Unipotent and Unit-Regular Elements in Certain Subrings of $\boldsymbol{M}_{2}(\mathbb{Z})$

Günseli GÜMÜŞEL ${ }^{1 *}$ (iD
${ }^{1}$ Atilim University, Faculty of Science and Literatures, Ankara-TURKEY

Received: 02/12/2022, Revised: 16/01/2023, Accepted: 23/01/2023, Published: 31/03/2023

Abstract

We presented a simple and direct way to construct a unipotent unit and clean but not nil-clean element in a ring. New examples of unipotent/unit-regular elements that are not nil-clean are given. We also study the product of two idempotents/unit-regulars which are unit-regular. The studies are exemplified in two subrings of $M_{2}(\mathbb{Z})$.

Keywords: Idempotent Element, Nil-Clean Element, Nilpotent Element, Unit Element, Unit-Regular Element

$M_{2}(\mathbb{Z})$ Halkasının Belirli Alt Halkalarındaki Tek Kuvvetli ve Terslenir Düzenli Elemanlar

Öz

Bir halkada, bir sıfır güçlü terslenir ve temiz ama nil-temiz olmayan bir eleman oluşturmanın basit ve doğrudan bir yolunu sunduk. Nil-temiz olmayan sıfır güçlü/terslenir-düzenli elemanların yeni örnekleri verilmiştir. Ayrıca, terslenir-düzenli olan iki eşkare/birim-düzenli elemanların çarpımları da incelenmiştir. $M_{2}(\mathbb{Z})$ halkasının iki alt halkasında çalışmalar örneklendirilmiştir.

Anahtar Kelimeler: Eşkare Eleman, Nil-Temiz Eleman, Sıfır Güçlü Eleman, Terslenir Eleman, TerslenirDüzenli Eleman.

[^0]
1. Introduction

Vidinli Hüseyin Tevfik Pasha (1832-1901) was a famous Ottoman mathematician. He taught advanced algebra, high algebra, analytical geometry, differential, integral calculus, mechanics and astronomy at the Military Academy (Harbiye Mektebi) of the Ottoman Empire. What makes special his work Linear Algebra, written in English in 1882, is that he produced a completely original work at a time when it was tried to make progress in the sciences through translations and compilations in general.

Although his work seems to be dealing with real and complex numbers, one of the newest subjects of his time, he actually focused on three-dimensional algebras -not two dimensionalwithin the hypercomplex number system. In the background of this focus, pure quaternions which are a three-dimensional vector subspace of quaternions and a four-dimensional algebra have the purpose of repeating the mutation application in three-dimensional Euclidean geometry in two dimensions.

In short, Tevfik Pasa's Linear Algebra tries to spread the complex or virtual value system to three-dimensional space by making use of Argand's concept of a vector calculus.

Here we reconsider this problem by working on unipotent elements, unit-regular elements, nilclean elements and clean elements based on the Tevfik Pasha's adaptation of linear algebra, which is one of the most important fundamental theories of modern mathematics. We present a simple and direct way to construct a unipotent unit and clean but not nil-clean element in the $\operatorname{ring}\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ s^{2} \mathbb{Z} & \mathbb{Z}\end{array}\right)$ for every positive integer $s \geq 3$.

We show that the product of two unit-regulars in R_{i} is unit-regular if and only if the product of two idempotents in R_{i} is unit-regular where $R_{1}:=\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ 4 \mathbb{Z} & \mathbb{Z}\end{array}\right)$ and $R_{2}:=\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ s^{2} \mathbb{Z} & \mathbb{Z}\end{array}\right)$ with $s \geq 3$. Because of this observation, we also obtain that the rings $R_{i}(i=1,2)$ are SSP if and only if product of two idempotents in $R_{i}(i=1,2)$ is unit-regular.

2. Preliminaries

Throughout, R is an associative ring with unity.
We write \mathbb{Z} is the ring of integers, $M_{2}(\mathbb{Z})$ is the 2×2 matrix ring over \mathbb{Z} whose identity is denoted by I_{2} over R.

