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Abstract. 

This paper proposes a logically inspired artificial bee colony algorithm (ABCLO) to deal with the knapsack and lot sizing problems 
shown in many forms such as in economics, engineering and business. The proposed ABC-LO algorithm aims to find fitter 
solutions using the search mechanism designed through the basic Boolean operators. To verify the effectiveness of the ABC-LO 
algorithm, it is analyzed and compared with the recent variants of particle swarm optimization, artificial bee colony and genetic 
algorithms. The results indicate that the proposed ABC-LO algorithm performs well in knapsack and lot sizing problem sets 
compared to the others. 
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1 INTRODUCTION 

In recent years, swarm intelligence based algorithms have 
attracted attention due to the ability of producing promising 
solutions in a reasonable time. Among swarm intelligence 
based algorithms, artificial bee colony (ABC) [1] is one of 
the most robust, recent and popular algorithms proposed to 
solve real-parameter, non-convex and non-smooth problems. 
The standard ABC algorithm synergizes minimalistic 
foraging procedure with waggle dance mechanism and is 
enacted through a bee colony equally partitioned among 
employed and onlooker bees [2].  

The neighborhood search is carried out through positional 
perturbation of the foragers in search for fitter food sources 
followed by the greedy selection in order to keep the 
positions of the fitter source. The waggle dance mechanism 
is performed by employed bees to share information with 
onlooker bees through a kind of fitness and roulette-wheel 
based selection mechanism. Using this information, onlooker 
bees tend to search in the neighborhood of fitter solutions. In 
addition to onlooker and employed bees in the hive, scout 
bees derived from employed bees are responsible of finding 
new sources instead of poor ones.  

Since the standard ABC algorithm was first proposed to 
solve numeric problems, it needs to be redesigned to deal 
with discrete or binary problems. To apply ABC to binary 

problems, a number of ABC variants were developed by 
researchers. Kashan et al. [3] introduced a discrete ABC 
(DisABC) variant for uncapacited facility location problem 
(UFLP). In DisABC, the neighborhood search is performed 
by measuring the dissimilarity/similarity between binary 
vectors. Although DisABC performs better than binary 
particle swarm optimization (BPSO), it does not perform 
well in high dimensional problems. Kiran and Gunduz [4] 
embedded XOR logical operator into the basic ABC search 
mechanism (XORABC) to address UFLP. The experimental 
results showed that it performed better than BPSO and 
DisABC. However, XOR-ABC may converge to local 
minima due to the search scheme. Pampara and Engelbrecht 
[5] proposed an angle modulation based ABC algorithm.
Despite its simplicity, transformation mechanism between
the continuous and binary spaces may lead to local
convergence problems. Ozturk et al. [6] proposed an
improved version of DisABC (IDisABC) to automatically
determine the number of clusters in the data. In contrast to
DisABC, IDisABC considers all similarity cases to produce
effective solutions. In another study, Ozturk et al. [7]
proposed a genetically inspired ABC algorithm (GBABC) to
automatically evolve clusters in the data. It was also tested
on numeric and knapsack problems. It is simple implement
and can search the possible solution space thoroughly but
may be computationally intensive for high dimensional
problems. Hancer et al. [8] proposed an advanced similarity
based ABC (MDisABC) algorithm for feature selection. The
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results showed that MDisABC selected a smaller number of 
features and obtained higher classification accuracy than the 
existing approaches. It can be inferred from the above 
discussed studies that the potential of ABC for discrete and 
binary problems has not been fully investigated and the need 
for the studies concerning discrete ABC variants has not 
come to end. 
 
The main goal of this study is to develop an ABC variant for 
the knapsack and lot sizing problems with the expectation of 
loading the knapsack with valuable items and minimizing 
the order cost for a company. In order to achieve this goal, 
the idea of using logic operations is integrated to the ABC 
search mechanism, referred as ABC-LO. The effectiveness 
of the proposed ABC-LO algorithm is verified and examined 
by comparing it with recent discrete evolutionary algorithms. 
Specifically, we will investigate: 
• the performance of ABC-LO versus the existing 

approaches on knapsack problem sets, 
• the performance of ABC-LO versus the existing 

approaches on uncapacited lot sizing problem sets, and 
• the performance of ABC-LO versus the existing 

approaches on capacited lot sizing problem sets. 
 

