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Abstract

In this article, we aim to present the degrees of continuity, closedness and openness for a soft mapping which is defined
between L-soft topological spaces, where L is a complete DeMorgan algebra. We propose the gradation of continuity for
a soft mapping with the help of the soft closure operators and by considering the fuzzy soft inclusion which depends on
the lattice implication. We also observe many characterizations and properties of the degree of the continuity. Then, we
present the degree of openness for a soft mapping with help of the soft interior operators. At the end, we investigate the
relations among the proposed concepts; the degree of continuity, closedness and openness in a natural way.
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Bu ¢alismada, L bir tam DeMorgan cebiri olmak tizere, L-esnek topolojik uzaylar arasinda tanimlanan esnek déniistimler
icin siireklilik, kapalilik ve agikligin derecelendirmesini sunmayr amagladik. Esnek kapanig operatérleri yardimiyla ve
kafes gerektirme islemine dayanan bulanik esnek icerme bagintisimin da dikkate alinmasiyla esnek bir doniisiim igin
siirekliligin derecelendirmesini ifade ettik. Ayrica siirekliligin bu derecelendirmesinin bir¢ok karakterizasyonunu ve
ozelligini gozlemledik. Daha sonra, esnek i¢ operatorlerinin yardimiyla esnek doniisiimler icin acgikligin
derecelendirmesini verdik. En sonunda, ifade edilen yapilar olan siirekliligin, kapaliligin ve acikligin derecelendirmeleri
arasindaki iliskileri dogal bir yolla inceledik.
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1. Introduction
1. Giris

The soft set theory, described by Molodtsov
(1999), is one of the mathematical methods that
aims to identify phenomena and concepts of
ambiguous, undefined and imprecise meaning.
According to this definition, a soft set is a
parameterized family of classical sets. This means
that parameters play the key role in this definition.
Since the objects obtained from the experiments,
human decisions, the datas in the computer
sciences and so on, depend on some parameters,
this new perspective idea drew attention of pure
mathematicians as well as researchers in the area of
applied mathematics. In the general topology, a set
iS open or not open, and this idea is based on the
two-valued logic. Hovewer, in the fuzzy topology
a set (or a fuzzy set) is open to some degree, and
this idea is based on the fuzzy logic (or so called
many valued logic) which gives some
belongingness degrees to the elements of the sets.
This way of gradation is very useful in many areas,
since the real life problems are not black or white,
they have greyness and fuzzy logic helps us to
model these kinds of phenomena. The birth of the
fuzzy soft set theory (Maji et al., 2001) which is
gained by combining the soft set theory and the
fuzzy set theory (Zadeh, 1965), has accelareted the
investigations in many directions. The idea of
fuzzy soft set theory is based on the parametric
gradation of belongingness. So, it is a more suitable
tool for the real life modellings. Inspring by this
idea, mathematicians working in the pure sciences
embedded these set theories to their own branches.
Up to now, lots of spectacular and creative
researches about the theories of soft sets and the
fuzzy soft sets have been considered by some
scholars (Roy & Maji, 2007; Cetkin, 2019;
Terepeta, 2019; Kocinac et al., 2021; Al-jarrah et
al., 2022; Cetkin, 2022).

2. Preliminaries
2. On bilgiler

The concept of continuous function is basic to
much of mathematics since it is a special function
between some structured spaces. Despite the sets
(or fuzzy sets) have some openness degrees in the
fuzzy topological spaces, being a continuous map,
an open or a closed map are defined as in the
classical case. In order to make the structures more
compatible with the spirit of the fuzzy theory, Pang
(2014) defined the graded continuity and openness
for mappings between L-fuzzifying topological
spaces. He initiated to give some degrees of
continuous mappings and open mappings in the
corresponding spaces. Later, the degrees of
continuous mappings and open mappings between
L-fuzzy topological spaces have been presented by
Liang and Shi (2014). Further, the concept of L-
continuity between L-topological spaces has been
presented and some different characterizations
have been described (Xiu & Li, 2019).

