles 

represent hospitals and patients, respectively.  

 
Figure 1. A demonstration of the MH-HHCRP-BW 

First, we define sets, parameters and decision variables of the 

problem as follows. 

Sets: 

𝐾 Set of routes. 

𝐼0 Set of hospitals. 

𝐼1 Set of patients. 

𝐼0  ∪ 𝐼1 = 𝐼 Set of hospitals and patients. 

Parameters: 

𝑇𝑖𝑗 Travel time between 𝑖th hospital/patient and 

𝑗th hospital/patient, ∀𝑖, 𝑗 ∈ 𝐼. 

𝐷𝑖  Operation time for the 𝑖th patient, ∀𝑖 ∈ 𝐼1. 
[𝑎𝑖 , 𝑏𝑖] Time windows for the 𝑖th patient, ∀𝑖 ∈ 𝐼1. 
[𝑒𝑖 , 𝑙𝑖] Time windows (working hours) for the 𝑖th 

hospital, ∀𝑖 ∈ 𝐼0. 

Decision variables: 

𝑥𝑖𝑗𝑘 
{

1, if route 𝑘 goes from 𝑖 to 𝑗
0, otherwise                               

, 

∀𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾. 

𝑡𝑖 The start time of the visit to the ith patient, ∀𝑖 ∈ 𝐼1. 

The MILP is reformulated for the MH-HHCRP-BW as 

follows (see e.g. [45, 46]). 

𝑚𝑖𝑛 𝑚𝑎𝑥
∀𝑘,𝑙∈𝐾,𝑙≠𝑘

{∑ ∑ (𝑇𝑖𝑗 + 𝐷𝑖)𝑥𝑖𝑗𝑘𝑗∈𝐼𝑖∈𝐼 −

∑ ∑ (𝑇𝑖𝑗 + 𝐷𝑖)𝑥𝑖𝑗𝑙𝑗∈𝐼𝑖∈𝐼 }  , 

(1) 

subject to    

∑ ∑ 𝑥𝑖𝑗𝑘𝑖∈𝐼0𝑘∈𝐾 = 0   ∀𝑗 ∈ 𝐼0  (2) 

∑ ∑ 𝑥𝑖𝑗𝑘𝑖∈𝐼𝑘∈𝐾 = 1   ∀𝑗 ∈ 𝐼1  (3) 

∑ ∑ 𝑥𝑖𝑗𝑘𝑖∈𝐼𝑘∈𝐾 = ∑ ∑ 𝑥𝑗𝑖𝑘𝑖∈𝐼𝑘∈𝐾    ∀𝑗 ∈ 𝐼1  (4) 

∑ 𝑥𝑖𝑗𝑘𝑗∈𝐼1
= ∑ 𝑥𝑗𝑖𝑘𝑗∈𝐼1

  ∀𝑖 ∈ 𝐼0, 𝑘 ∈ 𝐾  (5) 

∑ ∑ 𝑥𝑖𝑗𝑘𝑗∈𝐼1𝑘∈𝐾 = 1   ∀𝑖 ∈ 𝐼0  (6) 

𝑡𝑖𝑘 + (𝑇𝑖𝑗 + 𝐷𝑖) ≤ 𝑡𝑖𝑘 + 𝑏𝑖(1 − 𝑥𝑖𝑗𝑘)  

∀𝑖, 𝑗 ∈ 𝐼, 𝑘 ∈ 𝐾  

(7) 

𝑎𝑖 ∑ 𝑥𝑖𝑗𝑘

𝑗∈𝐼

≤ 𝑡𝑖𝑘 ≤ 𝑏𝑖 ∑ 𝑥𝑖𝑗𝑘

𝑗∈𝐼

   

∀𝑖 ∈ 𝐼1, 𝑘 ∈ 𝐾  

(8) 

𝑒𝑖 ≤ 𝑡𝑖𝑘 ≤ 𝑙𝑖  ∀𝑖 ∈ 𝐼0, 𝑘 ∈ 𝐾  (9) 

𝑥𝑖𝑗𝑘 ∈ {0,1}  ∀𝑖, 𝑗 ∈ 𝐼, 𝑘 ∈ 𝐾  (10) 

𝑡𝑖𝑘 ≥ 0  ∀𝑖 ∈ 𝐼1 . (11) 

The objective (1) is to balance the workload between 

hospitals. The workload contains both the traveling time and 

the operation time for patients.  Equation (2) prevents travel 

between hospitals. Equation (3) ensures that every patient is 

visited once. Equation (4) says that if a patient is visited by 

a hospital team, then the team should leave from the patient. 

Equation (5) declares that the team should leave from a 

hospital and then return to the hospital. Equation (6) ensures 

that only one home healthcare vehicle leaves from a hospital. 

Equation (7) takes into consideration both the traveling time 

and operation time of the patient to determine the visiting 

time of the patient. Equation (8) restricts the visiting time of 

a patient to the suitable time window of the patient. Equation 

(9) ensures that the vehicles for home healthcare leave and 

return to hospitals within a work shift. Equations (10) and 

(11) specify the variable domains. The objective function (1) 

for multiple hospitals and the equation (7) with operations 

time of patients and the equation (8) for the work shift of 

home healthcare team are newly defined in this paper.  