The rest of the paper is organized as follows. Section 2 
defines the considered problems and provides a general 
knowledge concerning Boolean operators. Section 3 presents 
the proposed ABC algorithm with its implementations. 
Section 4 introduces the experimental design and Section 5 
presents the experimental results. Finally, Section 6 
concludes the study through providing an insight into the 
future trends.  

2 BACKGROUND 

2.1 Knapsack Problem 

Suppose that a friend living abroad wants from you to bring 
some devices or items. It is known that one can only have 
the luggage not exceeding 15-30 kilograms in the planes. 
Therefore, both valuable and lightweight items should be 
chosen to pick a luggage. Well then, how to pick a luggage 
in an optimal way? That question can be enhanced to the 
many real world problems such as in economics, industry, 
transportation, logistic, computer science and etc. All these 
problems are considered in the same structure, referred as the 
“knapsack problem”. The mathematical description of the 
knapsack problem can be presented by: 

∑
=

=
n

j
jj xcxf

1
)(max                                           (1) 

 
where wj represents weight of the jth item; cj represents cost 
of the jth item; xj denotes the status of the jth item, whether it 
is loaded into knapsack or not (1 or 0); and W is the capacity 
of knapsack. 
 
In order to solve the knapsack problem, a large number of 
methods such as branch-bound [10], dynamic programming 
[9] or hybridization of both approaches [11, 12] have been 
proposed. In fact, evolutionary computation techniques such 
as genetic algorithm [13, 14], particle swarm optimization 
[15, 16], differential evolution [17, 18] and artificial bee 
colony [19, 20] have also been applied to address the 
knapsack problem. More information concerning the 
approaches proposed to cope with the knapsack problem can 
be found in [10]. 

2.2 Lot Sizing Problem 

Assume that a company orders quantities in order to provide 
the net requirements of customer demand. The order 
decision needs to be partitioned into the periods in order to 
minimize the total cost. But, which periods are the most 
optimal ones to order? Several factors such as ordering cost, 
holding cost, capacity, minimum-maximum order quantity, 
shortage cost and etc. should be considered before making 
decisions, i.e., it may be single or multi item, capacited or 
uncapacited, shortage allowed or not, and single or multi-
level. In this paper, single item, single level and no shortages 
allowed model is considered with both capacited and 
uncapacited versions. 
 
The basic notations for lot sizing are defined as follows: 

K: setup cost 

h: holding cost 

iO : Order quantity for period i 

iR : Net requirements for period i 

iI : Ending inventory for period i 

ix : An order decision is made or not for period i 

Cap : Capacity of the order quantity 
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In terms of the notations, the lot sizing problem can be 
defined as follows: 

( )∑
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0≥iI  , },...,2,1{ ni∈  (5) 

0≥iO  (6) 

}1,0{∈ix , },...,2,1{ ni∈  (7) 

 Oi < Cap (8) 

where Eq. (4) means no initial inventory is available before 
starting trade; Eq. (5) keeps the inventory balance between 
requirements and orders; Eq. (6) reveals no shortage is 
allowed; and Eq. (8) is for the capacited form of lot sizing. 
 
Many approaches have been proposed to deal with the lot 
sizing problem. Wagner and Whitin [21] introduced a 
method based on dynamic programming, which guarantees 
optimal solutions. Tasgetiren and Liang [22] proposed a 
modified version of PSO to solve single item, single level 
and uncapacited lot sizing problem. The results indicated 
that the modified PSO algorithm performed better than GA. 
Deroussi and Lemoine [23] hybridized BPSO with the 
Wagner-Whitin algorithm to cope with multi-level lot sizing 
problems. The detailed information concerning lot sizing 
problem solvers can be found in [24, 25]. 

2.3 Boolean Algebra 

In Boolean algebra, there are two truth variables, known as 
true (1) and false (0), respectively. In contrast to elementary 
algebra using addition and multiplication, the main operators 
of Boolean algebra are as follows: 
• AND (conjuction), denoted by x Λ y, satisfies 1 if x = y 
=1; otherwise 0. 
• OR (disjunction), detoned by x ∨ y, satisfies 0 if x = y = 0; 
otherwise 1. 
• NOT (negation), denoted by ¬ x, satisfies 1 if x = 0, and 0 
if x = 1. 
 
