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Abstract 

In this article, we aim to present the degrees of continuity, closedness and openness for a soft mapping which is defined 

between L-soft topological spaces, where L is a complete DeMorgan algebra. We propose the gradation of continuity for 

a soft mapping with the help of the soft closure operators and by considering the fuzzy soft inclusion which depends on 

the lattice implication. We also observe many characterizations and properties of the degree of the continuity. Then, we 

present the degree of openness for a soft mapping with help of the soft interior operators. At the end, we investigate the 

relations among the proposed concepts; the degree of continuity, closedness and openness in a natural way. 
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Öz 

Bu çalışmada, L bir tam DeMorgan cebiri olmak üzere, L-esnek topolojik uzaylar arasında tanımlanan esnek dönüşümler 

için süreklilik, kapalılık ve açıklığın derecelendirmesini sunmayı amaçladık. Esnek kapanış operatörleri yardımıyla ve 

kafes gerektirme işlemine dayanan bulanık esnek içerme bağıntısının da dikkate alınmasıyla esnek bir dönüşüm için 

sürekliliğin derecelendirmesini ifade ettik. Ayrıca sürekliliğin bu derecelendirmesinin birçok karakterizasyonunu ve 

özelliğini gözlemledik. Daha sonra, esnek iç operatörlerinin yardımıyla esnek dönüşümler için açıklığın 

derecelendirmesini verdik. En sonunda, ifade edilen yapılar olan sürekliliğin, kapalılığın ve açıklığın derecelendirmeleri 

arasındaki ilişkileri doğal bir yolla inceledik. 

 

Anahtar kelimeler: Kapanış, Süreklilik, Bulanık esnek küme, L-esnek topoloji, Açıklık, Esnek dönüşüm 
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1. Introduction 

1. Giriş 

 

The soft set theory, described by Molodtsov 

(1999), is one of the mathematical methods that 

aims to identify phenomena and concepts of 

ambiguous, undefined and imprecise meaning. 

According to this definition, a soft set is a 

parameterized family of classical sets. This means 

that parameters play the key role in this definition. 

Since the objects obtained from the experiments, 

human decisions, the datas in the computer 

sciences and so on, depend on some parameters, 

this new perspective idea drew attention of pure 

mathematicians as well as researchers in the area of 

applied mathematics. In the general topology, a set 

is open or not open, and this idea is based on the 

two-valued logic. Hovewer, in the fuzzy topology 

a set (or a fuzzy set) is open to some degree, and 

this idea is based on the fuzzy logic (or so called 

many valued logic) which gives some 

belongingness degrees to the elements of the sets. 

This way of gradation is very useful in many areas, 

since the real life problems are not black or white, 

they have greyness and fuzzy logic helps us to 

model these kinds of phenomena. The birth of the 

fuzzy soft set theory (Maji et al., 2001) which is 

gained by combining the soft set theory and the 

fuzzy set theory (Zadeh, 1965), has accelareted the 

investigations in many directions. The idea of 

fuzzy soft set theory is based on the parametric 

gradation of belongingness. So, it is a more suitable 

tool for the real life modellings. Inspring by this 

idea, mathematicians working in the pure sciences 

embedded these set theories to their own branches. 

Up to now, lots of spectacular and creative 

researches about the theories of soft sets and the 

fuzzy soft sets have been considered by some 

scholars (Roy & Maji, 2007; Çetkin, 2019; 

Terepeta, 2019; Kocinac et al., 2021; Al-jarrah et 

al., 2022; Çetkin, 2022).  

The concept of continuous function is basic to 

much of mathematics since it is a special function 

between some structured spaces. Despite the sets 

(or fuzzy sets) have some openness degrees in the 

fuzzy topological spaces, being a continuous map, 

an open or a closed map are defined as in the 

classical case. In order to make the structures more 

compatible with the spirit of the fuzzy theory, Pang 

(2014) defined the graded continuity and openness 

for mappings between 𝐿-fuzzifying topological 

spaces. He initiated to give some degrees of 

continuous mappings and open mappings in the 

corresponding spaces. Later, the degrees of 

continuous mappings and open mappings between 

𝐿-fuzzy topological spaces have been presented by 

Liang and Shi (2014). Further, the concept of 𝐿-

continuity between 𝐿-topological spaces has been 

presented and some different characterizations 

have been described (Xiu & Li, 2019). 

 

By inspired from the former theories, our main 

intention is to consider the continuous (open and 

closed) mappings between 𝐿-soft topological 

spaces, in the view of many valued logic by giving 

some degrees to what extent the mappings are 

contiuous (open and closed). Hence, in this study, 

we deal with the formulation of the gradation of 

continuity for soft mappings between 𝐿-soft 

topological spaces. In this manner, we propose 

some operators denoted by  "𝐶𝑜𝑛𝑡, 𝐶𝑙𝑜𝑠𝑒, 𝑂𝑝𝑒𝑛", 

respectively, which assigns each soft mapping to 

some value of the underlying lattice 𝐿, which 

shows “the degree” of continuity, closedness and 

the openness of the given soft mapping, 

respectively. In this way, each soft mapping can be 

regarded as continuous, closed or open to some 

degrees. Hence, we obtain a compatible continuity 

definition in the observed structured spaces. 

 

 

2. Preliminaries 

2. Ön bilgiler 

 

Let 𝑋  be a nonempty set and  𝐿 be a completely distributive DeMorgan algebra, i.e., completely distributive 

lattice with an order reversing involution   ′: 𝐿 → 𝐿. The smallest element and the largest element in 𝐿 is denoted 

by 0𝐿, 1𝐿, respectively.  𝐿𝑋  denotes the set of all 𝐿-fuzzy subsets of 𝑋. For more details about lattices, one can 

see (Gierz et al., 1980; Liu & Luo, 1997). 

 

The binary operation ↦  on the complete DeMorgan algebra 𝐿  is given by 

 

𝛼 ↦ 𝛽 =∨ {𝛾 ∈ 𝐿 ∣ 𝛼 ∧ 𝛾 ≤ 𝛽 }  
 

For all 𝛼, 𝛽, 𝛾, 𝛿 ∈ 𝐿  and {𝛼𝑖}𝑖, {𝛽𝑖}𝑖 ⊆ 𝐿, the followings are valid: 
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(1)  𝛼 ↦ 𝛽 ≥ 𝛾 iff  𝛼 ∧ 𝛾 ≤ 𝛽. 

(2)  𝛼 ↦ 𝛽 = 1𝐿 ⟺ 𝛼 ≤ 𝛽. 

(3) 𝛼 ↦ ⋀ 𝛽𝑖𝑖 = ⋀ (𝛼 ↦ 𝛽𝑖)𝑖 . 

(4) b(⋁ 𝛼𝑖𝑖 ) ↦ 𝛽 = ⋀ (𝛼𝑖 ↦ 𝛽)𝑖 . 

(5)  (𝛼 ↦ 𝛾) ∧ (𝛾 ↦ 𝛽) ≤ 𝛼 ↦ 𝛽. 

(6) 𝛼 ≤ 𝛽  implies 𝛾 ↦ 𝛼 ≤ 𝛾 ↦ 𝛽. 

(7) ) 𝛼 ≤ 𝛽  implies 𝛽 ↦ 𝛾 ≤ 𝛼 ↦ 𝛾. 

 

Let 𝐸  be an arbitarary nonempty set viewed on the set of parameters. The parameterized version of an         𝐿-

fuzzy set is called an 𝐿-fuzzy soft set and it is defined as follows.  

 

Definition 2.1. (Maji et al., 2001; Çetkin & Aygün, 2014) 𝑓 is called an 𝐿-fuzzy soft set on 𝑋, where 𝑓  is a 

mapping from 𝐸 into the set of all 𝐿-fuzzy sets, 𝐿𝑋. This means that,  𝑓𝑒 ≔ 𝑓(𝑒): 𝑋 → 𝐿  is an  𝐿-fuzzy set on 

𝑋, for each parameter 𝑒 ∈ 𝐸.  The fanily of all 𝐿-fuzzy soft sets on 𝑋  is denoted by (𝐿𝑋)𝐸. 