The objective function (1) is linearized as following: 

min 𝑤  (12 )  

∑ ∑ (𝑇𝑖𝑗 + 𝐷𝑖)𝑥𝑖𝑗𝑘𝑗∈𝐼𝑖∈𝐼 − ∑ ∑ (𝑇𝑖𝑗 +𝑗∈𝐼𝑖∈𝐼

𝐷𝑖)𝑥𝑖𝑗𝑙 ≤ 𝑤  ∀𝑘, 𝑙 ∈ 𝐾, 𝑖 ≠ 𝑗  
(13 )  

Thus, the final model is to minimize (12) under the 

constraints (2)-(11) and (13).  

Now, the importance of the new objective function is 

explained using a toy problem. Consider the following 

objective function that is minimizing the travel time of the 

routes.  

min ∑ ∑ ∑ 𝑇𝑖𝑗𝑥𝑖𝑗𝑘𝑗∈𝐼𝑖∈𝐼𝑘   (14 )  
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When the objective function about time minimization (14) is 

taken into consideration, an unbalanced workload may 

occur. A toy problem is generated (the data for the toy 

problem is given in the appendix). Then, the toy problem is 

solved with the model, having objective function (12) under 

the constraints (2)-(11), (13), and objective function (14) 

under the constraints (2)-(11), individually. The results are 

given in detail in Table 2.  The time difference between the 

hospitals having maximum and minimum total time (the sum 

of total travel time and total operation time) is 15.7 minutes 

for objective function (12) while it is 135.1 minutes for 

objective function (14). It is clearly seen that the new 

objective function ensures a balanced workload among 

hospitals in terms of both travel time from hospital to homes 

and operation time at homes. 

Table 2. Results of the toy problem for the objective 

functions (12) and (14) 

Objective 

function 

Hospital 

number 

Total 

travel 

time 

Total 

operation 

time 

Total 

time 

(12)- 

balancing the 

workload 

Hospital 1 210 19.4 229.4 

Hospital 2 195 34.8 229.8 

Hospital 3 208 25.1 233.1 

Hospital 4 200 17.4 217.4 

 

Maximum 

time 

difference 

15.7 

(14)- 

minimizing 

total time 

Hospital 1 264 29.2 293.2 

Hospital 2 259 22.9 281.9 

Hospital 3 138 20.1 158.1 

Hospital 4 152 24.5 176.5 

 Maximum 

time 

difference 

135.1 

 

4.  TABU SEARCH WITH VARIABLE 

NEIGHBOURHOOD SEARCH (TS-VNS)  

At this stage of the study, we use a heuristic and a 

metaheuristic algorithm together to solve the problem. 

Heuristic algorithms are preferred because they can find 

acceptable results in a relatively short time for problems that 

are difficult to solve or take a long time with classical 

optimization approaches. While heuristic algorithms offer 

problem-specific approaches, metaheuristic algorithms 

provide a guiding framework for solving the problem. In this 

study we use a heuristic algorithm to generate a feasible 

initial solution. After that we apply the hybrid algorithm, we 

propose which combines two different metaheuristic 

algorithms: Tabu search and Variable neighborhood search.  

4.1.  The Initial Solution 

We developed a heuristic algorithm to find a feasible initial 

solution. The algorithm that is given in Figure 2 assigns each 

route in random order by taking into account the time 

window constraints. The algorithm continues this 

assignment process until all patients are assigned. We used 

permutation representation to represent routes since the 

permutation representation provides an efficient 

representation of the solution space of our problem and is 

advantageous for search procedures. And so, the solution is 

generated by the heuristic algorithm has matrix form in 

which each row is a route. 

One of the parameters used in the pseudocode in Figure 2, 

lb, is a vector which represents the lower bounds of the time 

window constraints. The variable nodes represent the patient 

group to be assigned to routes, and routes represents the 

number of routes to be created. 

Function InitialSolution (nodes, routes, lb) 

for each x:                          /* x is the notation of routes */ 

     x[0] = argmin(lb) 

     delete lb[argmin(lb)] 

     delete nodes [x[0]] 

while nodes ≠  ∅  

     routes = Permutation (routes) 

     for each r: 

          Generate a list of nodes eligible to be assigned to     

the current route. 

          if list ≠  ∅ 

               Choose the node which has a minimum time 

window lower bound in the list.                   

           else 

                 break 

          end if 

     end for 

end while 

Figure 2. Pseudo code for feasible initial solution 

4.2.  TS-VNS  

The tabu search algorithm is a metaheuristic with memory 

[47]. The memory is a tabu list that stores previous solutions 

or moves to prevent cycles in the search space. The algorithm 

starts with a feasible solution and proceeds by searching for 

neighboring solutions of this current solution with move 

operators. The algorithm calculates a fitness value for each 

feasible neighboring solution it reaches. If this fitness value 

is better than the fitness value of the best available solution, 

the current best solution is updated. If there is no better 

solution than the current best solution among the 

neighboring solutions, the current solution is updated with a 

feasible neighbor solution with a worse fitness value. The 

searching continues from this current solution. Besides, the 

variable neighborhood search aims to reach the global 

optimum by changing the neighborhood of a local search 

stuck in the local optimum, and it also uses neighborhood 

change in descent to the local optimum [48]. 