These Boolean operators can be combined or compounded to 
build other Boolean operators. The main derived operators of 
Boolean algebra are as follows: 

•Material implication, denoted by x → y, satisfies y if x is 1. 
•Exclusive or XOR, denoted by x⊕ y, satisfies 0 if x = y = 1 
or x = y = 0; otherwise 0. 
•Complement of exclusive, denoted by x ≡ y, satisfies 1 if 
x⊕ y = 0; otherwise 1. 

3 PROPOSED ABC-LO ALGORITHM 

In this section, the overall algorithm is first introduced. 
Then, its implementations to the knapsack and lot sizing 
problems are described. 

3.1 Overall algorithm 

Swarm intelligence (SI), which is an artificial intelligence 
discipline, concerns with the behaviors of natural and 
artificial systems composed of many individuals, including 
schools of fish, colonies of ants, termites flocks of birds and 
herds of land animals. SI based behaviours resulting from 
the local interactions of the individuals with each other and 
with their environment comprise two main characteristics: 
self-paced labour and self-organization. The well-accepted 
examples of the SI discipline are ant colony optimization 
(ACO) [26], particle swarm optimization (PSO) [27], 
bacterial foraging optimization (BFO) [28] and artificial bee 
colony (ABC) [1] algorithms. This paper concentrates on the 
ABC algorithm since it is simple, easy to implement, has 
fewer parameters and performs successful performance in a 
variety of fields such as numerical problems [29], clustering 
[30], image analysis [31], etc. 
 
Although ABC has been successfully applied to several 
problems, the structure of ABC is not suitable to binary and 
discrete problems. In other words, the solution initialization 
and neighborhood search mechanisms of ABC need to be 
redesigned for binary space. In this study, binary solutions 
are initialized using Eq. (9) which is the most-widely 
preferred binary solution initialization way among binary 
evolutionary algorithms.  


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where Uij(0,1) is a uniformly generated number within the 
range of 0 and 1. 
 
To adapt neighborhood search mechanism for the binary 
solution space, the idea of using Boolean operators to design 
search mechanism is a novel and recent way used also in 
XOR-ABC and XOR-PSO. Although XOR-ABC and 
XORPSO are the first examples of adapting search 
mechanism through logical operators, they suffer from the 
local stagnation problems arising from their design. The 
detailed information concerning XOR-ABC and XOR-PSO 
can be found in Section 4.1. Motivated from the previously 
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described issue, we introduce a new logically inspired ABC 
(ABC-LO) algorithm, in which the neighborhood search 
mechanism has effectively redesigned through the XOR and 
AND logical operators by Eq. (10). 

))(( kiii XXXV ⊕⊗⊕= β  (10) 
 
where ⊕  denotes XOR operator; ⊗  denotes AND 
operator; Xi={xi1,xi2,…,xiD} and Xj={xj1,xj2,…,xjD} are the 
current and neighbor binary solutions, respectively; and β is 
a randomly D-dimensional binary vector initialized by Eq. 
(9).  
 
The fundamental steps of the ABC-LO algorithm are as 
follows: 

1. Initialize the population by Eq. (9). 
2. Search in the neighborhood of each solution Xi by Eq. 

(10). 
3. Apply greedy selection between Xi and Vi. 
4. Produce probabilistic value pi for each solution Xi 

using roulette-wheel mechanism by Eq. (11). 
5.Select SN number of solutions in a probabilistic 

manner, where rand(0,1) > pi. 
6. Search in the neighborhood of each selected solution 

by Eq. (10). 
7. Apply greedy selection between the selected solution 

and its neighborhood. 
8.If there exists any abandoned solution which cannot be 
improved for a predefined number of trials, referred as 
“limit”, a new solution is initialized by Eq. (9) instead of 
the abandoned one. 
9.Repeat Steps 2 to 8 until the maximum number of 
cycles is met. 

 

  

∑
=

= SN

i
i

i
i

fitness

fitnessp

1

 (11) 

where SN is the population size and fitnessi is the fitness 
value of Xi. 

3.2 Implementations of ABC-LO 

The implementations of ABC-LO are presented as follows. 
 