 

Definition 2.2. (Ahmad & Kharal, 2009; Çetkin, 2014)  Let 𝑓, 𝑔  be two 𝐿-fuzzy soft sets on 𝑋, then the set-

theoretical operations are as follows: 

 

(1) 𝑓  is called an 𝐿-fuzzy soft subset of 𝑔 and denoted by 𝑓 ⊑ 𝑔, if  𝑓𝑒 ≤ 𝑔𝑒, for each 𝑒 ∈ 𝐸. 𝑓, 𝑔  are called 

equal if  𝑓 ⊑ 𝑔  and  𝑔 ⊑ 𝑓. 

(2)  the union of  𝑓 and  𝑔, is an 𝐿-fuzzy soft set  ℎ = 𝑓 ⊔ 𝑔, where  ℎ𝑒 = 𝑓𝑒 ∨ 𝑔𝑒, for each 𝑒 ∈ 𝐸. 

(3) the intersection of  𝑓 and  𝑔, is an 𝐿-fuzzy soft set  ℎ = 𝑓 ⊓ 𝑔, where  ℎ𝑒 = 𝑓𝑒 ∧ 𝑔𝑒, for each 𝑒 ∈ 𝐸. 

(4) the complement of  an 𝐿-fuzzy soft set   𝑓, is denoted by  𝑓′, where 𝑓′: 𝐸 → 𝐿𝑋 is denied by 𝑓𝑒
′(𝑥) =

(𝑓𝑒(𝑥))′, for each 𝑒 ∈ 𝐸 and 𝑥 ∈ 𝑋. It is clear that  (𝑓′)′ = 𝑓.  
 

Definition2.3. (Çetkin, 2014)  

 

(1) An 𝐿-fuzzy soft set   𝑓  on  𝑋, is called a null (empty) 𝐿-fuzzy soft set   𝑜𝑛 𝑋, denoted by  0̃𝑋,  if  𝑓𝑒(𝑥) =
0𝐿, for each 𝑒 ∈ 𝐸 and 𝑥 ∈ 𝑋. 

(2) An 𝐿-fuzzy soft set   𝑓  on  𝑋, is called an absolute (universal) 𝐿-fuzzy soft set   𝑜𝑛 𝑋, denoted by  1̃𝑋,  if  
𝑓𝑒(𝑥) = 1𝐿, for each 𝑒 ∈ 𝐸 and 𝑥 ∈ 𝑋. 

 

Definition 2.4. (Kharal & Ahmad, 2009; Aygünoğlu & Aygün, 2009; Çetkin, 2014) Let  𝜑 ∶ 𝑋1 → 𝑋2  and  

 𝜑 ∶ 𝐸1 → 𝐸2  be two crisp functions, where 𝐸1  and 𝐸2  are the parameter sets for the classical sets 𝑋1  and  

𝑋2, respectively. Then the pair  (𝜑, 𝜓): (𝑋1, 𝐸1) → (𝑋2, 𝐸2)  (which is denoted by  𝜑𝜓 ≔ (𝜑, 𝜓), for short) is 

said to be a soft mpping from 𝑋1  to 𝑋2. Then the image and the inverse image (pre-image) are defined by 

follows. 

 

(1) Let 𝑓 be an 𝐿-fuzzy soft set on  𝑋1, then its image under  𝜑𝜓 is an  𝐿-fuzzy soft set on  𝑋2, 

      𝜑𝜓(𝑓)𝑘(𝑦) = ⋁ ⋁ 𝑓𝑒(𝑥)𝑘=𝜓(𝑒)𝑦=𝜑(𝑥) ,   for each  𝑘 ∈ 𝐸2  and  𝑦 ∈ 𝑋2. 

 

(2) Let 𝑔 be an 𝐿-fuzzy soft set on  𝑋2, then its pre-image under  𝜑𝜓 is an  𝐿-fuzzy soft set on  𝑋1, 

      𝜑𝜓
−1(𝑔)𝑒(𝑥) = 𝑔𝜓(𝑒)(𝜑(𝑥)),  for each  𝑒 ∈ 𝐸1  and  𝑥 ∈ 𝑋1.  

 

(3) If 𝜑  and 𝜓  are both surjective (injective), then the soft mapping 𝜑𝜓  is called surjective (injective). 

 

(4) Let 𝜑𝜓 be a soft mapping from 𝑋1  to  𝑋2, and 𝜑𝜓∗
∗  be a soft mapping from 𝑋2  to  𝑋3. Then the composition   

𝜑𝜓∗
∗ ∘ 𝜑𝜓  is a soft mapping from 𝑋1  to  𝑋3, and it is defined as follows (𝜑𝜓∗

∗ ∘ 𝜑𝜓) = (𝜑∗ ∘ 𝜑)𝜓∗∘𝜓.   

 

Proposition 2.5. (Kharal & Ahmad, 2009; Çetkin, 2014) Let 𝜑𝜓: (𝑋1, 𝐸1) → (𝑋2, 𝐸2)  be a soft mapping. Then 

the followings are satisfied for each  𝑓, 𝑓1, 𝑓2 ∈ (𝐿𝑋1)𝐸1  and  𝑔, 𝑔1, 𝑔2 ∈ (𝐿𝑋2)𝐸2, 

 

(1)  𝑓1 ⊑ 𝑓2  implies  𝜑𝜓(𝑓1) ⊑ 𝜑𝜓(𝑓2). 

(2)  𝑔1 ⊑ 𝑔2  implies  𝜑𝜓
−1(𝑔1) ⊑ 𝜑𝜓

−1(𝑔2). 
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(3)  𝑓 ⊑ 𝜑𝜓
−1 (𝜑𝜓(𝑓)), the equality holds if  𝜑𝜓  is injective. 

(4)  𝜑𝜓 (𝜑𝜓
−1(𝑔)) ⊑ 𝑔, the equality holds if  𝜑𝜓  is surjective. 

 

Definition 2.6. (Çetkin, 2019) The fuzzy soft inclusion  [⊑̃ ] ∶  (𝐿𝑋)𝐸 × (𝐿𝑋)𝐸 → 𝐿  is defined by the following 

equaliy 

 

  [𝑓 ⊑̃  𝑔] = ⋀ ⋀ (𝑓𝑒
′(𝑥) ∨ 𝑔𝑒(𝑥))𝑒∈𝐸𝑥∈𝑋  

or equivalently,    

  [𝑓 ⊑̃  𝑔] = ⋀ ⋀ (𝑓𝑒(𝑥) ↦ 𝑔𝑒(𝑥))𝑒∈𝐸𝑥∈𝑋 . 

 

Lemma 2.7. Let 𝜑𝜓  be a mapping from an 𝐿-soft space (𝑋1, 𝐸1)  to an 𝐿-soft space (𝑋2, 𝐸2). Then the fuzzy 

soft inclusion satisfies the following conditions for each 𝑓, 𝑔, ℎ ∈ (𝐿𝑋1)𝐸1  and  𝑢, 𝑣 ∈ (𝐿𝑋2)𝐸2, 

 

(1)  [𝑓 ⊑̃  𝑔] = 1𝐿  ⟺   𝑓 ⊑ 𝑔. 

(2) 𝑓 ⊑ 𝑔  implies [𝑓 ⊑̃  ℎ] ≥ [𝑔 ⊑̃  ℎ] 
(3) 𝑓 ⊑ 𝑔  implies [ℎ ⊑̃  𝑓] ≤ [ℎ ⊑̃  𝑔] 
(4)  [𝑓 ⊑̃  𝑔] ∧ [𝑔 ⊑̃  ℎ] ≤ [𝑓 ⊑̃  ℎ] 
(5) [𝑓 ⊑̃  𝑔] ≤ [𝜑𝜓  (𝑓) ⊑̃ 𝜑𝜓  ( 𝑔)] 

(6)  [𝑢 ⊑̃  𝑣] ≤ [𝜑𝜓
−1  (𝑢) ⊑̃ 𝜑𝜓

−1  ( 𝑣)]. 