In the TS-VNS approach, we use some procedures of Tabu 

search and Variable neighborhood search algorithms 

together. The part that we inherit from the VNS algorithm in 

the proposed approach is the use of three different move 

operators which are inter-route swap, in-route swap, and 

insertion. We use inter-route swap and in-route swap 

operators nested. Inter-route swap disrupts the initial 

solution and diversion the local search to another area. Then, 

in-route swap searches feasible and improvement solutions 

and thus searching intensifies in this search area.  This nested 
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loop iterates over a deterministic number of iterations. And 

finally, we aim to shake the current solution in a controlled 

way with the insertion operator. The algorithm uses tabu lists 

for swap operators and this is the part of taken from the TS 

algorithm. We use the short-term memory and aim to prevent 

circles in the search space with using tabu lists as with the 

TS algorithm. Pseudocode of the TS-VNS algorithm is given 

in Figure 3. 

Function TS-VNS (r, end1, end2) 

r* = r                                                                                                                      /* the best current solution */ 

Z* = ObjValue(r*) 

iter = 0 

Create a empty tabu list for inter-route swap operation which called tabucswap 

while iter < end1:        /*inter-route swap phase*/ 

Choose 2 random routes and 2 random positions [𝑟𝑜𝑢𝑡𝑒1, 𝑟𝑜𝑢𝑡𝑒2, 𝑝𝑜𝑠1, 𝑝𝑜𝑠2] for inter-route swap operation and 

check if [𝑟𝑜𝑢𝑡𝑒1, 𝑟𝑜𝑢𝑡𝑒2, 𝑝𝑜𝑠1, 𝑝𝑜𝑠2] in tabucswap  

If this move is a tabu then repeat previous step 

Apply inter-route swap operation on current solution and update current solution as 

𝐫 [𝑟𝑜𝑢𝑡𝑒1][𝑝𝑜𝑠1], 𝐫 [𝑟𝑜𝑢𝑡𝑒2][𝑝𝑜𝑠2]  ← 𝐫[𝑟𝑜𝑢𝑡𝑒2][𝑝𝑜𝑠2], 𝐫[𝑟𝑜𝑢𝑡𝑒1][𝑝𝑜𝑠1]   

if r is feasible 

                𝑍 = ObjValue(𝐫) 

         if 𝑍 ≤  𝑍∗   

     𝐫∗  ←   𝐫 

     𝑍∗ ← ObjValue(𝐫) 

                   end if  

   else         /*in-route swap phase*/ 

Apply swap operation for route1 and update current solution as  𝐫 ← Swap(𝐫, 𝐫[𝑟𝑜𝑢𝑡𝑒1], 𝑖) 

         if swap operator found a better solution 

   𝐫∗ ←  𝐫 

   𝑍∗ ← ObjValue(𝐫) 

         else 

                 Apply swap operation for route2 and update current solution as 𝐫 ← Swap(𝐫, 𝐫[𝑟𝑜𝑢𝑡𝑒2], 𝑖) 

      if swap operator found a better solution 

                                     𝐫∗ ←  𝐫 

    𝑍∗ ← ObjValue(𝐫)  

 end if 

end if 

 end if 

 𝑖𝑡𝑒𝑟 ∶=  𝑖𝑡𝑒𝑟 +  1  

Append [𝑟𝑜𝑢𝑡𝑒1, 𝑟𝑜𝑢𝑡𝑒2, 𝑝𝑜𝑠1, 𝑝𝑜𝑠2] to tabucswap  

end while 

𝑖𝑡𝑒𝑟 =  0  

 while iter < end2        /*insertion phase*/ 

𝐫𝐧𝐞𝐰 =  Insertion (𝐫)  

if 𝐫𝐧𝐞𝐰 is feasible: 

𝐫 ←  𝐫𝐧𝐞𝐰  

𝑍 = ObjValue(𝐫)  

if  Z ≤  𝑍∗   

𝐫∗ ←  𝐫  

𝑍∗ ← ObjValue(𝐫)  

end if 

end if 

𝑖𝑡𝑒𝑟 ∶=  𝑖𝑡𝑒𝑟 +  1  

end while 

Figure 3. Pseudo code for TS-VNS 
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The numbers represent the following conditions, respectively:   

1) There is no different feasible neighboring solution,  

2) A different feasible neighboring solution (𝐫𝐧𝐞𝐰) is exist,  

3) Znew ≤  Z∗. 

Figure 4. In-route swap phase in TS-VNS algorithm. 