1. Knapsack: Considering the implementation of the ABC-
LO algorithm to the knapsack problem, each solution 
Xi={xi1,xi2,…,xiD} represents the probable items for the 
knapsack. If any position of Xi is equal to 1, the 
corresponding item is loaded into the knapsack. The 
objective function of knapsack can be defined through Eq. 
(1) as follows: 
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where Q is a penalty factor. 
 

1 0 0 1 1 0

3 kg 5 kg 4 kg 2 kg 6 kg 1kg

3 kg 2 kg 6 kg

 
Fig. 1 An illustrative example of how items are selected 

 
We provide the following example to show how the fitness 
value of a solution is evaluated in the knapsack problem. 
Assume that Xi = {1, 0, 0, 1, 1, 0}, wi = {3kg, 5kg, 4kg, 2kg, 
6kg, 1kg}, ci = {2€, 1€, 4€, 2€, 5€, 6€} and W = 15kg. The 
items whose corresponding positions are equal to 1 are 
selected to load the knapsack, shown in Fig. 1. Accordingly, 
the total weight of items is 11 kg that does not exceed the 
capacity, and the total cost of items is 9€. If the total weight 
of items in a solution exceeds the knapsack capacity, a new 
solution is generated by Eq. (9) instead of that solution.  
 
2. Lot sizing: In terms of the lot sizing problem, each 
solution Xi={xi1,xi2,…,xiD} represents the time periods for 
order decisions. If any position of Xi is equal to 1, the order 
is given for the corresponding period. The objective function 
of lot sizing is defined by Eq. (3).  
 
We provide the following example to show how the fitness 
value of a solution is evaluated in the uncapacited lot sizing 
problem. Assume that Xi = {1,0,0,1,1,0,0}, R = 
{100,40,50,60,70,30,50}, setup cost (K) is set to 100€ and 
hosting cost is set to 1€. For the first period, the order 
quantity (Oi1) is set to 190 which is equal to the sum of net 
requirements (Ri1, Ri2, Ri3), since no order decision is made 
for the second and third periods. Then, the setup cost (Kxi1) 
is 100€ and the remaining number of orders is 100. For the 
second period, the remaining number of orders is 40 and the 
holding cost for the requirements is 60€. For the third period, 
there is no remaining order, and the holding cost for the 
requirements is 100€ (50 x 2) since two periods were passed. 
For the fourth period, the order quantity (Oi4) is set to 60, 
and so the setup cost is 100€. For the fifth period, the order 
quantity (Oi5) is set to 150, and so the setup cost (Kxi5) is 
100€, and the number of remaining orders are 80. For the 
sixth period, the remaining number of orders is 50 and the 
holding cost for the requirements is 30€. For the final period, 
the holding cost for the requirements is (50x2) 100€. Then, 
the fitness value of Xi is calculated as 570. To clearly 
illustrate the example, please see Fig. 2. 
 

 1 2 3 4 5 6 7 Total 
Rid 100 40 50 60 70 30 50  
xid 1 0 0 1 1 0 0  
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Oid 190   60 150    
Iid 90   0 80    
Kxi 100   100 100    
Iidh  40 100   30 100  
Sum (Kxi + Iidh) 
 100 40 100 100 100 30 100 570 
Fig. 2 An illustrative example for uncapacited lot sizing. 

4 EXPERIMENTAL DESIGN 

4.1 Algorithms Used For Comparisons 

In this section, the binary evolutionary algorithms used for 
comparisons are presented as follows: 
1. Binary particle swarm optimization (BPSO) [32]: In 
BPSO, each velocity is first updated by Eq. (13) as in 
standard PSO. For each position of velocities, a value in the 
range of [0,1] is generated using a sigmoid function by Eq. 
(14). Then, new positions of particles are determined by Eq. 
(15). Although it is simple to implement, it has local 
stagnation problems. 
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where w is a inertia weight; c1 and c2 are balance factors 
between global best and local best positions; t

ijpbest  is the 
jth position of the ith local best particle at iteration t; 

t
jgbest  is the jth position of global best particle at iteration 

t; r1 and r2 are random numbers in the range of [0,1]; xij is 
the jth position of the ith particle; and rand(0,1) is a 
uniformly generated number between [0,1]. 
 