 

Proof. It is straightforward from the proeprties of the implication and Definition 2.6.  

 

Definition 2.8. (Tanay & Kandemir, 2011) Let 𝜏 be the collection of 𝐿-fuzzy soft sets on 𝑋. Then 𝜏  is said to 

be an 𝐿-soft topology on 𝑋 if 

 

(T1)  0̃𝑋, 1̃𝑋 ∈ 𝜏 

(T2)  𝑓, 𝑔 ∈ 𝜏  implies  𝑓 ⊓ 𝑔 ∈ 𝜏. 

(T3)  {𝑓𝑖}𝑖∈Γ ⊆ 𝜏  implies  ⨆  𝑓𝑖𝑖∈Γ ∈ 𝜏. 

 

Then the pair (𝑋, 𝜏) is called an 𝐿-soft topological space. Every member of 𝜏 is called an 𝐿-soft open set, and 

if 𝑔′ ∈ 𝜏, then the 𝐿-soft set 𝑔 ∈ (𝐿𝑋)𝐸 is called an 𝐿-soft closed set. 

 

A soft mapping  𝜑𝜓: (𝑋1, 𝜏1) → (𝑋2, 𝜏2)  is called continuous between 𝐿-soft topological spaces if   𝜑𝜓
−1(𝑔) ∈

𝜏1  for all  𝑔 ∈ 𝜏2. 

 

Definition 2.9. (Varol & Aygün, 2012) A map  𝑐𝑙 ∶  (𝐿𝑋)𝐸 → (𝐿𝑋)𝐸  is said to be an 𝐿-soft closure operator 

on 𝑋 if the following conditions are satisfied 

 

(SC1)  𝑐𝑙(0̃𝑋) = 0̃𝑋 

(SC2)  𝑐𝑙(𝑓 ⊔ 𝑔) = 𝑐𝑙(𝑓) ⊔ 𝑐𝑙(𝑔),  for each  𝑓, 𝑔 ∈ (𝐿𝑋)𝐸 

(SC3) 𝑓 ⊑ 𝑐𝑙(𝑓), for each  𝑓 ∈ (𝐿𝑋)𝐸 

 

If additionally it satisfies 

(SC4)  𝑐𝑙(𝑐𝑙(𝑓)) = 𝑐𝑙(𝑓),   for each  𝑓 ∈ (𝐿𝑋)𝐸 

 

then the map 𝑐𝑙  is a topological 𝐿-soft closure operator on 𝑋. For any topological 𝐿-soft closure operator on 

𝑋, the collection 

 

𝜏 = {𝑓 ∈ (𝐿𝑋)𝐸 ∣ 𝑐𝑙(𝑓′) = 𝑓′}  is an 𝐿-soft topology on 𝑋 in which closure of 𝑓 coincides with 𝑐𝑙(𝑓). And if 

𝜏  is an 𝐿-soft topology on 𝑋, then 

 

𝑐𝑙(𝑓) =⊓ {𝑔 ∈ (𝐿𝑋)𝐸 ∣   𝑓 ⊑ 𝑔  𝑎𝑛𝑑 𝑔′ ∈ 𝜏}  defines an 𝐿-soft closure operator on 𝑋. (Çetkin & Aygün, 2016) 
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Definition 2.10. Let  𝒞 be the collection of 𝐿-fuzzy soft sets on 𝑋. Then the collection 𝒞  is said to be an     𝐿-

soft cotopology on 𝑋 if 

 

(CT1)  0̃𝑋, 1̃𝑋 ∈ 𝒞 

(CT2)  𝑓, 𝑔 ∈ 𝒞  implies  𝑓 ⊔ 𝑔 ∈ 𝒞. 

(CT3)  {𝑓𝑖}𝑖∈Γ ⊆ 𝒞  implies ⊓𝑖∈Γ 𝑓𝑖  ∈ 𝒞. 

 

For an 𝐿-soft cotopology on 𝑋, the pair  (𝑋, 𝒞) is called an 𝐿-soft cotopological space. 

A soft mapping  𝜑𝜓: (𝑋1, 𝒞1) → (𝑋2, 𝒞2)  is called continuous between 𝐿-soft cotopological spaces if   

𝜑𝜓
−1(𝑔) ∈ 𝒞1  for all  𝑔 ∈ 𝒞2. 

 

A mapping  𝜑𝜓: (𝑋1, 𝒞1) → (𝑋2, 𝒞2)  is called closed between 𝐿-soft cotopological spaces if   

𝜑𝜓(𝑓) ∈ 𝒞2  for all 𝑓 ∈ 𝒞1. 

 

Definition 2.11. A map  𝑖𝑛𝑡: (𝐿𝑋)𝐸 → (𝐿𝑋)𝐸  is said to be an 𝐿-soft interior operator on 𝑋 if the following 

conditions are satisfied 

 

(SI1)  𝑖𝑛𝑡(1̃𝑋) = 1𝑋 

(SI2)  𝑖𝑛𝑡(𝑓 ⊓ 𝑔) = 𝑖𝑛𝑡(𝑓) ⊓ 𝑖𝑛𝑡(𝑔),  for each  𝑓, 𝑔 ∈ (𝐿𝑋)𝐸 

(SI3) 𝑖𝑛𝑡(𝑓) ⊑ 𝑓, for each  𝑓 ∈ (𝐿𝑋)𝐸 

(SI4)  𝑖𝑛𝑡(𝑖𝑛𝑡(𝑓)) = 𝑖𝑛𝑡(𝑓),   for each  𝑓 ∈ (𝐿𝑋)𝐸 

 

Then the pair  (𝑋, 𝑖𝑛𝑡)  is called an 𝐿-soft interior space. A mapping  𝜑𝜓: (𝑋1, 𝑖𝑛𝑡1) → (𝑋2, 𝑖𝑛𝑡2)  is called 

continuous between 𝐿-soft interior spaces if it is provided that 

 

𝜑𝜓(𝑖𝑛𝑡1(𝑓)) ⊑ 𝑖𝑛𝑡2 (𝜑𝜓(𝑓)),  for each  𝑓 ∈ (𝐿𝑋)𝐸. 

 

It is easily observed that there is close relationship between 𝐿-soft topological spaces and 𝐿-soft interior 

operators. In fact these two concepts are equivalent in the following sense, 

If 𝜏  is an 𝐿-soft topology on 𝑋, then 

 

𝑖𝑛𝑡𝜏(𝑓) =⊔ { 𝑔 ∈ (𝐿𝑋)𝐸 ∣∣ 𝑔 ⊆ 𝑓 𝑎𝑛𝑑 𝑔 ∈ 𝜏 }}   
 

defines an 𝐿-soft interior operator on 𝑋. And conversely, if   𝑖𝑛𝑡: (𝐿𝑋)𝐸 → (𝐿𝑋)𝐸   is an 𝐿-soft interior operator 

on 𝑋, then  𝜏𝑖𝑛𝑡 = {𝑓 ∈ (𝐿𝑋)𝐸 ∣ 𝑖𝑛𝑡(𝑓) = 𝑓} defines an 𝐿-soft topology on the same set. In addition, 𝜏𝑖𝑛𝑡𝜏
= 𝜏  

and  𝑖𝑛𝑡𝜏𝑖𝑛𝑡
= 𝑖𝑛𝑡. If we consider these two concepts in the categorical meaning, then one can see the similar 

correspondence between the morphisms described between the objects below. So that, there is one-to-one 

correspendence between the objects and the morphisms of the considered structures. Then one can conclude 

that, these two concepts are same in the categorical aspect. 