By inspired from the former theories, our main
intention is to consider the continuous (open and
closed) mappings between L-soft topological
spaces, in the view of many valued logic by giving
some degrees to what extent the mappings are
contiuous (open and closed). Hence, in this study,
we deal with the formulation of the gradation of
continuity for soft mappings between L-soft
topological spaces. In this manner, we propose
some operators denoted by "Cont, Close, Open",
respectively, which assigns each soft mapping to
some value of the underlying lattice L, which
shows “the degree” of continuity, closedness and
the openness of the given soft mapping,
respectively. In this way, each soft mapping can be
regarded as continuous, closed or open to some
degrees. Hence, we obtain a compatible continuity
definition in the observed structured spaces.

Let X be a nonempty set and L be a completely distributive DeMorgan algebra, i.e., completely distributive
lattice with an order reversing involution : L — L. The smallest element and the largest element in L is denoted
by 0,,1,, respectively. LX denotes the set of all L-fuzzy subsets of X. For more details about lattices, one can

see (Gierz et al., 1980; Liu & Luo, 1997).

The binary operation — on the complete DeMorgan algebra L is given by

a-»pf=V{y€Llary<p}

Forall a,B,y,6 € L and {«a;};, {B;}; < L, the followings are valid:
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Q) arpzyiff any <B.

2 arp=1 a<p.

() a = AiBi = Ni(a = By).

(@) b(Via) » B = Ni(a; = B).

B (@Al »p<arp.
(6) a < B impliesy » a <y - B.
(M)a<p impliespry<amy.

Let E be an arbitarary nonempty set viewed on the set of parameters. The parameterized version of an L-
fuzzy set is called an L-fuzzy soft set and it is defined as follows.

Definition 2.1. (Maji et al., 2001; Cetkin & Aygiin, 2014) f is called an L-fuzzy soft set on X, where f is a
mapping from E into the set of all L-fuzzy sets, LX. This means that, f, := f(e):X — L isan L-fuzzy seton
X, for each parameter e € E. The fanily of all L-fuzzy soft sets on X is denoted by (L¥)E.

Definition 2.2. (Ahmad & Kharal, 2009; Cetkin, 2014) Let f,g be two L-fuzzy soft sets on X, then the set-
theoretical operations are as follows:

(1) f is called an L-fuzzy soft subset of g and denoted by f C g, if f, < g.,foreache € E. f,g are called
equal if f= g and g C f.

(2) the union of f and g, isan L-fuzzy softset h = f U g, where h, = f, V g., foreache € E.

(3) the intersection of f and g, is an L-fuzzy softset h = f n g, where h, = f, A g., foreache € E.

(4) the complement of an L-fuzzy soft set £, is denoted by f’, where f':E — LX is denied by £, (x) =
(f.(x))', foreach e € E and x € X. Itis clear that (f')" = f.

Definition2.3. (Cetkin, 2014)

(1) An L-fuzzy soft set f on X, is called a null (empty) L-fuzzy soft set on X, denoted by Oy, if f,(x) =
0,,foreache € Eand x € X.

(2) An L-fuzzy soft set f on X, is called an absolute (universal) L-fuzzy soft set on X, denoted by 1y, if
fo(x) =1,,foreache € E and x € X.

Definition 2.4. (Kharal & Ahmad, 2009; Ayginoglu & Aygiin, 2009; Cetkin, 2014) Let ¢ : X; - X, and
¢ : E; - E, be two crisp functions, where E; and E, are the parameter sets for the classical sets X; and
X, respectively. Then the pair (¢, ¥): (X1, E1) = (X3, E;) (which is denoted by ¢, := (¢,), for short) is
said to be a soft mpping from X; to X,. Then the image and the inverse image (pre-image) are defined by
follows.

(1) Let f be an L-fuzzy soft set on Xy, then its image under ¢, is an L-fuzzy soft seton X,,
Oy (V) = Vy=px) Vi=y(e) fe(x), foreach k € E, and y € X,.

(2) Let g be an L-fuzzy soft set on X, then its pre-image under ¢, is an L-fuzzy soft seton X,
¢1;1(g)e(x) = glp(e)((p(x)), foreach e € E; and x € X;.

(3) If @ and ¥ are both surjective (injective), then the soft mapping ¢, is called surjective (injective).