2. XOR based particle swarm optimization (XOR-PSO) [33]: 
In XOR-PSO, the positions of velocities and particles are 
updated using logic operators by Eqs. (16) and (17): 
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where + denotes OR operator; ⊗  denotes AND operator; 
⊕  denotes XOR operator; and r1 and r2 are uniformly 
generated numbers between 0 and 1. 
 
3. XOR based Artificial Bee Colony (XOR-ABC) [4]: 
Inspired by XOR-PSO, the neighbor search mechanism of 
standard ABC is modified using XOR logical operator by 
Eq. (18): 

 
)]([ ,,,, jkjijiji xxxv ⊕⊕= γ , i≠k (18) 

where j is the randomly selected position; ⊕  represents 
XOR operator; and γ  is a uniformly generated number 
between 0 and 1, which behaves like a probabilistic logic 
gate. If γ  is smaller than 0.5, the logic gate is invoked, i.e., 
the value of xij⊕ xkj will be inverted. Otherwise, the result 
will not be inverted. 
 
4. Discrete Artificial Bee Colony (DisABC) [3]: DisABC 
uses Jaccard Coefficient to measure the similarity between 
binary vectors. Let, Xi={xi1,xi2,…,xiD} and Xk={xk1,xk2,…,xkD} 
are two binary vectors. The similarity between them is 
evaluated by Eq. (19), and the dissimilarity between them is 
then evaluated by Eq. (20). After the evaluation of 
dissimilarities, new solution generator mechanism is applied 
to find a better solution. 

 

(19) 

where M11 is the number of bits where both vector positions 
are equal to 1; M10 is the number of bits where the positions 
of Xi and Xk are equal to 1 and 0, respectively; M01 is the 
number of bits where the positions of Xi and Xk are equal to 0 
and 1, respectively. 

 
(20) 

5. Angle Modulated Artificial Bee Colony (AMABC) [5]: In 
contrast to typical binary evolutionary algorithms, AMABC 
searches in the four-dimensional continuous solution space, 
where each solution Xi is represented by (ai, bi, ci, di), a, b, c, 
d ϵ [-1,1]. To evolve solutions, the standard ABC framework 
is carried out. To evaluate the fitness value of a solution, that 
solution is mapped from the four-dimensional continuous 
space to the D-dimensional binary space through function 
g(x), defined by Eq. (21): 

 
(21) 

where a determines the amplitude of function g; b 
determines the frequency or period of sinus function in g; c 
controls the frequency or period of cosin function in g; and d 
controls the vertical shift. 
 
How the mapping process is carried out is described as 
follows. First, the values of (ai, bi, ci, di) are substituted into 
g(x). Then, a D-dimensional continuous vector is generated 
by sampling g(x) for the predefined range of x (e.g. x = {0, 
0.1, 0.2,…, D×0.1}). Using this continuous vector, the D-
dimensional binary solution (bitstring) is then determined by 
Eq. (22): 
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where vectori is a continuous vector generated by sampling 
g(x) for the ith solution. 
 
6. Genetic Algorithm (GA) [34]: GA belongs to the subclass 
of evolutionary algorithms of evolutionary computation 
techniques. GA has three fundamental operators: 1) 
selection: a number of solutions from the population are 
selected during each generation. Fitter solutions tend to be 
selected since fitness-based selection strategy is applied; 2) 
crossover: a number of new solutions to form new 
generation are produced using the selected individuals; and 
3) mutation is applied to the new generation obtained by 
selection and mutation to ensure diversity within the 
population. 
 
We should notify that the dissimilarity between any pairs of 
solutions in DisABC cannot be properly measured in a lot 
sizing problem set, since the first position of a solution 
should be assigned as 1 to evaluate the fitness. Thus, 
DisABC is not used in the experiments of the lot sizing 
problem. 

4.2 Problem used for comparisons 

To investigate the performance of the evolutionary 
algorithms on the knapsack problem, six benchmark problem 
sets (referred as ’K-Set’) [35] comprising of a wide range of 
items from 40 to 750 and capacities from 400 to 20351.5 are 
selected, the details of which can be found in Table 1. 

Table 1 Knapsack problem sets used in experiments. 