A ring R is called clean if each element of its can be written as the sum of a unit and an idempotent. Clean rings were introduced by W. K. Nicholson [7].

In [1], Andrica and Calugareanu found a counter example and gave a structure theorem which is nil-clean but not clean element in the matrix ring $M_{2}(\mathbb{Z})$. In [8] the authors considered this problem on the subring $\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ s^{2} \mathbb{Z} & \mathbb{Z}\end{array}\right)$ of $R:=M_{2}(\mathbb{Z})$ instead of R since the subring $\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ s^{2} \mathbb{Z} & \mathbb{Z}\end{array}\right)$ contains much less clean elements than $M_{2}(\mathbb{Z})$, a huge advantage. The authors of [8] gave also
many counter-examples of unit-regular elements (an element in a ring is unit-regular if it is a product of an idempotent and a unit, and a ring is unit-regular if its every element is unit-regular) and nil-clean elements that are not clean in the $\operatorname{ring}\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ S^{2} \mathbb{Z} & \mathbb{Z}\end{array}\right)$.

An element $a \in R$ in a ring is called unipotent, if $a-1$ is nilpotent.
An element a in any ring R is said to have (right) stable range $l(\operatorname{sr}(a)=1)$ if $a R+b R=R$ (for any $b \in R$) implies that $a+b r$ is a unit for some $r \in R$. We recall that if a is a unit-regular element in a ring R, then $\operatorname{sr}(a)=1$.

A ring R is said to being the summand sum property (briefly SSP) if the sum of two direct summands of R_{R} is also a direct summand of R ([5]). It is well known that $M_{2}(\mathbb{Z})$ is not SSP while \mathbb{Z} is an SSP ring.

3. Main Theorem and Proof

We begin recalling the following basic facts over the matrix ring $M_{2}(\mathbb{Z})$.

- The units in $M_{2}(\mathbb{Z})$ are the 2×2 matrices of det $=\mp 1$.
- A non-trivial idempotent matrix in $M_{2}(\mathbb{Z})$ has rank 1.
- A nilpotent matrix in $M_{2}(\mathbb{Z})$ has the characteristic polynomial t^{2} and so it has the trace which is equal to 1 .

Lemma 3.1. ([1]) Let $s \in \mathbb{Z}$. Nontrivial idempotents and nilpotents in the ring $\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ s \mathbb{Z} & \mathbb{Z}\end{array}\right)$ are matrices $\quad\left(\begin{array}{cc}\alpha+1 & u \\ s v & -\alpha\end{array}\right)$ with $\alpha^{2}+\alpha+\operatorname{suv}=0 \quad$ and $\quad\left(\begin{array}{cc}\beta & x \\ s y & -\beta\end{array}\right)$ with $\beta^{2}+s x y=0$ respectively.

Proposition 3.2. For rings $R_{1}=\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ 4 \mathbb{Z} & \mathbb{Z}\end{array}\right)$ and $R_{2}=\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ s^{2} \mathbb{Z} & \mathbb{Z}\end{array}\right)$ with $s \geq 3$ an even number, there exist no any invertible matrices U_{i} in $R_{i}(i=1,2)$ such that $I_{2}+U_{i}$ are invertible in R_{i} ($i=1,2$).

Proof: We only give proof for the ring R_{1}. The other is similar.
Assume the contrary that there exists an invertible element $U_{1}=\left(\begin{array}{cc}a & b \\ 4 c & d\end{array}\right)$ in R_{1} such that $\operatorname{det}\left(U_{1}\right)=a d-4 b c=\mp 1$. By the assumption, $I_{2}+U_{1}$ must be also invertible in R_{1}, i.e.,

$$
I_{2}+U_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
a & b \\
4 c & d
\end{array}\right)=\left(\begin{array}{cc}
a+1 & b \\
4 c & d+1
\end{array}\right)
$$

and $\operatorname{det}\left(I_{2}+U_{1}\right)=(a d-4 b c)+(a+d+1)=\mp 1$. Now we can proceed with the following cases.