(4) Let ¢, be a soft mapping from X; to X,, and <pr,* be a soft mapping from X, to X3. Then the composition
(p:b* ° @y, is asoft mapping from X; to Xs, and it is defined as follows ((pw ° (pw) = (@" ° @)yroy-

Proposition 2.5. (Kharal & Ahmad, 2009; Cetkin, 2014) Let gy,: (X1, E;) = (X3, E;) be a soft mapping. Then
the followings are satisfied for each £, f1, f, € (L**)E1 and g, 94,9, € (L*?)%z,

(1) f1 E fo implies @y (f1) E @y (f2).
(2) 91 E g» implies ¢;'(91) E 0y (g2).
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(3) £ = 03t (04(f)). the equality holds if ¢y, is injective.
4) oy ((plj,l(g)) C g, the equality holds if ¢, is surjective.

Definition 2.6. (Cetkin, 2019) The fuzzy softinclusion [E ] : (L¥)E x (L*¥)E - L is defined by the following
equaliy

[f = 9l = Axex /\eEE(fe,(x) Vge(x))
or equivalently,

[f = g] = MAxex /\eEE(ﬁa(x) = ge(x))-

Lemma 2.7. Let ¢, be a mapping from an L-soft space (X;, E;) to an L-soft space (X;, E;). Then the fuzzy
soft inclusion satisfies the following conditions for each f, g, h € (L*)E1 and u,v € (L*2)Ez,

1) [fEgl=1, & fCtg.
(2) f = g implies [f

(3) f = g implies [h
@) [fE glnlg E h]
G [fE gl <oy ()
6) [uE v] <oy (u

E h
E g]

~SA IV
M=

Im

h
oy (9]
E oy (v)].

=
c

Proof. It is straightforward from the proeprties of the implication and Definition 2.6.

Definition 2.8. (Tanay & Kandemir, 2011) Let 7 be the collection of L-fuzzy soft sets on X. Then 7 is said to
be an L-soft topology on X if

(T1) 0y, Iy €t
(T2) f,g €T implies f N g €.
(T3) {fitier S 7 implies Uier f; € T.

Then the pair (X, 7) is called an L-soft topological space. Every member of 7 is called an L-soft open set, and
if g’ € 7, then the L-soft set g € (L¥)E is called an L-soft closed set.

A soft mapping @: (X;,7") = (X2, 7%) is called continuous between L-soft topological spaces if ¢,,'(g) €
7! forall g € 72

Definition 2.9. (Varol & Aygiin, 2012) Amap cl: (L*)E - (L¥)E is said to be an L-soft closure operator
on X if the following conditions are satisfied

(SC1) cl(Dy) = Oy
(SC2) cl(f u g) = cl(f) ucl(g), foreach f,g € (L*)E
(SC3) f & cl(f), foreach f € (LX)E

If additionally it satisfies
(SC4) cl(cl(f)) = cl(f), foreach f e (L*)E

then the map cl is a topological L-soft closure operator on X. For any topological L-soft closure operator on
X, the collection

t={f € *)E | cl(f") = f'} is an L-soft topology on X in which closure of f coincides with cI(f). And if
T is an L-soft topology on X, then

cl(f) =n{g e (LX)E| fc g and g’ € 1} definesan L-soft closure operator on X. (Cetkin & Aygiin, 2016)
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Definition 2.10. Let C be the collection of L-fuzzy soft sets on X. Then the collection C issaidtobean L-
soft cotopology on X if

(CT1) 0y, 1y €C
(CT2) f,g € C implies f LU g €EC.
(CT3) {fi}ier € C implies N1 f; € C.

For an L-soft cotopology on X, the pair (X, C) is called an L-soft cotopological space.
A soft mapping ¢y: (X;,C) - (X,,€%) s called continuous between L-soft cotopological spaces if

@yt (g) € ¢t forall g € C2.

A mapping ¢y: (X1,C') = (X, C?) is called closed between L-soft cotopological spaces if
@y (f) € C? forall f € CL.

Definition 2.11. A map int: (LX) - (L¥)E s said to be an L-soft interior operator on X if the following
conditions are satisfied

(SI1) int(1x) = 1

(SI12) int(f N g) = int(f) N int(g), foreach f,g € (LX)E
(SI3) int(f) E f, foreach f € (L*)E

(S14) int(int(f)) = int(f), foreach f € (LX)E

Then the pair (X, int) is called an L-soft interior space. A mapping ¢y;: (Xy,int!) > (X,, int?) is called
continuous between L-soft interior spaces if it is provided that

oy (int' () € int? (4 (f)), foreach f € (LX)F.