Function Swap (r, route, i)  

𝐫𝐧𝐞𝐰 =  𝐫  

𝑖𝑡𝑒𝑟 =  0  

Create a empty list called tabuswap 

Calculate t which is total number of swap move for route 

which has n elements: 𝑡 =  𝑛(𝑛 − 1)/2 

While iter < t 

 Choose 2 random position [pos1, pos2] and 

check if this moves in tabuswap  

 If this move is a tabu then repeat previous step  

 Swap elements on these position in route: route 

[pos1], route [pos2] = route [pos2], route [pos1] 

 Append [pos1, pos2] to tabuswap  

 Update i. route in current solution 𝐫𝐧𝐞𝐰 with new 

route  

 if 𝐫𝐧𝐞𝐰 is feasible 

𝐫 ←  𝐫𝐧𝐞𝐰    

  break 

 end if 

 𝑖𝑡𝑒𝑟 ∶=  𝑖𝑡𝑒𝑟 +  1 

end while 

Figure 5. Pseudo code for in-route swap operator 

The first inputs of the TS-VNS function, r, is a feasible initial 

solution. We find this feasible initial solution by random 

assignments and for this, we run the function in Figure 2 

repeatedly until it finds a feasible solution. The other four 

inputs are hyperparameters, and decision maker determines 

their values. The first hyperparameter, iteration, is the 

number of iterations of outside loop which is the repeat 

number of process, and similarly inter-route swap represents 

the number of the inter-route swaps and insertion represents 

the number of insertions in the Figure 3. The last 

hyperparameter, tabu, is the size of the tabu list for the inter-

route swap operator. If the tabu list is complete when the last 

move is added to the tabu list, the oldest move is removed 

from the list. The in-route swap operator does not remove 

any tabu from the list as it searches for all neighboring 

solutions on a route. 

The TS-VNS procedure starts with the inter-route swap, 

which applies a swap operation between two randomly 

determined routes. The algorithm finds a new solution with 

the inter-route swap operator and moves on with this current 

solution (r). If r is a feasible solution that provides 

improvement, the current best solution is updated. If r is not 

feasible, the algorithm switches to another move operator. In 

this point, searching moves on with in-route swap operator. 

This operator aims to search the local area to reach any 

feasible solution. 

After the inter-route swap, there is two routes to apply in-

route swap process. We follow a sequential procedure to not 

miss the benefit of the swap made on one of the routes. 

Firstly, the algorithm applies the in-route swap for route1 

and it continues according to the result obtained. The in-

route swap operator can produce two different kinds of 

solutions: i) there is a different feasible neighboring solution 

and current solution is updated with this new solution, ii) 

current solution is not updated. If the in-route swap operator 

finds a new feasible solution, the objective function value of 

this new current solution is calculated. If the new current 

solution improves the current best solution, the current best 

solution is also updated. After the in-route swap operation if 

the current solution is the same, or if the new solution is not 

better than the current best solution then the in-route swap 

operator is applied on route2. The algorithm returns to the 

inter-route swap phase after the second in-route swap 
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operation and repeats the same steps. We explain this phase 

of the algorithm with a flowchart in Figure 4. As seen in the 

figure, if the algorithm reaches a new feasible solution by 

neighborhood search, the current solution is updated 

regardless of whether this solution is better than the current 

best solution. In this way, it is aimed to search for good 

solutions that can be reached over relatively bad solutions. 

After this first loop, which nested the diversification and 

intensification procedures, the algorithm switches the search 

operator for the last time. 

The in-route swap operator gets current solution r which is a 

2-dimensional vector, route which is a one-dimensional 

vector and i which is index of route in r as inputs. Then, it 

chooses 2 random position and swaps elements on these 

position in route. Finally, it updates route in r with new 

route. With the swap operator, it is possible to search for all  

Possible neighboring solutions. If neighboring searching 

find a feasible solution, then search stops, and the current 

route is updated with the new route. In the situation that is all 

neighboring solutions are searched, and no feasible solution 

is found, the current solution remains the same. Pseudo code 

for in-route swap operator is given in Figure 5. 

Function Insertion (r) 

Calculate workload of every route on current solution r 

and hold with an array; w 

Detect routes with maximum and minimum workloads:  

max_w and min_w 

Choose a random element in max_w and remove it from 

max_w, then insert this element in a random position in  

min_w 

Update r with these new two routes  

Figure 6. Pseudo code for insertion operator 

Third and last move operator is the insertion operator (see 

Figure 6) that is modified in a way that contributes to the 

workload balance, which is the objective of the problem. The 

proposed insertion operator is named as “balanced-insertion” 

operator. The balanced-insertion operator transfers a patient 

from the route with the highest workload to the route with 

the least workload. In this way, we aim to find better 

neighboring solutions with small steps. 