Case 1. If $a d-4 b c=1$, then $a+d=-1$ and $a+d=-3$.

Firstly, assume $a+d=-1$. Then $(-1-d) d-4 b c=d+d^{2}+4 b c=1$. Since $4 b c$ is an even number, the number $d+d^{2}=d(d+1)$ must be odd, a contradiction. If $a+d=-3$, we get $(-3-d) d-4 b c=(3+d) d+4 b c=-1$. Since $4 b c$ is an even number, we get $d(d+$ 3) must be odd, a contradiction.

Case 2. If $a d-4 b c=-1$, then $a+d=-1$ and $a+d=1$.
If we repeat the procedure of Case 1, we can obtain similar contradictions.
By [3, Corollary 3.3], $M_{2}(\mathbb{Z})$ is not $\mathrm{UU}\left(\mathrm{UR}=1+\mathrm{NR}\right.$) (i.e. $\mathrm{U}(\mathrm{R})=1+\mathrm{N}(\mathrm{R})$) since $I_{2}+U_{1}$ in $M_{2}(\mathbb{Z})$ are not unipotent.

Theorem 3.3. There exist unipotent unit, clean matrices which are not nil-clean in $\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ 4 \mathbb{Z} & \mathbb{Z}\end{array}\right)$
Proof: This is clear from Proposition 3.2.
Example 3.4. The matrix

$$
A=\left(\begin{array}{rr}
-3 & -2 \\
8 & 5
\end{array}\right)
$$

is a unipotent unit in $\left(\begin{array}{rr}\mathbb{Z} & \mathbb{Z} \\ 4 \mathbb{Z} & \mathbb{Z}\end{array}\right)$ since $A-I_{2}=\left(\begin{array}{rr}-4 & -2 \\ 8 & 4\end{array}\right)$ is a nilpotent. As units are clean, the matrix A is clean but is not nil-clean in $\left(\begin{array}{rr}\mathbb{Z} & \mathbb{Z} \\ 4 \mathbb{Z} & \mathbb{Z}\end{array}\right)$ by [8, Theorem 3.3].

Example 3.5. The matrix

$$
A=\left(\begin{array}{cc}
s+1 & 1 \\
-s^{2} & -s+1
\end{array}\right)
$$

is a unipotent unit in the ring $\left(\begin{array}{rl}\mathbb{Z} & \mathbb{Z} \\ s^{2} \mathbb{Z} & \mathbb{Z}\end{array}\right)$, where $s \geq 3$ is an even number since $I_{2}-U=$ $\left(\begin{array}{rr}-s & -1 \\ s^{2} & s\end{array}\right)$ is a nilpotent matrix in $\left(\begin{array}{rl}\mathbb{Z} & \mathbb{Z} \\ s^{2} \mathbb{Z} & \mathbb{Z}\end{array}\right)$. As units are clean, the matrix A is clean but is not nil-clean in $\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ S^{2} \mathbb{Z} & \mathbb{Z}\end{array}\right)$ by [8, Theorem 3.4].

Lemma 3.6. ([6]) Let $s \in \mathbb{Z}$. Unit-regular elements in the ring $\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ s \mathbb{Z} & \mathbb{Z}\end{array}\right)$ are matrices

$$
\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & u \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
x & y \\
s z & t
\end{array}\right)
$$

where $E=\left(\begin{array}{ll}1 & u \\ 0 & 0\end{array}\right)$ is an idempotent and $U=\left(\begin{array}{cc}x & y \\ s Z & t\end{array}\right)$ is a unit.
The following examples show that the product of two idempotents (or unit-regulars) in $R=$ $\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ 4 \mathbb{Z} & \mathbb{Z}\end{array}\right)$ need not be unit-regular, in general.