It is easily observed that there is close relationship between L-soft topological spaces and L-soft interior
operators. In fact these two concepts are equivalent in the following sense,
If T is an L-soft topology on X, then

int*(f) =u{g € W¥)* |gc fand g €t}

defines an L-soft interior operator on X. And conversely, if int: (LX) - (L¥)E is an L-soft interior operator
on X, then 7™ = {f € (L*)* | int(f) = f} defines an L-soft topology on the same set. In addition, rint® = ¢

and int™" = int. If we consider these two concepts in the categorical meaning, then one can see the similar
correspondence between the morphisms described between the objects below. So that, there is one-to-one
correspendence between the objects and the morphisms of the considered structures. Then one can conclude
that, these two concepts are same in the categorical aspect.

Theorem 2.12. (Georgiou et al., 2013) Let (X,t1), (X,,72) be two L-soft topological spaces. Then the
following conditions are equivalent.

(1) @y: Xy, ') = (X2, 7%) is continuous.

(2 g ¢ 72 implies (pljjl(g) ¢l

(3) ¢y (cl(F) E cl (@y (), for each f € (L¥1)%:.
(4) cl ((pJ,%g)) C ¢y (cl(g)), foreach g € (L*2)Ez.

Theorem 2.13. If (X, 7) is an L-soft topological space, the collection ¢ = {f | f' € t} constitutes an L-soft
cotopological space (X, €). Additionally, cL(f) = (int(f"))’, for each f € (L¥)E.

Proof. Straighforward and therefore omitted.
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3. Degrees of continuity, closedness and openness for soft mappings
3. Esnek doniisiimler icin siireklilik, kapalilik ve agikligin dereceleri

In this section, we define the degrees of continuity and closedness for a soft mapping between L-soft
topological spaces with the help of the fuzzy soft inclusion. Later, we define the degree of openness for a given
soft mapping with the help of the interior operator characterization. We investigate some properties and
characteristics of the presented concepts.

Definition 3.1. Let (X;,C1), (X,,C?) be two L-soft cotopological spaces. Then

(1) the degree of continuity for ¢,: (X;,C") = (X5,C?) is defined by
Cont(gy) = /\ [(pw(cl(f)) Ecl ((pw(f))]

fe@X1)Er
(2) the degree of closedness for ¢,;: (X3, 1) = (X,,C?) is defined by

close(py) = [\ [ct(00(P) E py(cl(P)]

feX*f

Remark 3.2. (1) If Cont(py) =15, then ¢y (cl(f) € cl (py(f)) for each f € (L¥)F, which is an
equavalent condition of the continuity of ¢, (see Theorem 2.12).

(2) If Close(py) = 15, then cl (@, (f)) © @y (cL(f)) for each £ € (L¥)F, which is the equivalent form of

the closedness for the soft mapping ¢, defined between L-soft cotopological spaces.
Now, let us give some characterizations of the degree of continuity for a soft mapping.

Theorem 3.3. Let (X;,C1), (X,,C?) be two L-soft cotopological spaces and @y be a soft mapping which is
defined from (X;,C') to (X, C?). Then the following is satisfied.

Cont(¢¢) = /\ [(pw (Cl(golj,l(g))) £ cl(g)].
ge(LX2)Ez

Proof. From Definition 3.1 (2), we have that

Cont(@y) = Areqxaye [qow(cl(f)) £ cl ((pw(f))]

< Agearnez |0y (cl(03 (@) E ol (04031 (9)))]
< Ageqrne: [0y (cl(o3 (@) E cl(g)]

< Areqrnyes [0y (cl(@3(@p())) E el (0 (N)]
< Arewryms [@p(cl(N) E el (py ()]

The above implications gives the desired equality.

Theorem 3.4. Let (X;,C1), (X,, C?) be two L-soft cotopological spaces and @y be a soft mapping which is
defined from (X;,C1) to (X,,C?). Then the following is satisfied.