 

Theorem 2.12. (Georgiou et al., 2013) Let (𝑋1, 𝜏1), (𝑋2, 𝜏2) be two 𝐿-soft topological spaces. Then the 

following conditions are equivalent. 

 

(1)  𝜑𝜓: (𝑋1, 𝜏1) → (𝑋2, 𝜏2)  is continuous. 

(2)  𝑔 ∉ 𝜏2  implies   𝜑𝜓
−1(𝑔) ∉ 𝜏1. 

(3)  𝜑𝜓(𝑐𝑙(𝑓)) ⊑ 𝑐𝑙 (𝜑𝜓(𝑓)), for each 𝑓 ∈ (𝐿𝑋1)𝐸1. 

(4)  𝑐𝑙 (𝜑𝜓
−1(𝑔)) ⊑ 𝜑𝜓

−1(𝑐𝑙(𝑔)),  for each  𝑔 ∈ (𝐿𝑋2)𝐸2. 

 

Theorem 2.13. If  (𝑋, 𝜏)  is an 𝐿-soft topological space, the collection 𝒞 = {𝑓 ∣ 𝑓′ ∈ 𝜏}  constitutes an 𝐿-soft 

cotopological space (𝑋, 𝒞). Additionally, 𝑐𝑙(𝑓) = (𝑖𝑛𝑡(𝑓′))
′
, for each 𝑓 ∈ (𝐿𝑋)𝐸. 

 

Proof. Straighforward and therefore omitted. 
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3. Degrees of continuity, closedness and openness for soft mappings 

3. Esnek dönüşümler için süreklilik, kapalılık ve açıklığın dereceleri  

 

In this section, we define the degrees of continuity and closedness for a soft mapping between 𝐿-soft 

topological spaces with the help of the fuzzy soft inclusion. Later, we define the degree of openness for a given 

soft mapping with the help of the interior operator characterization. We investigate some properties and 

characteristics of the presented concepts. 

 

Definition 3.1. Let  (𝑋1, 𝒞1), (𝑋2, 𝒞2)  be two 𝐿-soft cotopological spaces. Then  

 

(1)  the degree of continuity for  𝜑𝜓: (𝑋1, 𝒞1) → (𝑋2, 𝒞2)  is defined by 

𝐶𝑜𝑛𝑡(𝜑𝜓) = ⋀  [𝜑𝜓(𝑐𝑙(𝑓)) ⊑̃ 𝑐𝑙 (𝜑𝜓(𝑓))]

𝑓∈(𝐿𝑋1)𝐸1

 

(2) the degree of closedness for 𝜑𝜓: (𝑋1, 𝒞1) → (𝑋2, 𝒞2)  is defined by 

𝐶𝑙𝑜𝑠𝑒(𝜑𝜓) = ⋀  [𝑐𝑙 (𝜑𝜓(𝑓)) ⊑̃ 𝜑𝜓(𝑐𝑙(𝑓))]

𝑓∈(𝐿𝑋1)𝐸1

 

 

Remark 3.2. (1) If  𝐶𝑜𝑛𝑡(𝜑𝜓) = 1𝐿, then  𝜑𝜓(𝑐𝑙(𝑓)) ⊑ 𝑐𝑙 (𝜑𝜓(𝑓)) for each 𝑓 ∈ (𝐿𝑋)𝐸, which is an 

equavalent condition of the continuity of  𝜑𝜓 (see Theorem 2.12). 

 

(2)  If   𝐶𝑙𝑜𝑠𝑒(𝜑𝜓) = 1𝐿, then 𝑐𝑙 (𝜑𝜓(𝑓)) ⊑ 𝜑𝜓(𝑐𝑙(𝑓))  for each 𝑓 ∈ (𝐿𝑋)𝐸, which is the equivalent form of 

the closedness for the soft mapping  𝜑𝜓 defined between 𝐿-soft cotopological spaces.  

Now, let us give some characterizations of the degree of continuity for a soft mapping. 

 

Theorem 3.3. Let  (𝑋1, 𝒞1), (𝑋2, 𝒞2)  be two 𝐿-soft cotopological spaces and  𝜑𝜓 be a soft mapping which is 

defined from  (𝑋1, 𝒞1)  to  (𝑋2, 𝒞2). Then the following is satisfied. 

   

𝐶𝑜𝑛𝑡(𝜑𝜓) = ⋀  [𝜑𝜓 (𝑐𝑙(𝜑𝜓
−1(𝑔))) ⊑̃ 𝑐𝑙(𝑔)]

𝑔∈(𝐿𝑋2)𝐸2

. 

 

Proof. From Definition 3.1 (2), we have that  

 

𝐶𝑜𝑛𝑡(𝜑𝜓) = ⋀  [𝜑𝜓(𝑐𝑙(𝑓)) ⊑̃ 𝑐𝑙 (𝜑𝜓(𝑓))]𝑓∈(𝐿𝑋1)𝐸1   

 ≤ ⋀  [𝜑𝜓 (𝑐𝑙(𝜑𝜓
−1(𝑔))) ⊑̃ 𝑐𝑙 (𝜑𝜓(𝜑𝜓

−1(𝑔)))]𝑔∈(𝐿𝑋2)𝐸2   

 ≤ ⋀  [𝜑𝜓 (𝑐𝑙(𝜑𝜓
−1(𝑔))) ⊑̃ 𝑐𝑙(𝑔)]𝑔∈(𝐿𝑋2)𝐸2  

 ≤ ⋀  [𝜑𝜓 (𝑐𝑙(𝜑𝜓
−1(𝜑𝜓(𝑓)))) ⊑̃ 𝑐𝑙 (𝜑𝜓(𝑓))]𝑓∈(𝐿𝑋1)𝐸1  

≤ ⋀  [𝜑𝜓(𝑐𝑙(𝑓)) ⊑̃ 𝑐𝑙 (𝜑𝜓(𝑓))]𝑓∈(𝐿𝑋1)𝐸1 .  

 

The above implications gives the desired equality. 

 

Theorem 3.4. Let  (𝑋1, 𝒞1), (𝑋2, 𝒞2)  be two 𝐿-soft cotopological spaces and  𝜑𝜓 be a soft mapping which is 

defined from  (𝑋1, 𝒞1)  to  (𝑋2, 𝒞2). Then the following is satisfied. 

𝐶𝑜𝑛𝑡(𝜑𝜓) = ⋀  [𝑐𝑙(𝑓) ⊑̃ 𝜑𝜓
−1 (𝑐𝑙 (𝜑𝜓(𝑓)))]

𝑓∈(𝐿𝑋1)𝐸1

. 

 

Proof. First let us consider the fuzzy soft inclusion as follows: 

[𝜑𝜓(𝑐𝑙(𝑓)) ⊑̃ 𝑐𝑙 (𝜑𝜓(𝑓))] = ⋀ ⋀ (𝜑𝜓(𝑐𝑙(𝑓))
𝑘

(𝑦) ↦ 𝑐𝑙 (𝜑𝜓(𝑓))
𝑘

(𝑦))𝑘∈𝐸2𝑦∈𝑋2
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= ⋀ ⋀ (⋁ ⋁ 𝑐𝑙(𝑓)𝑒(𝑥)𝑦=𝜑(𝑥)𝑘=𝜓(𝑒) ↦ 𝑐𝑙 (𝜑𝜓(𝑓))
𝑘

(𝑦))𝑘∈𝐸2𝑦∈𝑋2
  

= ⋀ ⋀ ⋀ ⋀ (𝑐𝑙(𝑓)𝑒(𝑥) ↦ 𝑐𝑙 (𝜑𝜓(𝑓))
𝜓(𝑒)

(𝜑(𝑥)))𝑦=𝜑(𝑥)𝑘=𝜓(𝑒)𝑘∈𝐸2𝑦∈𝑋2
  

= ⋀ ⋀ ⋀ ⋀ (𝑐𝑙(𝑓)𝑒(𝑥) ↦ 𝜑𝜓
−1 (𝑐𝑙 (𝜑𝜓(𝑓)))

𝑒
(𝑥))𝑦=𝜑(𝑥)𝑘=𝜓(𝑒)𝑘∈𝐸2𝑦∈𝑋2

  

= ⋀ ⋀ (𝑐𝑙(𝑓)𝑒(𝑥) ↦ 𝜑𝜓
−1 (𝑐𝑙 (𝜑𝜓(𝑓)))

𝑒
(𝑥))𝑒∈𝐸1𝑥∈𝑋1

   

= [𝑐𝑙(𝑓) ⊑̃ 𝜑𝜓
−1 (𝑐𝑙 (𝜑𝜓(𝑓)))]. 