 Set 1 Set 2 Set 3 Set 4 Set 5 Set  6 
# Orders 40 80 100 250 500 750 
Capacity 400 600 2732 6536 13743 20351.5 
 
To investigate the performance of the evolutionary 
algorithms on the lot sizing problem, five problem sets are 
uniformly generated, where the values of requirements are in 
the range of 50 and 500, and the total number of periods are 
250. For the capacited form of lot sizing, the capacity (Cap) 
is set to 1300 in all problems. 

4.3 Parameter Settings 

In the experiments of knapsack, the following parameter 
values are used: the population size is chosen as 30 and the 
maximum number of cycles is set to 100 for all algorithms; 
the limit value of all ABC variants is chosen as 50; ϕmax and 
ϕmin values of DisABC are selected 0.9 and 0.5 as in [3]; the 
parameters of BPSO are selected as in [36]: c1 = 2, c2 = 2, 

wstart = 0.9, wend = 0.4, Vmax = 6; the crossover rate and 
mutation rate of GA are set to 0.8 and 0.2. In the 
experiments of lot sizing, the following parameter values are 
used: the population size is chosen as 50 and the maximum 
number of cycles is set to 1500 for all algorithms; the limit 
value of all ABC variants is chosen as 50 as in the 
experiments of knapsack; and the parameter values of BPSO 
and GA are selected as in the experiments of knapsack. 

5 EXPERIMENTAL RESULTS 

The results are presented in Table 2, 3 and 4 over the 30 
independent runs in terms of best, worst, mean and standard 
deviation (’std’). In Tables, ’T’ shows the results of the 
Wilcoxon Rank Sum Test at 95% of confidence, where ‘+’ 
or ‘-’ denotes that ABC-LO performs significantly better or 
worse than the corresponding algorithm, and ‘=’ denotes that 
the results of ABC-LO and the corresponding algorithm is 
similar to each other, i.e., there exists no such a significant 
difference between them. The experimental study is 
considered in three subsections: 1) comparisons on knapsack 
problem sets, 2) comparisons on uncapacited lot sizing 
problem sets and 3) comparisons on capacited lot sizing 
problem sets. 

5.1 Results of Knapsack 

Presenting the results of binary variants on knapsack 
problem sets, Table 2 shows that ABC-LO performs 
significantly better than other algorithms in terms of best, 
mean and worst values in all cases. It can be also observed 
from Table 2 that the performance of XOR-ABC and XOR-
PSO mimicking logical operations is low compared to ABC-
LO in terms of loading the knapsack with valuable items. 
For instance, the item subsets for knapsacks selected by 
ABC-LO from all available items are at least 11% more 
valuable than XOR-ABC, and in some problem sets, that rate 
is increased from 11% to 20%. It can therefore be inferred 
that ABC-LO is the most well-designed algorithm using the 
principles of Boolean logic for knapsack problem 
sets.Considering the binary ABC variants except for ABC-
LO, DisABC and XOR-ABC generally obtain similar item 
subsets in terms of the total value. On the other hand, 
AMABC performs better than DisABC and XOR-ABC 
almost in all cases. However, the performance of AMABC 
cannot be treated as successful in terms of loading the 
knapsack with fitter items, when compared to the proposed 
ABC-LO algorithm. Considering the performance of binary 
PSO variants, XOR-PSO performs better than BPSO in all 
problem sets except for the first one. Compared to the others 
except for ABC-LO, GA achieves successful results, thereby 
getting the second position after ABC-LO among all binary 
variants. It can therefore be concluded that ABC-LO 
achieves significantly better results not only than the 
logically inspired binary variants, but also the other binary 
variants based on a variety of principles. 
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5.2 Results of Uncapacited Lot Sizing 

Presenting the results of binary variants on uncapacited lot 
sizing problem sets, Table 3 shows that ABC-LO reduces the 
order cost significantly better than others almost in all cases. 
Considering other algorithms, binary PSO variants, 
especially BPSO, cannot successfully minimize the order 
cost, i.e., the order cost obtained by PSO variants are very 
intensive compared to the others. For instance, BPSO and 
XOR-PSO subsequently obtain 40596.13 and 31266.13 in 
terms of the average total cost for the first problem, while 
the others obtain between 24000 and 25000. Such gap 

between binary PSO variants and the others can be also 
illustrated in other problem sets. Accordingly, it can be 
indicated that binary PSO variants are not suitable for 
uncapacited lot sizing problem sets. Furthermore, XOR-
ABC and GA generally achieve similar order costs, but 
performs better than AMABC in all cases. Accordingly, 
XOR-ABC and GA gets the second position after ABC-LO 
in terms of minimizing the order cost. It can therefore be 
stated that ABC-LO is also the most well-designed algorithm 
mimicking the principles of Boolean algebra for uncapacited 
lot sizing problem sets. 
 