Cont(gy) = /\ [cl(f) =0 (cl ((pw(f)))].

fe(X1)k1

Proof. First let us consider the fuzzy soft inclusion as follows:

[04(cl(F) E cl (04 (N)] = Avex, Axes, (cpw(cz(n)k(y) = el (o), (y))
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= Ayer, Meet, (vk=¢<e> Vi €l = el (04 (), (y))

= Ayex, Mg, Ne=pie) Ay=oo) <Cl(f)e(x) = el(op), (<p(x))>
SRy CTORO R CICH) NO)
= Meex, Aver, (€10DeG) = 95" (el (04(D)) @)

= a1 & o (et (04 0))]

The observation given above and Definition 3.1 (1), imply the fact that

Cont(€0¢) = /\ [cl(f) e @17}1 (cl (‘pw(f)))]
as claimed. re(LX1)k1

Theorem 3.5. Let (X;,C1), (X,,C?) be two L-soft cotopological spaces and @y, be a soft mapping which
is defined from (X;,C') to (X,,C?). Then the following is satisfied.

Cont(py) = /\ [cl(9y" (@) E oyt (cl()]-

ge(LX2)Ez

Proof. By considering the soft mapping and fuzzy soft inclusion properties, we obtain the following
implication

Ngearare: [cl (031(9)) E 03t (cl(9))]
< Aewr [cl(03 @) E 03t (et (0p(N))]
< Arerxi)Ea [cl(f) E ¢! (cl ((pw (f)))] = Cont(¢y), by Theorem 3.4.

In order to prove the converse implication, let us consider the following

et (07 (9) E 05 (cl(@))] = Axex, Aces, (cl (03’ @) @~ w;l(cl(g))e<x)>
= Mxex, Neer, (c1(951(9)) () = cl(@)yor(9())

2 Ayex, ke, <Vy=<p(x) Vi=gp(e) cl (@17,1(9))6 x) » Cl(Q)k(}’))
= Nyex, Nkek, <<0¢ (cl (qolj,l(g)))k )+ cl(g)k(y)>
= [0y (cl (%1(9))) E cl(g)].

By Theorem 3.3, this implies the fact that A ¢ xz)e. [cl (4)17)1(9)) E wlj,l(cl(g))] > Cont(py).
This completes the proof.

Theorem 3.6. Let (X;,C1), (X,,C?) and (X3,C?) be the L-soft cotopological spaces. Then for the soft
mappings @y: (X1,C') = (X2,€%) and gy (X5, C*) - (X3,C?), the following conditions are satisfied.

(1) Cont(gpy) A Cont(@y) < Cont(@y: © Py).
(2) Close(py) A Close((p;;)*) < Close(py- © ¢y).
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Proof. We give only the proof of (1), since the second condition is proved by considering the similar
observations.

Cont(py) A Cont(py,+)
= Arewnyen [0u(cl(D)) E cl (0p (D) A Ngewraye: |03 (cl(9)) E el (9 (9))]
< Nyeamrmn [03(cl) E el (D) A Ageqrarea [0 € (03)7 (el (03 @) ]

S/\fe@xl)m{%(cl(f)):cl (04 (N)] A [cz ou(N) E (9})” (cl oy (0p(N) )]}

< Aferx1)Es [(Pw(d(f)) = (<P1p*) (Cl ((<P1p* ° Py )(f))>]

< Aeqrnyes [(03 ° 0y ) (cl(F) E el (93 2 0y )(D)]
= Cont(py: ° Py).
Theorem 3.7. Let g (X1,C") = (X5,C?) and  ¢y-: (X5,C%) — (X3, C?) be two soft mappings between L-
soft cotopological spaces, where qol*p* is injective. Then we hve

Close(@y- o @y ) A Cont(py,) < Close(qpy).
Proof. By the injectivity of the soft mapping ¢+, we have (gol*/)*)_l ((p;;)*(g)) = g, forall g € (L*2)E2. Then
from this fact, we gain the following implications

Close(py+ © oy) A Cont(@y+)
= Arewnyes [l (@) © 00) (D) E @y ° 0)(lP)] A Agequraye: [# (@) E el (#}(9))]
< Arewnrs [ (03 ° 00) (D) E (0} ° @) (cl())] A
Areaxiyen [0y (clloy(D)) E et (0 (04 (N))]
= /\ {[Cl ((f/)i},* o %)(f)) E (g o ww)(cl(f))] A [fp{’},* (cl (%(f))) E cl ((<pi},* o <p¢)(f))]}

fe(X1)E
< Areqrne [ @) (cl (¢y (f))) E (0} o 0y) (cl(H)]
< Are@x1)Es [Cl (‘Pw(f)) E (QDZ;*)_I ((q’fp ° Q%)(Cl(f)))]
= Asewrne e (94()) E 0y (cl() | = Close(py).
Hence, the proof is completed.