 

The observation given above and Definition 3.1 (1), imply the fact that 

 

𝐶𝑜𝑛𝑡(𝜑𝜓) = ⋀  [𝑐𝑙(𝑓) ⊑̃ 𝜑𝜓
−1 (𝑐𝑙 (𝜑𝜓(𝑓)))]

𝑓∈(𝐿𝑋1)𝐸1

 

as claimed. 

 

Theorem 3.5.  Let  (𝑋1, 𝒞1), (𝑋2, 𝒞2)  be two 𝐿-soft cotopological spaces and  𝜑𝜓, be a soft mapping which 

is defined from  (𝑋1, 𝒞1)  to  (𝑋2, 𝒞2). Then the following is satisfied. 

 

𝐶𝑜𝑛𝑡(𝜑𝜓) = ⋀  [𝑐𝑙(𝜑𝜓
−1(𝑔)) ⊑̃ 𝜑𝜓

−1(𝑐𝑙(𝑔))]

𝑔∈(𝐿𝑋2)𝐸2

. 

 

Proof. By considering the soft mapping and fuzzy soft inclusion properties, we obtain the following 

implication  

 

⋀  [𝑐𝑙 (𝜑𝜓
−1(𝑔)) ⊑̃ 𝜑𝜓

−1(𝑐𝑙(𝑔))]𝑔∈(𝐿𝑋2)𝐸2   

≤ ⋀  [𝑐𝑙(𝜑𝜓
−1(𝜑𝜓(𝑓))) ⊑̃ 𝜑𝜓

−1 (𝑐𝑙 (𝜑𝜓(𝑓)))]𝑓∈(𝐿𝑋1)𝐸1   

≤ ⋀  [𝑐𝑙(𝑓) ⊑̃ 𝜑𝜓
−1 (𝑐𝑙 (𝜑𝜓(𝑓)))]𝑓∈(𝐿𝑋1)𝐸1 = 𝐶𝑜𝑛𝑡(𝜑𝜓),  by Theorem 3.4. 

 

In order to prove the converse implication, let us consider the following 

 

[𝑐𝑙 (𝜑𝜓
−1(𝑔)) ⊑̃ 𝜑𝜓

−1(𝑐𝑙(𝑔))] = ⋀ ⋀ (𝑐𝑙 (𝜑𝜓
−1(𝑔))

𝑒
(𝑥) ↦ 𝜑𝜓

−1(𝑐𝑙(𝑔))
𝑒

(𝑥))𝑒∈𝐸1𝑥∈𝑋1
  

= ⋀ ⋀ (𝑐𝑙 (𝜑𝜓
−1(𝑔))

𝑒
(𝑥) ↦ 𝑐𝑙(𝑔)𝜓(𝑒)(𝜑(𝑥)))𝑒∈𝐸1𝑥∈𝑋1

  

≥ ⋀ ⋀ (⋁ ⋁ 𝑐𝑙 (𝜑𝜓
−1(𝑔))

𝑒
(𝑥)𝑘=𝜑(𝑒)𝑦=𝜑(𝑥) ↦ 𝑐𝑙(𝑔)𝑘(𝑦))𝑘∈𝐸2𝑦∈𝑋2

  

= ⋀ ⋀ (𝜑𝜓 (𝑐𝑙 (𝜑𝜓
−1(𝑔)))

𝑘
(𝑦) ↦ 𝑐𝑙(𝑔)𝑘(𝑦))𝑘∈𝐸2𝑦∈𝑋2

  

= [𝜑𝜓 (𝑐𝑙 (𝜑𝜓
−1(𝑔))) ⊑̃ 𝑐𝑙(𝑔)]. 

 

By Theorem 3.3, this implies the fact that  ⋀  [𝑐𝑙 (𝜑𝜓
−1(𝑔)) ⊑̃ 𝜑𝜓

−1(𝑐𝑙(𝑔))]𝑔∈(𝐿𝑋2)𝐸2 ≥ 𝐶𝑜𝑛𝑡(𝜑𝜓).  

This completes the proof. 

 

Theorem 3.6. Let  (𝑋1, 𝒞1), (𝑋2, 𝒞2)  and (𝑋3, 𝒞3) be the 𝐿-soft cotopological spaces. Then for the soft 

mappings  𝜑𝜓: (𝑋1, 𝒞1) → (𝑋2, 𝒞2)  and   𝜑𝜓∗
∗ : (𝑋2, 𝒞2) → (𝑋3, 𝒞3), the following conditions are satisfied. 

(1)  𝐶𝑜𝑛𝑡(𝜑𝜓) ∧ 𝐶𝑜𝑛𝑡(𝜑𝜓∗
∗ ) ≤ 𝐶𝑜𝑛𝑡(𝜑𝜓∗

∗ ∘ 𝜑𝜓). 

(2)  𝐶𝑙𝑜𝑠𝑒(𝜑𝜓) ∧ 𝐶𝑙𝑜𝑠𝑒(𝜑𝜓∗
∗ ) ≤ 𝐶𝑙𝑜𝑠𝑒(𝜑𝜓∗

∗ ∘ 𝜑𝜓).  
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Proof. We give only the proof of (1), since the second condition is proved by considering the similar 

observations.  

 

𝐶𝑜𝑛𝑡(𝜑𝜓) ∧ 𝐶𝑜𝑛𝑡(𝜑𝜓∗
∗ )  

= ⋀  [𝜑𝜓(𝑐𝑙(𝑓)) ⊑̃ 𝑐𝑙 (𝜑𝜓(𝑓))]𝑓∈(𝐿𝑋1)𝐸1 ∧ ⋀  [𝜑𝜓∗
∗ (𝑐𝑙(𝑔)) ⊑̃ 𝑐𝑙 (𝜑𝜓∗

∗ (𝑔))]𝑔∈(𝐿𝑋2)𝐸2   

≤ ⋀  [𝜑𝜓(𝑐𝑙(𝑓)) ⊑̃ 𝑐𝑙 (𝜑𝜓(𝑓))]𝑓∈(𝐿𝑋1)𝐸1 ∧ ⋀  [𝑐𝑙(𝑔) ⊑̃ (𝜑𝜓∗
∗ )

−1
(𝑐𝑙 (𝜑𝜓∗

∗ (𝑔)))]𝑔∈(𝐿𝑋2)𝐸2    

≤ ⋀ {[𝜑𝜓(𝑐𝑙(𝑓)) ⊑̃ 𝑐𝑙 (𝜑𝜓(𝑓))] ∧ [𝑐𝑙 (𝜑𝜓(𝑓)) ⊑̃ (𝜑𝜓∗
∗ )

−1
(𝑐𝑙 (𝜑𝜓∗

∗ (𝜑𝜓(𝑓))))]}𝑓∈(𝐿𝑋1)𝐸1   

≤ ⋀ [𝜑𝜓(𝑐𝑙(𝑓)) ⊑̃ (𝜑𝜓∗
∗ )

−1
(𝑐𝑙 ((𝜑𝜓∗

∗ ∘ 𝜑𝜓 )(𝑓)))]𝑓∈(𝐿𝑋1)𝐸1   

≤ ⋀ [(𝜑𝜓∗
∗ ∘ 𝜑𝜓 )(𝑐𝑙(𝑓)) ⊑̃ 𝑐𝑙 ((𝜑𝜓∗

∗ ∘ 𝜑𝜓 )(𝑓))]𝑓∈(𝐿𝑋1)𝐸1   

= 𝐶𝑜𝑛𝑡(𝜑𝜓∗
∗ ∘ 𝜑𝜓). 