5.  COMPUTATIONAL RESULTS 

For numerical results, we used two types of test problems, 

which were classified as small-scale and large-scale. Table 3 

summarizes the information about the test problems. Small-

scale problems were generated, while large-scale problems 

were modified from the literature [49]. Small-scale problems 

were solved by both mathematical model and TS-VNS 

algorithm. Obtaining solutions of large-scale problems by 

the mathematical model within reasonable time is difficult 

due to the size of problems. Thus, these problems were 

solved by only the TS-VNS algorithm. In this section, we 

showed the performance of the TS-VNS algorithm against 

the solution of the mathematical model obtained by General 

Algebraic Modeling system (GAMS) with CPLEX solver for 

small-scale problems. In addition, we analyze the efficiency 

of the TS-VNS algorithm in large-scale problems in terms of 

time and the improvement it provides in random feasible 

initial solutions. We solved all runs by a computer with a 

core i7 processor (2.3 GHz) and 16 GB RAM.  

Table 3. Properties of test problems 

 

Problem 

no 

Number 

of 

patients 

Number of 

caregivers 

team for 

each 

hospital 

Number 

of 

hospitals 

Small-

scale 
pr-s-1 30 1 6 

pr-s-2 35 1 7 

pr-s-3 40 1 8 

pr-s-4 45 1 9 

Large-

scale 

pr-l-1 48 2 4 

pr-l-2 96 3 4 

pr-l-3 144 5 4 

pr-l-4 192 7 4 

pr-l-5 240 8 4 

pr-l-6 288 9 4 

pr-l-7 72 2 6 

pr-l-8 144 3 6 

pr-l-9 216 5 6 

pr-l-10 288 6 6 

pr-l-11 48 2 4 

pr-l-12 96 4 4 

pr-l-13 144 6 4 

pr-l-14 192 7 4 

pr-l-15 240 8 4 

pr-l-16 288 11 4 

pr-l-17 72 2 6 

pr-l-18 144 4 6 

pr-l-19 216 5 6 

pr-l-20 288 7 6 

In all of the solutions of the test problems with the TS-VNS 

algorithm, we performed three repetitions by considering the 

random initial solution of the algorithm and the random 

search mechanism in the structure of the algorithm. The 

value of time in the tables are the total duration of three 

repetitions, and the “best value” and “average value” are the 

best and average values found during this period. Since the 

purpose of the problem is the balanced distribution of 

workloads in terms of time, the results of the TS-VNS 

algorithm also express time. 

5.1.  Hyperparameter Optimization 

A hyperparameter tuning is required to determine the 

hyperparameter values (the number of iterations, inter-route, 

insertion, and tabu length) of the TS-VNS algorithm. For this 

purpose, we used a Python module called “hyperopt” [50]. 

Hyperopt is based on Bayesian optimization and supports 

automated hyperparameter optimization. Four basic 

components need to be defined to use hyperopt: an objective 

function to be minimized, a search space including 

hyperparameter values, a database to be used to store the 

points evaluated during the search, and a search algorithm to 

enable the transition between points in the search space. 
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Table 4. Search spaces of hyperparameters for hyperopt 

Hyperparameter Parameter of uniform distribution 

 Small-scale Large-scale 

Iteration (100, 500) (100, 1000) 

Inter-route swap (100, 500) (100, 1000) 

Insertion (50, 500) (100, 1000) 

Tabu length (10, 50) (10, 100) 

The objective function for this problem is to balance the total 

workload, that is, to minimize the difference between the 

workloads. Search space can be made up of discrete values 

as well as probability distributions. We used uniform 

distribution. Finally, tree of Parzen estimators (TPE) [51] 

and random search can be used for the search algorithm. We 

used TPE which is a sequential model-based optimization 

approach. 

We performed hyperparameter optimizations for small-scale 

and large-scale problems separately with using the problems 

pr-s-4 and pr-l-10 for small-scale problems and large-scale 

problems, respectively. We chose these problems because 

they are relatively large. Table 4 summarizes the distribution 

parameters we used for the search space. We made different 

trials before deciding on the distribution parameters. As a 

result of the guidance of these trials, we used search spaces 

with as wide ranges as possible. 

At the end of the search, which took about 3 hours (170.6 

min) for small-scale and about 21 hours (1249.4 min) for 

large-scale, the hyperparameter values we determined with 

hyperopt were [iteration:466, inter-route swap: 190, 

insertion: 429, tabu: 41] for small-scale problems and 

[iteration: 726, inter-route swap: 887, insertion: 318, tabu: 

49] for large-scale problems. 

5.2.  Small-Scale Test Problems 

We solved the small-scale test problems by both the 

mathematical model and TS-VNS algorithm. We used the 

General Algebraic Modeling System (GAMS) with CPLEX 

solver to solve the mathematical model within a 12-hour time 

limit. We solved the same problems with TS-VNS using the 

hyperparameter values mentioned above. The best and 

average values and also, a comparison with the GAMS-

CPLEX results are given in Table 5. The gap is calculated as 

(
𝑧𝑇𝑆−𝑉𝑁𝑆−𝑧𝐺𝐴𝑀𝑆−𝐶𝑃𝐿𝐸𝑋

𝑧𝐺𝐴𝑀𝑆−𝐶𝑃𝐿𝐸𝑋 )100    (15) 

where 𝑧𝑇𝑆−𝑉𝑁𝑆 and 𝑧𝐺𝐴𝑀𝑆 show the results obtained by TS-

VNS and GAMS-CPLEX, respectively. 