Theorem 3.8. Let gy (X1,C1) = (X3,C?) and @y (X2, C%) > (X3,C?) be two soft mappings between L-
soft cotopological spaces, where ¢, is surjective. Then we hve

Close(@y- o @y) A Cont(py) < Close(@y-).
Proof. By the surjectivity of the soft mapping ¢.;, we have ¢, (¢J)1(g)) = g, forall g € (L*2)E2, Then from
this fact, we gain the following implications

Close((pl*p*) = /\ge(sz)Ez [Cl (fp;},*(g)) E (p;;)*(Cl(g))]

= A gequra [cl (wfp* (v (<p;1(g)))> E ¢} <Cl (04 (‘Pil(g))))]

> Arexays [cl (3 2 0y)(N) E 0} (cl(cpw(f))]

> A ge(rx2)E2 [Cl ((p:b*(g)) =R (cl(g))] = Close(fp;;)*).
This implies the following equality (*),

Close(p}) = Apeqrne [cl (03 © 04)(F) E 0y (clipy(H)] (1)
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We also have that

Close(@y: o py) A Cont(py)

= e [L (03 ° ) (D) E (@ ° 09)(UD)]| A Apequrnrs [0y (L) E el (94 (D))

< Ay [ (032 0)D) € (03 0p) (@D A A as [0 (00(c10D)) € 0 (el (00(D) )]
< Are(u*)E1 [cl (((pw ° (p@(f)) E gy (cl ((pw(f))>] ( From the equality (1))

= A gewrne: [cl (0)(9)) E 0y (cl(9))] = Close(pj).

Hence, the proof is completed.

The degree of continuity is computed not only for a soft mapping which is defined between L-soft
cotopological spaces but also for a soft mapping which is defined between L-soft topological spaces. We mean
that the degree to what entend the continuity of a soft mapping can also be defined by means of the interior
operator. Analogously, the openness degree of a soft mapping is described in the following way.

Theorem 3.9. Let (X;,t1), (X5, 72) be two L-soft topological spaces. Then the following is also true for the
degree of continuity for the soft mapping ¢y,: (X;,7%) = (X5, 72)

cont(oy) =\ [o3'(int(@) E int (05 @)

ge(L¥2)E2
Proof. The equivalence is obtained from Theorem 2.13 and Definition 3.1.

Definition 3.10. Let (X,,t1), (X,,72) be two L-soft topological spaces. Then the degree of openness for the
soft mapping ¢y: (X;,7') = (X2, 72) is defined by

Open(oy) = /\ [(pw(int(f)) £ int ((pw(f))]

feX1)Ea

Remark 3.11. If Open(gy) = 1, then g, (int(f)) E int (<p¢ (f)) is valid for each f € (L¥1)E1, This is
exactly the equivalent form of the openness of a soft mapping defined between soft topological spaces.

Theorem 3.12. Let (X3, 7'), (X5, 7%) and (X3,7°) be L-soft topological spaces and ¢;: (X;,7') = (X2, 7%),
Py + (X2, %) = (X3,7%) be two soft mappings. The the following conditions are satisfied.

(1) Cont(gy) A Cont(py:) < Cont(@y: © @y).

(2) Open(py) A Open(<p1’fb*) < Open(py- ° Py).

Proof. One can see the proof similarly to that of Theorem 3.6.