Example 3.7. Let $R=\left(\begin{array}{rr}\mathbb{Z} & \mathbb{Z} \\ 4 \mathbb{Z} & \mathbb{Z}\end{array}\right)$. Consider the idempotents

$$
E_{1}=\left(\begin{array}{ll}
1 & 0 \\
4 & 0
\end{array}\right) \text { and } E_{2}=\left(\begin{array}{rr}
9 & 3 \\
-24 & -8
\end{array}\right)
$$

Then

$$
E_{1} E_{2}=\left(\begin{array}{cc}
9 & 3 \\
36 & 0
\end{array}\right)
$$

is not unit-regular.
Example 3.8. Let $R=\left(\begin{array}{rr}\mathbb{Z} & \mathbb{Z} \\ 4 \mathbb{Z} & \mathbb{Z}\end{array}\right)$. Consider the unit-regulars

$$
A=\left(\begin{array}{cc}
11 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
11 & 1 \\
32 & 3
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{cc}
13 & 5 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
13 & 5 \\
8 & 3
\end{array}\right)
$$

in $\left(\begin{array}{rr}\mathbb{Z} & \mathbb{Z} \\ 4 \mathbb{Z} & \mathbb{Z}\end{array}\right)$. Then

$$
A B=\left(\begin{array}{cc}
143 & 55 \\
0 & 0
\end{array}\right)
$$

is not unit-regular. In fact, if

$$
A B=\left(\begin{array}{cc}
143 & 55 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
143 & 55 \\
4 a & b
\end{array}\right)
$$

then $220 a-143 b=11(20 a-13 b)$ can not be -1 or 1 for any integers a and b.
The following examples show that the product of two idempotents (or unit-regulars) in $R=$ $\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ S^{2} \mathbb{Z} & \mathbb{Z}\end{array}\right)$ need not be unit-regular, in general.

Example 3.9. Let $R=\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ s^{2} \mathbb{Z} & \mathbb{Z}\end{array}\right)$ with $s \geq 3$. Consider the idempotents

$$
E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \text { and } E_{2}=\left(\begin{array}{cc}
1 & 0 \\
S^{2} & 0
\end{array}\right)
$$

in R. Then

$$
E_{1} E_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

is not unit-regular.

Example 3.10. Let $R=\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ s^{2} \mathbb{Z} & \mathbb{Z}\end{array}\right)$ with $s \geq 3$. Consider the unit-regulars

$$
A=\left(\begin{array}{ll}
6 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
6 & 1 \\
-25 & -4
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{ll}
4 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
4 & 1 \\
-9 & -2
\end{array}\right)
$$

$\operatorname{in}\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ S^{2} \mathbb{Z} & \mathbb{Z}\end{array}\right)$. Then

$$
A B=\left(\begin{array}{cc}
24 & 6 \\
0 & 0
\end{array}\right)
$$

is not unit-regular. In fact, if

$$
A B=\left(\begin{array}{cc}
24 & 6 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
24 & 6 \\
S^{2} Z & t
\end{array}\right)
$$

then $24 t-6 z s^{2}$ can not be -1 or 1 for any integers a and b.
Proposition 3.11. The following conditions are equivalent for the rings $R_{1}:=\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ 4 \mathbb{Z} & \mathbb{Z}\end{array}\right)$ and $R_{2}:=\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ s^{2} \mathbb{Z} & \mathbb{Z}\end{array}\right)$ with $s \geq 3$:
(1) The product of two unit-regulars in $R_{i}(i=1,2)$ is unit-regular,
(2) The product of two idempotents in $R_{i}(i=1,2)$ is unit-regular.