Table 2 Results of knapsack problem sets. 

  Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 
 
 
 BPSO 

Best 94.93 157.5 3727 8356 15761 22961 
Mean 91.91 152.1 3619.6 8041.7 15421 22461.8 

Std 2.06 2.16 66.22 118.7 157.6 221.2 
Worst 86.94 147.7 3477 7740 15134 22105 

T + + + + + + 
 
 
XOR-PSO 

Best 94.79 164.29 3964 8709 16618 23767 
Mean 90.71 155.67 3731.83 8423 16020.4 23148.6 

Std 3.04 4.49 110.1 191.6 309.9 308.3 
Worst 82.82 148.58 3537 7956 15378 22634 

T + + + + + + 
 
 
GA 

Best 95.35 166.36 4085 9340 17891 25434 
Mean 91.92 162.16 3977.27 8902.83 17341.7 24868.1 

Std 2.22 2.54 94.77 230.8 376.2 356.4 
Worst 87.07 146.76 3618 8480 16521 24095 

T + + + = = + 
 
 
DisABC 

Best 95.71 147.07 3494 7657 14803 21870 
Mean 90.96 140.04 3310.1 7373.97 14324.9 21301.9 

Std 1.37 3.89 86.19 115.6 190.8 219.6 
Worst 88.36 132.49 3149 7158 14159 20973 

T + + + + + + 
 
 
AMABC 

Best 92.93 147.7 3514 7756 15193 22134 
Mean 90.12 140.18 3340.43 7515.67 14746.7 21624.9 

Std 1.17 2.75 88.79 99.59 181.5 189.9 
Worst 88.51 136.35 3181 7288 11402 21311 

T + + + + + + 
 
 
XOR-
ABC 

Best 87.7 148.76 3498 7759 14946 21919 
Mean 84.58 141.33 3327.43 7528.13 14733.8 21569.7 

Std 1.56 6.15 70.33 91.31 106.8 167.2 
Worst 81.68 136.91 3212 7358 14586 21170 

T + + + + + + 
 
 
ABC-LO 

Best 96.22 172.1 4139 9363 17895 26068 
Mean 94.63 167.1 4010.1 8979.8 17369.4 25274.6 

Std 1.26 3.22 73.2 165.6 266.5 367.1 
Worst 90.49 160.31 3875 8655 16578 24655 
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Table 3 Results of uncapacited lot sizing problem sets. 

  L-Set 1 L-Set 2 L-Set 3 L-Set 4 L-Set 5 
 
 
 BPSO 

Best 38729 37130 37673 37253 37574 
Mean 49596.13 39258.9 38931.7 40182.03 39672.43 

Std 996.74 1059.06 560.83 1104.61 788.99 
Worst 42505 41192 40029 42163 41399 

T + + + + + 
 
 
XOR-PSO 

Best 36243 36866 35966 37082 36077 
Mean 40843.13 40030.8 39364.1 40329 40546.77 

Std 1712.74 1327.63 1480.8 1555.31 2197.36 
Worst 43989 44721 42006 43380 45381 

T + + + + + 
 
 
GA 

Best 24446 24420 24318 24411 24292 
Mean 24567.27 24678.2 24548.2 24616.9 24543.27 

Std 129.59 275.41 209.62 139.51 205.74 
Worst 25047 25827 25043 24887 25120 

T + + = + + 
 
 
AMABC 

Best 24842 24840 24855 24839 24825 
Mean 24899.5 24893.4 24888.5 24877.7 24862.2 

Std 16.84 17.01 15.51 19.68 21.23 
Worst 24924 24916 24911 24924 24898 

T + + + + + 
 
 
XOR-
ABC 

Best 24469 24443 24282 24420 24260 
Mean 24586.73 24615.07 24451.73 24645.23 24451 