It is clear that the TS-VNS approach we proposed achieves 

successful results, especially as the problem size increases, it 

finds competitive results compared to GAMS-CPLEX. 

According to the best results TS-VNS found a better solution 

than GAMS-CPLEX for all problems of small-scale 

problems while for the average solution, it found better 

results for 3 out of the 4 small-scale problems. It is seen that 

the TS-VNS algorithm is more effective in terms of time. 

Addition, it should be noted, the best possible lower bound 

given by GAMS-CPLEX is 0 (zero) for all small-scale 

problems which means that the workload of all caregivers 

are equal. However, it is impossible to obtain the results that 

has the value of 0 (zero) since the problem is mixed-integer 

programming and the dual gap is highly possible. 

Table 5. Comparison of the results obtained by the 

mathematical model-GAMS and TS-VNS 

 pr-s-1 pr-s-2 pr-s-3 pr-s-4 

GAMS-CPLEX 

(within 12 hours) 
0.6 1.4 2.6 10.8 

TS-VNS (Average) 0.9 0.7 1.3 2.3 

Gap (%) 61.2 -49.2 -51.3 -78.8 

TS-VNS (Best) 0.3 0.4 0.9 0.9 

Gap (%) -42.3 -69.6 -64.6 -91.3 

TS-VNS time (min) 4.2 4.4 4.9 5.1 

5.3.  Large-Scale Test Problems 

We solved the 20 large-scale problems in Table 3 with the 

TS-VNS algorithm. We summarize the results in Table 6. In 

addition, we have included the averages of the objective 

function values of the feasible initial solutions produced in 

each iteration. The difference between the values of the 

initial solutions and the final values shows the success of the 

TS-VNS algorithm in improving the solution. 

Table 6. Results of large-scale test problems 

Problem 

no 

Initial 

solution 

TS-VNS 

(Best) 

TS-VNS 

(Average) 

Time 

(min) 

pr-l-1 201.1 4.1 5.1 40.3 

pr-l-2 222.8 7.9 12.9 123.5 

pr-l-3 220.3 8.0 11.9 128.7 

pr-l-4 419.3 7.4 9.3 144.5 

pr-l-5 257.5 4.4 6.7 199.8 

pr-l-6 266.0 6.7 7.9 280.6 

pr-l-7 159.2 6.2 7.4 52.7 

pr-l-8 266.0 7.7 9.8 161.4 

pr-l-9 277.8 5.9 7.0 168.2 

pr-l-10 288.6 8.5 10.0 285.5 

pr-l-11 232.7 1.1 1.2 48.3 

pr-l-12 344.9 1.9 2.1 78.9 

pr-l-13 333.3 3.9 4.8 101.9 

pr-l-14 301.4 2.8 3.8 161.5 

pr-l-15 264.3 2.7 2.9 229.6 

pr-l-16 359.2 4.2 5.2 215.1 

pr-l-17 212.1 1.6 2.2 61.1 

pr-l-18 337.4 3.7 3.9 101.9 

pr-l-19 298.3 3.7 4.5 194.4 

pr-l-20 303.8 5.2 5.5 228.9 

Finally, we made a comparison with large-sized problems to 

show that the balanced-insertion operator can achieve better 

results than the insertion moves with random selection. The 

numerical results are given in appendix Table A3. The 

graphs in Figure 7 visualize these numerical results. It can be 

seen from the graphs that the balanced-insertion approach 

yields better results. We use a t-test to test the significance 
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of the difference between the two approaches. “𝐻0: The 

average of results for the two different insertion type is 

equal”, and “𝐻1: The average of results for two different 

insertion type is not equal” are the hypothesis of t-test for 

both best and average results. The value of the test statistic 

is 2e-06 for best values and 8e-06 for average values. Both 

values are lower than the critic value at the 0.05 significance 

level, so the 𝐻0 hypothesis is rejected. As a result, there is a 

statistically significant difference between the results of 

balanced-insertion and random insertion. 

Figure 7. The comparison of balanced-insertion and random 

insertion: a) Best results of problems, b) Average results of 

problems 

6.  CONCLUSION 

In this paper, we study the home healthcare routing problem 

for multiple hospitals with the objective of balancing 

workloads between hospitals. For this purpose, we propose a 

mathematical model based on a multi-depot vehicle routing 

problem with time windows. We show that when the 

balancing of the workload is not taken into consideration the 

differences between the workloads of the hospitals may be 

very large. 

We generated small-scale problems and modified test 

problems from the literature for large-scale problems. Since 

the mathematical model can only solve the problem for up to 

45 patients and 9 hospitals (small-scale problems), we use 

general-purpose metaheuristic algorithms to find good 

solutions in large search spaces. In the study, we proposed a 

hybrid algorithm (TS-VNS) that combines the strengths of 

two different metaheuristic algorithms. For small-scale test 

problems, we compared the results obtained by the TS-VNS 

algorithm and the mathematical model solved by GAMS. 