 

Theorem 3.7. Let 𝜑𝜓: (𝑋1, 𝒞1) → (𝑋2, 𝒞2)  and   𝜑𝜓∗
∗ : (𝑋2, 𝒞2) → (𝑋3, 𝒞3) be two soft mappings between 𝐿-

soft cotopological spaces, where 𝜑𝜓∗
∗   is injective. Then we hve 

𝐶𝑙𝑜𝑠𝑒(𝜑𝜓∗
∗ ∘ 𝜑𝜓) ∧ 𝐶𝑜𝑛𝑡(𝜑𝜓∗

∗ ) ≤ 𝐶𝑙𝑜𝑠𝑒(𝜑𝜓). 

Proof. By the injectivity of the soft mapping 𝜑𝜓∗
∗ , we have (𝜑𝜓∗

∗ )
−1

(𝜑𝜓∗
∗ (𝑔)) = 𝑔, for all  𝑔 ∈ (𝐿𝑋2)𝐸2. Then 

from this fact, we gain the following implications 

 

𝐶𝑙𝑜𝑠𝑒(𝜑𝜓∗
∗ ∘ 𝜑𝜓) ∧ 𝐶𝑜𝑛𝑡(𝜑𝜓∗

∗ )  

= ⋀  [𝑐𝑙 ((𝜑𝜓∗
∗ ∘ 𝜑𝜓)(𝑓)) ⊑̃ (𝜑𝜓∗

∗ ∘ 𝜑𝜓)(𝑐𝑙(𝑓))] 𝑓∈(𝐿𝑋1)𝐸1 ∧ ⋀  [𝜑𝜓∗
∗ (𝑐𝑙(𝑔)) ⊑̃ 𝑐𝑙 (𝜑𝜓∗

∗ (𝑔))]𝑔∈(𝐿𝑋2)𝐸2    

≤ ⋀  [𝑐𝑙 ((𝜑𝜓∗
∗ ∘ 𝜑𝜓)(𝑓)) ⊑̃ (𝜑𝜓∗

∗ ∘ 𝜑𝜓)(𝑐𝑙(𝑓))] 𝑓∈(𝐿𝑋1)𝐸1 ∧  

         ⋀  [𝜑𝜓∗
∗ (𝑐𝑙(𝜑𝜓(𝑓))) ⊑̃ 𝑐𝑙 (𝜑𝜓∗

∗ (𝜑𝜓(𝑓)))]𝑓∈(𝐿𝑋1)𝐸1   

= ⋀ {[𝑐𝑙 ((𝜑𝜓∗
∗ ∘ 𝜑𝜓)(𝑓)) ⊑̃ (𝜑𝜓∗

∗ ∘ 𝜑𝜓)(𝑐𝑙(𝑓))] ∧ [𝜑𝜓∗
∗ (𝑐𝑙 (𝜑𝜓(𝑓))) ⊑̃ 𝑐𝑙 ((𝜑𝜓∗

∗ ∘ 𝜑𝜓)(𝑓))]}

𝑓∈(𝐿𝑋1)𝐸1

 

≤ ⋀ [𝜑𝜓∗
∗ (𝑐𝑙 (𝜑𝜓(𝑓))) ⊑̃ (𝜑𝜓∗

∗ ∘ 𝜑𝜓)(𝑐𝑙(𝑓))]𝑓∈(𝐿𝑋1)𝐸1   

≤ ⋀ [𝑐𝑙 (𝜑𝜓(𝑓)) ⊑̃ (𝜑𝜓∗
∗ )

−1
((𝜑𝜓∗

∗ ∘ 𝜑𝜓)(𝑐𝑙(𝑓)))]𝑓∈(𝐿𝑋1)𝐸1   

= ⋀ [𝑐𝑙 (𝜑𝜓(𝑓)) ⊑̃ 𝜑𝜓(𝑐𝑙(𝑓)) ]𝑓∈(𝐿𝑋1)𝐸1 = 𝐶𝑙𝑜𝑠𝑒(𝜑𝜓).  

Hence, the proof is completed. 

 

Theorem 3.8. Let 𝜑𝜓: (𝑋1, 𝒞1) → (𝑋2, 𝒞2)  and   𝜑𝜓∗
∗ : (𝑋2, 𝒞2) → (𝑋3, 𝒞3) be two soft mappings between 𝐿-

soft cotopological spaces, where 𝜑𝜓  is surjective. Then we hve 

𝐶𝑙𝑜𝑠𝑒(𝜑𝜓∗
∗ ∘ 𝜑𝜓) ∧ 𝐶𝑜𝑛𝑡(𝜑𝜓) ≤ 𝐶𝑙𝑜𝑠𝑒(𝜑𝜓∗

∗ ). 

Proof. By the surjectivity of the soft mapping 𝜑𝜓, we have 𝜑𝜓 (𝜑𝜓
−1(𝑔)) = 𝑔, for all  𝑔 ∈ (𝐿𝑋2)𝐸2. Then from 

this fact, we gain the following implications 

 

𝐶𝑙𝑜𝑠𝑒(𝜑𝜓∗
∗ ) = ⋀ [𝑐𝑙 (𝜑𝜓∗

∗ (𝑔)) ⊑̃ 𝜑𝜓∗
∗ (𝑐𝑙(𝑔))] 𝑔∈(𝐿𝑋2)𝐸2   

= ⋀ [𝑐𝑙 (𝜑𝜓∗
∗ (𝜑𝜓 (𝜑𝜓

−1(𝑔)))) ⊑̃ 𝜑𝜓∗
∗ (𝑐𝑙 (𝜑𝜓 (𝜑𝜓

−1(𝑔))))] 𝑔∈(𝐿𝑋2)𝐸2   

≥ ⋀ [𝑐𝑙 ((𝜑𝜓∗
∗ ∘ 𝜑𝜓)(𝑓)) ⊑̃ 𝜑𝜓∗

∗ (𝑐𝑙(𝜑𝜓(𝑓))]𝑓∈(𝐿𝑋1)𝐸1   

 ≥ ⋀ [𝑐𝑙 (𝜑𝜓∗
∗ (𝑔)) ⊑̃ 𝜑𝜓∗

∗ (𝑐𝑙(𝑔))] 𝑔∈(𝐿𝑋2)𝐸2 = 𝐶𝑙𝑜𝑠𝑒(𝜑𝜓∗
∗ ). 

This implies the following equality (*),     

𝐶𝑙𝑜𝑠𝑒(𝜑𝜓∗
∗ ) = ⋀ [𝑐𝑙 ((𝜑𝜓∗

∗ ∘ 𝜑𝜓)(𝑓)) ⊑̃ 𝜑𝜓∗
∗ (𝑐𝑙(𝜑𝜓(𝑓))]𝑓∈(𝐿𝑋1)𝐸1       (1) 
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We also have that 

 

𝐶𝑙𝑜𝑠𝑒(𝜑𝜓∗
∗ ∘ 𝜑𝜓) ∧ 𝐶𝑜𝑛𝑡(𝜑𝜓)  

= ⋀ [𝑐𝑙 ((𝜑𝜓∗
∗ ∘ 𝜑𝜓)(𝑓)) ⊑̃ (𝜑𝜓∗

∗ ∘ 𝜑𝜓)(𝑐𝑙(𝑓))]𝑓∈(𝐿𝑋1)𝐸1 ∧ ⋀  [𝜑𝜓(𝑐𝑙(𝑓)) ⊑̃ 𝑐𝑙 (𝜑𝜓(𝑓))]𝑓∈(𝐿𝑋1)𝐸1   

≤ ⋀ [𝑐𝑙 ((𝜑𝜓∗
∗ ∘ 𝜑𝜓)(𝑓)) ⊑̃ (𝜑𝜓∗

∗ ∘ 𝜑𝜓)(𝑐𝑙(𝑓))]
𝑓∈(𝐿𝑋1)