Std 84.43 127.59 133.75 139.87 114.27 
Worst 24769 24883 24863 24954 24612 

T + + = + + 
 
 
ABC-LO 

Best 24446 24418 24288 24388 24217 
Mean 24465.77 24549.2 24446.83 24507.73 24350.9 

Std 15.47 105.38 108.1 139.39 104.37 
Worst 24498 24823 24685 24977 24612 

 

5.3 Results of Capacited Lot Sizing 

Presenting the results of binary variants on lot sizing 
problem sets in terms of the capacited form, Table 4 shows 
that ABC-LO also performs significantly better than other 
binary variants in all cases. Further, the cost difference 
between ABC-LO and others in the capacited form becomes 
wider than the uncapacited form (see Table 3). For instance, 
the gap between ABC-LO and XOR-ABC, both of which are 
based on logic operators, is increased nearly from 121 to 170 
for the first problem set. Such a gap can be also illustrated on 
 

 
 
 different problem sets. Considering other algorithms, binary 
PSO variants cannot also perform well in reducing the order 
cost in all cases as in the uncapacited form. Furthermore, 
XOR-ABC and GA reduces the order cost better than 
AMABC, but XOR-ABC performs better than GA. 
Therefore, it can be concluded without no doubt that ABC-
LO can better search the possible solution space yielding 
lower order cost not only in uncapacited form, but also in 
capacited form. 
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Table 4 Results of capacited lot sizing problem sets. 

  L-Set 1 L-Set 2 L-Set 3 L-Set 4 L-Set 5 
 
 
 BPSO 

Best 49250 45973 42915 50095 47125 
Mean 51855.38 48861.55 47993.16 53492.23 50255.4 

Std 1929.23 2039.76 2156.19 3038.88 2492.79 
Worst 54637 53774 51174 58390 54514 

T + + + + + 
 
 
XOR-PSO 

Best 29382 29007 29049 29071 28676 
Mean 31266.13 30942.63 31399.1 31138.73 30672.27 

Std 978.65 1036.92 1142.62 1183.56 771.92 
Worst 33333 32463 34176 33615 32403 

T + + + + + 
 
 
GA 

Best 24475 24451 24300 24395 24234 
Mean 24754.57 24640.1 24466.5 24608.47 24498.1 

Std 208.33 199.17 116.14 183.12 199.49 
Worst 25263 25329 24770 25098 25052 

T + + + + + 
 
 
AMABC 

Best 24852 24836 24829 24850 24797 
Mean 24885.73 24881.73 24873.1 24881.3 24854.4 

Std 15.12 18.9 15.58 14.04 23.87 
Worst 24915 24909 24899 24904 24891 

T + + + + + 
 
 
XOR-
ABC 

Best 24486 24420 24282 24393 24255 
Mean 24668.73 24582.57 24423.4 24616.1 24423.83 

Std 168.41 111.27 123.08 164.98 146.34 
Worst 25109 24834 24736 25006 24812 

T + + + + + 
 
 
ABC-LO 

Best 24447 24418 24282 24388 24212 
Mean 24497.7 24469.8 24348.2 24440.4 24313.97 

Std 31.15 65.68 56.97 52.87 65.37 
Worst 24579 24781 24547 24594 24515 

6 CONCLUSIONS 

The overall goal of this paper is to develop an ABC variant 
mimicking the principles of Boolean logic for the knapsack 
and lot sizing problems. This goal has been achieved by 
embedding a new locally inspired search mechanism into 
ABC. 
 
To verify the effectiveness of the proposed algorithm, it was 
compared and examined on knapsack and lot sizing problem 
sets with a number of recent binary variants which are XOR-
ABC, AMABC, DisABC, XOR-PSO, BPSO and GA. The 
results showed that ABC-LO outperformed the others in 
terms of all the considered problems. Accordingly, it can be 
inferred that ABC-LO is much better designed algorithm 
using the principles of Boolean logic than XOR-ABC and 
XOR-PSO. To our knowledge, it is the first time in the 
literature an evolutionary algorithm has been applied to 
different types of industrial problems in a study. In the 
future, it will be interesting if the proposed algorithm is 

hybridized using the principles of quantum computing, 
which has been recently applied to develop new evolutionary 
algorithms. 
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