Proof. We only give proof for the ring R_{1}. The other is similar.
(1) \Rightarrow (2): Suppose that the product of two idempotents in R_{1} is unit-regular. Let $A=E_{1} U_{1}$ and $B=E_{2} U_{2}$ be two unit-regular in R_{1}, where $E_{1}, E_{2} \in \operatorname{Id}\left(R_{1}\right)$ and $U_{1}, U_{2} \in U\left(R_{1}\right)$. It is easy to see that $U_{1} E_{2} U_{1}^{-1}$ is an idempotent and $A B=E_{1}\left(U_{1} E_{2} U_{1}^{-1}\right) U_{1} U_{2}$. Put $E_{3}:=U_{1} E_{2} U_{1}^{-1}$. Then we conclude that

$$
A B=E_{1} E_{3} U_{1} U_{2}
$$

By the assumption, $E_{1} E_{3}$ is unit-regular and hence $A B$ is unit-regular.
$(2) \Rightarrow(1)$ It is clear.
Example 3.12. Let $R=\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ 4 \mathbb{Z} & \mathbb{Z}\end{array}\right)$. Consider the idempotents

$$
E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \text { and } E_{2}=\left(\begin{array}{cc}
9 & -18 \\
4 & -8
\end{array}\right)
$$

in R. Then

$$
E_{1} E_{2}=\left(\begin{array}{cc}
9 & -18 \\
0 & 0
\end{array}\right)
$$

is unit-regular. Let

$$
A=\left(\begin{array}{ll}
9 & 2 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
9 & 2 \\
4 & 1
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{ll}
7 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
7 & 1 \\
8 & 1
\end{array}\right)
$$

Then $A B$ is unit-regular. Since

$$
A B=\left(\begin{array}{cc}
63 & 9 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
9 & -18 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
79 & 11 \\
36 & 5
\end{array}\right)
$$

Example 3.13. In $R_{2}=\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ s^{2} \mathbb{Z} & \mathbb{Z}\end{array}\right)$, sonsider the idempotents

$$
E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \text { and } E_{2}=\left(\begin{array}{cc}
-24 & -6 \\
100 & 25
\end{array}\right)
$$

Then

$$
E_{1} E_{2}=\left(\begin{array}{cc}
-24 & -6 \\
0 & 0
\end{array}\right)
$$

is unit-regular. Let

$$
A=\left(\begin{array}{ll}
6 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
6 & 1 \\
-25 & -4
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{cc}
11 & 2 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
11 & 2 \\
16 & 3
\end{array}\right)
$$

Then

$$
A B=\left(\begin{array}{cc}
66 & 12 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
-24 & -6 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
82 & 15 \\
-339 & -62
\end{array}\right)
$$

is unit-regular.
Corollary 3.14. The rings R_{1} and R_{2} are SSP if and only if the product of two unit-regulars in $R_{i}(i=1,2)$ is unit-regular in $R_{i}(i=1,2)$.

Proof. Assume the contrary that R_{1} is SSP. Let E_{1}, E_{2} be two idempotents in R_{1}. Since R_{1} is SSP, we get $\left(I_{2}-E_{1}\right) R_{1}+E_{2} R_{1}$ is a direct summand of R_{1}, and so $E_{1} E_{2} R_{1}$ is a direct summand of R_{1}. It follows that $E_{1} E_{2}$ is regular. Take $A=E_{1} E_{2}$ and $B \in R$ with $A=A B A$. Since all idempotents of R_{1} have right stable range 1 , we obtain that $\operatorname{sr}(A)=1$ by [4, Proposition 2]. Now, $A R_{1}+\left(I_{2}-A B\right) R_{1}=R_{1}$. There exists C in R_{1} such that $A+\left(I_{2}-A B\right) C$ is a unit. Let U be a unit of R with $\left[A+\left(I_{2}-A B\right) C\right] U=I_{2}$. Then, we have

$$
E_{1} E_{2}=A=A B A=A B\left[A+\left(I_{2}-A B\right) C\right]=A B A U A=A U A
$$

which implies that $E_{1} E_{2}$ is unit-regular.
For the converse, let E_{1}, E_{2} be two idempotents of in R_{1}. By the assumption (and hence from Proposition 3.11), we obtain that $\left(I_{2}-E_{1}\right) E_{2}$ is unit-regular. Hence $\left(I_{2}-E_{1}\right) E_{2} R_{1}$ is a direct summand of R_{1}. Let I be a right ideal of R_{1} such that $\left(I_{2}-E_{1}\right) E_{2} R_{1} \oplus I=R_{1}$. Then,

$$
\left(I_{2}-E_{1}\right) R_{1}=\left(I_{2}-E_{1}\right) E_{2} R_{1} \oplus\left[\left(I_{2}-E_{1}\right) R_{1} \cap I\right]
$$