Theorem 3.13. Let (X3,7%), (X,,7%) and (X3,7°) be L-soft topological spaces and ¢;: (X;,7') = (X2, 7%),
Py + (X2, %) = (X3,7%) be two soft mappings. If the soft maping ¢, is surjective, then the following is
obtained

Open(@y © y) A Cont(py) < Open(py,-).
Proof. Since the soft mapping ¢,, is surjective, then ¢, ((plzl(g)) = g, for each g € (L*2)E2. From this
fact, we gain that

Aneqraye: |0y (int(h) E int (@j-(h))]

= Anewiorts [(p;;,* <int <<p¢ (qg,l(h)))) E int (q)fp* (<p¢ (pr,l(h))D]
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> Asequinye |0y (int (%(f))) E int (qofp* (%(f)))]
= AperX2)E2 [(pfl, (int(h)) E int ((pfp (h))]

The above observation implies the following

/\ [(p:b*(int(h))ﬁint(gol*p*(h))]= /\ [qoij,* (int(fpw(f)))iint<<p;* (fpw(f)))]

he(LX2)E2 fe(LX1)E1

In order to get the proof, let us consider the above fact as follows:

0pen(<p1*p* o @y ) A Cont(gy)

= Arewnyna (@3 © ) (Int(F) E int((@} ° 0y )(N)] A Ageqra: |03 (int(e)) E int (95 (9))]
< Asewrnps |9y © 04)(int()) € int (0 o 04) ()]

A seres @) (nt(oy(N)) E (03 © 0y) (int(H))]

< AfeX)Fs (p:,, (int ((plp (f))) E int ((cpf}, ° ww)(f))] (By the above equality)

= NgerX2)E2 :<p17)*(int(g)) E int ((p:b*(g))] = Open((p:;,*).
This completes the proof.

Theorem 3.14. Let (X3,7%), (X,,7%) and (X3,73) be L-soft topological spaces and ¢: (X;,71) = (X2, 7%),
(p:b* : (Xp,72) > (X3, 73) be two soft mappings. If the soft maping (p;’;,* is injective, then we get the following

Open(@y © py) A Cont(py-) < Open(@y).
Proof. Since the soft mapping ¢y is injective, then ((p;;,*)_l (q):}} (g)) = g, for each g € (L*2)F2. From
this fact, it is seen that

Open(@y- o @y) A Cont(¢y,-)
= Nfe@x1)Er [(‘ﬂp o gy ) (int(f)) E int ((%p ° %p)(f))]
Anewenres [(93) ™ (it € it ((03) "))
< Arexa)s [(‘P;*)_l(ﬁp* o gy )(int(f)) E (¢fp*)_1 (int ((%*p ° %p)(f)))]
Myearor [(05) 7 (int (o3 2 04) D)) E ine (o)™ (o 2 20)D) ]
= Aperxn)Ea [qow(int(f)) E int (qow(f))] = Open(gy).

This completes the proof.

Definition 3.15. Let (X;,7'), (X;,7%) be two L-soft topological spaces and ¢y,: (X1,7') = (X5,7%) bea
bijective soft mapping. Then the degree Hom(<p¢) to which ¢,, is a homeomorphism is defined by
Hom(fplp) = Cont((plp) A Open(@y).

Under the light of the above discussions, one can infer the following results.

Corollary 3.16. Let (X3,7%), (X5, 7%) and (X3,7>) be L-soft topological spaces and ¢,: (X1, 1) = (X, 7%),
<p;},* : (X5, 72) = (X3,73) be two bijective soft mappings. Then the followings are satisfied.

Q) Hom(<p¢) A Hom((p:b*) < Hom(@y: © ¢y).

2 Hom(<p¢) = Cont(<p¢) A Cont(cpljjl) = Cont(tp@ A Close(@y).
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4. Conclusion
4. Sonuc

In the present study, we proposed the gradation of
continuity, closedness and openness for the soft
mappings to some degrees. The perspective of
gradation of the openness of sets, spaces and also
mappings between some structured spaces yields
researchers efficiently applications to the daily life
modellings. Since (fuzzy) soft sets and (fuzzy) soft
spaces are natural effective tools to reflect and
model the real phenomena, we found it reasonable
to investigate the degrees of soft mappings between
graded soft topological spaces. For further
research, we hope to investigate the relations and
the properties of the graded soft mappings which
are defined between compact, connected and
separated soft topological spaces to some degrees.
In addition, for future work, we aim to propose the
parametric gradation of topologcal structures
which are not defined so far, and the special
mappings between the corresponding spaces such
as graded mappings between soft bornological
spaces, soft uniform spaces, soft proximity spaces
and so on.
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