𝐸1 ∧ ⋀  [𝜑𝜓∗
∗ (𝜑𝜓(𝑐𝑙(𝑓))) ⊑̃ 𝜑𝜓∗

∗ (𝑐𝑙 (𝜑𝜓(𝑓)))]
𝑓∈(𝐿𝑋1)

𝐸1    

≤ ⋀ [𝑐𝑙 ((𝜑𝜓∗
∗ ∘ 𝜑𝜓)(𝑓)) ⊑̃ 𝜑𝜓∗

∗ (𝑐𝑙 (𝜑𝜓(𝑓)))]𝑓∈(𝐿𝑋1)𝐸1       ( From the equality (1) ) 

= ⋀ [𝑐𝑙 (𝜑𝜓∗
∗ (𝑔)) ⊑̃ 𝜑𝜓∗

∗ (𝑐𝑙(𝑔))] 𝑔∈(𝐿𝑋2)𝐸2 = 𝐶𝑙𝑜𝑠𝑒(𝜑𝜓∗
∗ ).   

 

Hence, the proof is completed. 

 

The degree of continuity is computed not only for a soft mapping which is defined between 𝐿-soft 

cotopological spaces but also for a soft mapping which is defined between 𝐿-soft topological spaces. We mean 

that the degree to what entend the continuity of a soft mapping can also be defined by means of the interior 

operator. Analogously, the openness degree of a soft mapping is described in the following way. 

 

Theorem 3.9. Let  (𝑋1, 𝜏1), (𝑋2, 𝜏2)  be two 𝐿-soft topological spaces. Then the following is also true for the 

degree of continuity for the soft mapping  𝜑𝜓: (𝑋1, 𝜏1) → (𝑋2, 𝜏2)   

 

𝐶𝑜𝑛𝑡(𝜑𝜓) = ⋀  [𝜑𝜓
−1(𝑖𝑛𝑡(𝑔)) ⊑̃ 𝑖𝑛𝑡 (𝜑𝜓

−1(𝑔))]

𝑔∈(𝐿𝑋2)𝐸2

 

 

Proof. The equivalence is obtained from Theorem 2.13 and Definition 3.1. 

 

Definition 3.10. Let  (𝑋1, 𝜏1), (𝑋2, 𝜏2)  be two 𝐿-soft topological spaces. Then the degree of openness for the 

soft mapping  𝜑𝜓: (𝑋1, 𝜏1) → (𝑋2, 𝜏2)  is defined by 

 

𝑂𝑝𝑒𝑛(𝜑𝜓) = ⋀  [𝜑𝜓(𝑖𝑛𝑡(𝑓)) ⊑̃ 𝑖𝑛𝑡 (𝜑𝜓(𝑓))]

𝑓∈(𝐿𝑋1)𝐸1

 

 

Remark 3.11. If   𝑂𝑝𝑒𝑛(𝜑𝜓) = 1𝐿, then  𝜑𝜓(𝑖𝑛𝑡(𝑓)) ⊑ 𝑖𝑛𝑡 (𝜑𝜓(𝑓))  is valid for each  𝑓 ∈ (𝐿𝑋1)𝐸1. This is 

exactly the equivalent form of the openness of a soft mapping defined between soft topological spaces. 

 

Theorem 3.12. Let  (𝑋1, 𝜏1), (𝑋2, 𝜏2)  and  (𝑋3, 𝜏3)  be 𝐿-soft topological spaces and 𝜑𝜓: (𝑋1, 𝜏1) → (𝑋2, 𝜏2),

𝜑𝜓∗
∗ ∶ (𝑋2, 𝜏2) → (𝑋3, 𝜏3)  be two soft mappings. The the following conditions are satisfied. 

(1)  𝐶𝑜𝑛𝑡(𝜑𝜓) ∧ 𝐶𝑜𝑛𝑡(𝜑𝜓∗
∗ ) ≤ 𝐶𝑜𝑛𝑡(𝜑𝜓∗

∗ ∘ 𝜑𝜓). 

(2)  𝑂𝑝𝑒𝑛(𝜑𝜓) ∧ 𝑂𝑝𝑒𝑛(𝜑𝜓∗
∗ ) ≤ 𝑂𝑝𝑒𝑛(𝜑𝜓∗

∗ ∘ 𝜑𝜓).  

 

Proof. One can see the proof similarly to that of Theorem 3.6. 

 

Theorem 3.13. Let  (𝑋1, 𝜏1), (𝑋2, 𝜏2)  and  (𝑋3, 𝜏3)  be 𝐿-soft topological spaces and 𝜑𝜓: (𝑋1, 𝜏1) → (𝑋2, 𝜏2),

𝜑𝜓∗
∗ ∶ (𝑋2, 𝜏2) → (𝑋3, 𝜏3)  be two soft mappings. If the soft maping 𝜑𝜓  is surjective, then the following is 

obtained 

𝑂𝑝𝑒𝑛(𝜑𝜓∗
∗ ∘ 𝜑𝜓) ∧ 𝐶𝑜𝑛𝑡(𝜑𝜓) ≤ 𝑂𝑝𝑒𝑛(𝜑𝜓∗

∗ ). 

Proof.  Since the soft mapping 𝜑𝜓  is surjective, then  𝜑𝜓 (𝜑𝜓
−1(𝑔)) = 𝑔, for each 𝑔 ∈ (𝐿𝑋2)𝐸2.  From this 

fact, we gain that 

 

⋀ [𝜑𝜓∗
∗ (𝑖𝑛𝑡(ℎ)) ⊑̃ 𝑖𝑛𝑡 (𝜑𝜓∗

∗ (ℎ))]ℎ∈(𝐿𝑋2)𝐸2   

= ⋀ [𝜑𝜓∗
∗ (𝑖𝑛𝑡 (𝜑𝜓 (𝜑𝜓

−1(ℎ)))) ⊑̃ 𝑖𝑛𝑡 (𝜑𝜓∗
∗ (𝜑𝜓 (𝜑𝜓

−1(ℎ))))]ℎ∈(𝐿𝑋2)𝐸2   
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 ≥ ⋀ [𝜑𝜓∗
∗ (𝑖𝑛𝑡 (𝜑𝜓(𝑓))) ⊑̃ 𝑖𝑛𝑡 (𝜑𝜓∗

∗ (𝜑𝜓(𝑓)))]𝑓∈(𝐿𝑋1)𝐸1  

≥ ⋀ [𝜑𝜓∗
∗ (𝑖𝑛𝑡(ℎ)) ⊑̃ 𝑖𝑛𝑡 (𝜑𝜓∗

∗ (ℎ))]ℎ∈(𝐿𝑋2)𝐸2   

 

The above observation implies the following 

⋀ [𝜑𝜓∗
∗ (𝑖𝑛𝑡(ℎ)) ⊑̃ 𝑖𝑛𝑡 (𝜑𝜓∗

∗ (ℎ))]

ℎ∈(𝐿𝑋2)𝐸2

= ⋀ [𝜑𝜓∗
∗ (𝑖𝑛𝑡 (𝜑𝜓(𝑓))) ⊑̃ 𝑖𝑛𝑡 (𝜑𝜓∗

∗ (𝜑𝜓(𝑓)))]

𝑓∈(𝐿𝑋1)𝐸1

 

 

In order to get the proof, let us consider the above fact as follows: 

 

𝑂𝑝𝑒𝑛(𝜑𝜓∗
∗ ∘ 𝜑𝜓) ∧ 𝐶𝑜𝑛𝑡(𝜑𝜓)  