Solutions show that the TS-VNS algorithm is capable of 

finding good solutions. Furthermore, large-scale problems 

are solved by the TS-VNS algorithm within a reasonable 

time. 

TS-VNS includes arrangements suitable for the 

representation of the problem, its purpose and time window 

constraints. In accordance with the objective function of the 

problem, the proposed "balanced-insertion" operator works 

better than the "random insertion" operator. In the study, 

results supporting that the algorithm has a successful search 

procedure in producing time-efficient and good solutions 

were obtained. In addition, TS-VNS has the flexibility of a 

general-purpose algorithm that can be easily applied to 

problems of similar nature. 

The study deals with the home health care problem with the 

aim of balanced workload in terms of both service time and 

travel time. Unlike studies in the literature that have both 

purposes, it seeks a solution for multiple hospitals. It is also 

innovative in terms of the proposed hybrid metaheuristic 

approach. 

For future research. Patients’ hospital preference could be 

considered. Since every preference may not be acted upon, a 

second objective function is modeled as maximizing the 

patients’ preference. Thus, a multi-objective mathematical 

model would be constructed and multi-objective solution 

methods, such as the weighted-sum method, would be 

needed to generate solutions. 
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Appendix 

The data of the toy problem is given in the following tables. Hospitals and patients are represented as “H” and “P”. respectively.  