= ⋀ [(𝜑𝜓∗
∗ ∘ 𝜑𝜓)(𝑖𝑛𝑡(𝑓)) ⊑̃ 𝑖𝑛𝑡((𝜑𝜓∗

∗ ∘ 𝜑𝜓)(𝑓))]𝑓∈(𝐿𝑋1)𝐸1 ∧ ⋀  [𝜑𝜓
−1(𝑖𝑛𝑡(𝑔)) ⊑̃ 𝑖𝑛𝑡 (𝜑𝜓

−1(𝑔))]𝑔∈(𝐿𝑋2)𝐸2        

≤ ⋀ [(𝜑𝜓∗
∗ ∘ 𝜑𝜓)(𝑖𝑛𝑡(𝑓)) ⊑̃ 𝑖𝑛𝑡 ((𝜑𝜓∗

∗ ∘ 𝜑𝜓)(𝑓))]𝑓∈(𝐿𝑋1)𝐸1  

∧ ⋀  [𝜑𝜓∗
∗ (𝑖𝑛𝑡(𝜑𝜓(𝑓))) ⊑̃ (𝜑𝜓∗

∗ ∘ 𝜑𝜓)(𝑖𝑛𝑡(𝑓))]𝑓∈(𝐿𝑋1)𝐸1   

≤ ⋀ [𝜑𝜓∗
∗ (𝑖𝑛𝑡 (𝜑𝜓(𝑓))) ⊑̃ 𝑖𝑛𝑡 ((𝜑𝜓∗

∗ ∘ 𝜑𝜓)(𝑓))]𝑓∈(𝐿𝑋1)𝐸1    (By the above equality) 

= ⋀ [𝜑𝜓∗
∗ (𝑖𝑛𝑡(𝑔)) ⊑̃ 𝑖𝑛𝑡 (𝜑𝜓∗

∗ (𝑔))]𝑔∈(𝐿𝑋2)𝐸2 = 𝑂𝑝𝑒𝑛(𝜑𝜓∗
∗ ).  

This completes the proof.  

 

Theorem 3.14. Let  (𝑋1, 𝜏1), (𝑋2, 𝜏2)  and  (𝑋3, 𝜏3)  be 𝐿-soft topological spaces and 𝜑𝜓: (𝑋1, 𝜏1) → (𝑋2, 𝜏2),

𝜑𝜓∗
∗ ∶ (𝑋2, 𝜏2) → (𝑋3, 𝜏3)  be two soft mappings. If the soft maping  𝜑𝜓∗

∗  is injective, then we get the following 

𝑂𝑝𝑒𝑛(𝜑𝜓∗
∗ ∘ 𝜑𝜓) ∧ 𝐶𝑜𝑛𝑡(𝜑𝜓∗

∗ ) ≤ 𝑂𝑝𝑒𝑛(𝜑𝜓). 

Proof. Since the soft mapping 𝜑𝜓∗
∗  is injective, then  (𝜑𝜓∗

∗ )
−1

(𝜑𝜓∗
∗ (𝑔)) = 𝑔, for each 𝑔 ∈ (𝐿𝑋2)𝐸2.  From 

this fact, it is seen that 

 

 𝑂𝑝𝑒𝑛(𝜑𝜓∗
∗ ∘ 𝜑𝜓) ∧ 𝐶𝑜𝑛𝑡(𝜑𝜓∗

∗ ) 

= ⋀ [(𝜑𝜓∗
∗ ∘ 𝜑𝜓)(𝑖𝑛𝑡(𝑓)) ⊑̃ 𝑖𝑛𝑡 ((𝜑𝜓∗

∗ ∘ 𝜑𝜓)(𝑓))]𝑓∈(𝐿𝑋1)𝐸1   

∧ ⋀  [(𝜑𝜓∗
∗ )

−1
(𝑖𝑛𝑡(ℎ)) ⊑̃ 𝑖𝑛𝑡 ((𝜑𝜓∗

∗ )
−1

(ℎ))]ℎ∈(𝐿𝑋2)𝐸2   

≤ ⋀ [(𝜑𝜓∗
∗ )

−1
(𝜑𝜓∗

∗ ∘ 𝜑𝜓)(𝑖𝑛𝑡(𝑓)) ⊑̃ (𝜑𝜓∗
∗ )

−1
(𝑖𝑛𝑡 ((𝜑𝜓∗

∗ ∘ 𝜑𝜓)(𝑓)))]𝑓∈(𝐿𝑋1)𝐸1   

 ∧ ⋀  [(𝜑𝜓∗
∗ )

−1
(𝑖𝑛𝑡 ((𝜑𝜓∗

∗ ∘ 𝜑𝜓)(𝑓))) ⊑̃ 𝑖𝑛𝑡 ((𝜑𝜓∗
∗ )

−1
((𝜑𝜓∗

∗ ∘ 𝜑𝜓)(𝑓)))] 𝑓∈(𝐿𝑋1)𝐸1  

  = ⋀  [𝜑𝜓(𝑖𝑛𝑡(𝑓)) ⊑̃ 𝑖𝑛𝑡 (𝜑𝜓(𝑓))]𝑓∈(𝐿𝑋1)𝐸1 = 𝑂𝑝𝑒𝑛(𝜑𝜓). 

 

This completes the proof. 

 

Definition 3.15. Let  (𝑋1, 𝜏1), (𝑋2, 𝜏2)  be two 𝐿-soft topological spaces  and  𝜑𝜓: (𝑋1, 𝜏1) → (𝑋2, 𝜏2)  be a 

bijective soft mapping. Then the degree  𝐻𝑜𝑚(𝜑𝜓)  to which  𝜑𝜓  is a homeomorphism is defined by   

𝐻𝑜𝑚(𝜑𝜓) = 𝐶𝑜𝑛𝑡(𝜑𝜓) ∧ 𝑂𝑝𝑒𝑛(𝜑𝜓).  

 

Under the light of the above discussions, one can infer the following results. 

 

Corollary 3.16. Let  (𝑋1, 𝜏1), (𝑋2, 𝜏2)  and  (𝑋3, 𝜏3)  be 𝐿-soft topological spaces and 𝜑𝜓: (𝑋1, 𝜏1) → (𝑋2, 𝜏2),

𝜑𝜓∗
∗ ∶ (𝑋2, 𝜏2) → (𝑋3, 𝜏3)  be two bijective soft mappings. Then the followings are satisfied.   

(1)  𝐻𝑜𝑚(𝜑𝜓) ∧ 𝐻𝑜𝑚(𝜑𝜓∗
∗ ) ≤ 𝐻𝑜𝑚(𝜑𝜓∗

∗ ∘ 𝜑𝜓).   

(2)  𝐻𝑜𝑚(𝜑𝜓) = 𝐶𝑜𝑛𝑡(𝜑𝜓) ∧ 𝐶𝑜𝑛𝑡(𝜑𝜓
−1) = 𝐶𝑜𝑛𝑡(𝜑𝜓) ∧ 𝐶𝑙𝑜𝑠𝑒(𝜑𝜓). 
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4. Conclusion 

4. Sonuç 

 

In the present study, we proposed the gradation of 

continuity, closedness and openness for the soft 

mappings to some degrees. The perspective of 

gradation of the openness of sets, spaces and also 

mappings between some structured spaces yields 

researchers efficiently applications to the daily life 

modellings. Since (fuzzy) soft sets and (fuzzy) soft 

spaces are natural effective tools to reflect and 

model the real phenomena, we found it reasonable 

to investigate the degrees of soft mappings between 

graded soft topological spaces. For further 

research, we hope to investigate the relations and 

the properties of the graded soft mappings which 

are defined between compact, connected and 

separated soft topological spaces to some degrees. 

In addition, for future work, we aim to propose the 

parametric gradation of topologcal structures 

which are not defined so far, and the special 

mappings between the corresponding spaces such 

as graded mappings between soft bornological 

spaces, soft uniform spaces, soft proximity spaces 

and so on.  
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