Table A1. The time matrix between hospitals and patients 

 H1 H2 H3 H4 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 

H1 0 10.8 10.2 10.2 5.0 5.8 13.9 6.4 13.0 5.8 6.3 13.0 9.2 4.5 3.0 6.3 16.1 5.4 14.1 10.3 10.8 3.6 10.8 10.6 

H2 10.8 0 8.1 8.1 15.6 12.0 4.1 17.2 7.2 16.3 11.0 2.2 2.0 9.4 13.4 13.9 5.4 16.1 6.4 11.0 15.3 14.2 10.0 2.8 

H3 10.2 8.1 0 14.4 13.2 14.8 7.6 15.1 14.9 13.3 14.4 9.1 8.5 6.0 13.2 8.9 10.8 15.0 5.7 3.2 19.4 12.0 2.0 10.4 

H4 10.2 8.1 14.4 0 14.8 7.1 12.1 15.7 3.6 15.8 5.7 9.5 6.4 12.2 11.2 16.0 12.2 13.9 14.4 16.6 8.1 13.6 16.1 5.4 

P1 5.0 15.6 13.2 14.9 0 9.0 18.4 2.0 17.9 1.0 10.0 17.8 14.1 7.3 4.0 5.4 20.8 2.8 18.0 12.0 13.3 1.4 13.0 15.6 

P2 5.8 12.0 14.8 7.1 9.0 0.0 16.0 9.2 10.6 10.0 1.4 14.1 10.0 9.9 5.0 12.1 17.3 7.3 17.3 15.6 5.0 8.1 15.8 10.4 

P3 13.9 4.1 7.6 12.1 18.4 16.0 0.0 20.1 10.6 18.9 15.0 2.8 6.1 11.4 16.8 15.6 3.2 19.3 3.2 10.8 19.4 17.0 9.5 6.7 

P4 6.4 17.2 15.1 15.7 2.0 9.2 20.1 0.0 18.9 2.2 10.4 19.4 15.6 9.2 4.5 7.3 22.5 2.0 19.9 14.0 13.0 3.2 15.0 17.0 

P5 13.0 7.2 14.9 3.6 17.9 10.6 10.6 18.9 0.0 18.8 9.2 7.8 6.3 14.0 14.4 18.2 9.8 17.2 13.5 17.5 11.4 16.6 16.8 4.5 

P6 5.8 16.3 13.3 15.8 1.0 10.0 18.9 2.2 18.8 0.0 11.0 18.4 14.9 7.6 5.0 5.1 21.4 3.6 18.4 12.0 14.3 2.2 13.0 16.4 

P7 6.3 11.0 14.4 5.7 10.0 1.4 15.0 10.4 9.2 11.0 0.0 13.0 9.0 10.0 6.1 12.6 16.1 8.5 16.5 15.6 5.0 9.0 15.6 9.2 

P8 13.0 2.2 9.1 9.5 17.8 14.1 2.8 19.4 7.8 18.4 13.0 0.0 4.1 11.4 15.7 15.8 3.2 18.4 5.8 12.2 17.1 16.4 11.0 4.1 

P9 9.2 2.0 8.5 6.4 14.1 10.0 6.1 15.6 6.3 14.9 9.0 4.1 0.0 8.5 11.7 13.0 7.3 14.4 8.1 11.2 13.3 12.7 10.4 2.0 

P10 4.5 9.4 6.0 12.2 7.3 9.9 11.4 9.2 14.0 7.6 10.0 11.4 8.5 0.0 7.3 4.5 14.1 9.0 10.8 5.8 14.9 6.1 6.3 10.4 

P11 3.0 13.4 13.2 11.2 4.0 5.0 16.8 4.5 14.4 5.0 6.1 15.7 11.7 7.3 0.0 7.8 18.8 2.8 17.1 13.0 9.5 3.2 13.6 12.8 

P12 6.3 13.9 8.9 16.0 5.4 12.1 15.6 7.3 18.2 5.1 12.6 15.8 13.0 4.5 7.8 0.0 18.4 8.1 14.4 7.1 17.0 5.0 8.2 14.9 

P13 16.1 5.4 10.8 12.2 20.8 17.3 3.2 22.5 9.8 21.4 16.1 3.2 7.3 14.1 18.8 18.4 0.0 21.5 6.0 13.9 20.0 19.4 12.6 7.0 

P14 5.4 16.1 15.0 13.9 2.8 7.3 19.3 2.0 17.2 3.6 8.5 18.4 14.4 9.0 2.8 8.1 21.5 0.0 19.4 14.3 11.0 3.2 15.1 15.6 

P15 14.1 6.4 5.7 14.4 18.0 17.3 3.2 19.9 13.5 18.4 16.5 5.8 8.1 10.8 17.1 14.4 6.0 19.4 0.0 8.6 21.2 16.8 7.2 9.2 

P16 10.3 11.0 3.2 16.6 12.0 15.6 10.8 14.0 17.5 12.0 15.6 12.2 11.2 5.8 13.0 7.1 13.9 14.3 8.6 0.0 20.5 11.2 1.4 13.2 

P17 10.8 15.3 19.4 8.1 13.3 5.0 19.4 13.0 11.4 14.3 5.0 17.1 13.3 14.9 9.5 17.0 20.0 11.0 21.2 20.5 0.0 12.6 20.6 13.0 

P18 3.6 14.2 12.0 13.6 1.4 8.1 17.0 3.2 16.6 2.2 9.0 16.4 12.7 6.1 3.2 5.0 19.4 3.2 16.8 11.2 12.6 0.0 12.0 14.2 

P19 10.8 10.0 2.0 16.1 13.0 15.8 9.5 15.0 16.8 13.0 15.6 11.0 10.4 6.3 13.6 8.2 12.6 15.1 7.2 1.4 20.6 12.0 0.0 12.4 

P20 10.6 2.8 10.4 5.4 15.6 10.4 6.7 17.0 4.5 16.4 9.2 4.1 2.0 10.4 12.8 14.9 7.0 15.6 9.2 13.2 13.0 14.2 12.4 0.0 
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Table A2. Caregivers and patients” time windows and operation times (in minutes) 

No 
𝑒𝑖 for “H” 

𝑎𝑖 for “P” 

𝑙𝑖 for “H” 

𝑏𝑖 for “P” 
𝐷𝑖  

H1 480 1080 – 

H2 480 1080 – 

H3 480 1080 – 

H4 480 1080 – 

P1 900 960 56 

P2 720 1080 45 

P3 480 540 28 

P4 840 960 47 

P5 900 1020 26 

P6 540 960 54 

P7 600 720 42 

P8 840 1020 56 

P9 660 720 39 

P10 600 960 42 

P11 780 1080 28 

P12 660 840 21 

P13 540 1020 45 

P14 540 600 42 

P15 480 540 35 

P16 780 1080 55 

P17 780 960 39 

P18 600 1080 37 

P19 480 660 20 

P20 660 1080 56 
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Table A3. Comparison of insertion types: i) balanced-insertion, ii) random insertion 

Problem no Insertion type TS-VNS (Best) TS-VNS (Average) 

pr-l-1 
i 4.1 5.1 

ii 6.7 7.5 

pr-l-2 
i 7.9 12.9 

ii 14.7 25.7 

pr-l-3 
i 8.0 11.9 

ii 11.5 17.5 

pr-l-4 
i 7.4 9.3 

ii 8.6 16.9 

pr-l-5 
i 4.4 6.7 

ii 10 16 

pr-l-6 
i 6.7 7.9 

ii 13.9 19.0 

pr-l-7 
i 6.2 7.4 

ii 9.2 12.1 

pr-l-8 
i 7.7 9.8 

ii 11.9 12.8 

pr-l-9 
i 5.9 7.0 

ii 14.2 20.2 

pr-l-10 
i 8.5 10.0 

ii 20.4 33.2 

pr-l-11 
i 1.1 1.2 

ii 2.8 3.0 

pr-l-12 
i 1.9 2.1 

ii 3.8 4.1 

pr-l-13 
i 3.9 4.8 

ii 6.6 13.2 

pr-l-14 
i 2.8 3.8 

ii 4.6 8.9 

pr-l-15 
i 2.7 2.9 

ii 7.2 7.9 

pr-l-16 
i 4.2 5.2 

ii 7.6 11.4 

pr-l-17 
i 1.6 2.2 

ii 3.3 3.9 

pr-l-18 
i 3.7 3.9 

ii 4.9 7.1 

pr-l-19 
i 3.7 4.5 

ii 8.3 10.9 

pr-l-20 
i 5.2 5.5 

ii 9.3 12.1 
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