In as much as $E_{1} R_{1}+E_{2} R_{1}=E_{1} R_{1} \oplus\left(I_{2}-E_{1}\right) E_{2} R_{1}$, we have

$$
\begin{aligned}
R_{1}= & E_{1} R_{1} \oplus\left(I_{2}-E_{1}\right) E_{2} R_{1} \oplus\left[\left(I_{2}-E_{1}\right) R_{1} \cap I\right] \\
& =\left(E_{1} R_{1}+E_{2} R_{1}\right) \oplus\left[\left(I_{2}-E_{1}\right) R_{1} \cap I\right] .
\end{aligned}
$$

This shows that R_{1} has SSP.
One can easily see that unit-regular elements can not be unipotents because of the structure in the rings $\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ 4 \mathbb{Z} & \mathbb{Z}\end{array}\right)$ and $\left(\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ s^{2} \mathbb{Z} & \mathbb{Z}\end{array}\right)$ with $s \geq 3$. The following gives us that there exists unitregular elements which may be unipotents in these rings, but we don't know them, unfortunately.

Theorem 3.15. For rings R_{1} and R_{2}, there exist no any unit-regular matrices A_{i} in $R_{i}(i=1,2)$ such that $I_{2}+A_{i}$ are invertible in $R_{i}(i=1,2)$.

Proof. We only give proof for the ring R_{1}. The other is similar. Assume on contrary that there exists a unit-regular matrix A_{1} in $R_{1}=\left(\begin{array}{rr}\mathbb{Z} & \mathbb{Z} \\ 4 \mathbb{Z} & \mathbb{Z}\end{array}\right)$ such that $I_{2}+A_{1}$ are invertible in R_{1}. In the general case, we consider the unit-regular element

$$
A_{1}=\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
x & y \\
4 z & t
\end{array}\right)
$$

where $E=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ is an idempotent and $U=\left(\begin{array}{cc}x & y \\ 4 z & t\end{array}\right)$ is a unit. By the assumption, $I_{2}+A_{1}$ must be also invertible in R_{1}, i.e.,

$$
I_{2}+A_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
a+1 & b \\
0 & 1
\end{array}\right)
$$

and $\operatorname{det}\left(I_{2}+A_{1}\right)=a+1=\mp 1$. Now we can proceed with the following cases.
Case 1. If $a+1=1$, then $a=0$.
Hence $A_{1}=\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right)$ which is not a unit-regular element in R_{1}.
Case 2. If $a+1=-1$, then $a=-2$.
Hence $A_{1}=\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}-2 & b \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}-2 & b \\ 4 \mathrm{z} & \mathrm{t}\end{array}\right)$, which gives us that $2 t+4 b z$ should be ∓ 1. Clearly, this equation has no integer solutions.

4. Conclusion

In this paper, we focus two subring of $M_{2}(\mathbb{Z})$. We give basic way to find not nil-clean elements which are unipotent and clean. We give examples of the product of two idempotent (unitregulars) not be unit-regular in two subring of $M_{2}(\mathbb{Z})$.

Ethics in Publishing

There are no ethical issues regarding the publication of this study.

References

[1] Andrica D., Călugăreanu G.G., (2014) A nil-clean 2×2 matrix over the integers which is not clean, J. Algebra, 13(6), 3115-3119. doi:10.1142/S0219498814500091
[2] Călugăreanu, G., Lam, T.Y., (2015) Fine rings: A new class of simple rings, J. Algebra Appl., 15(9), 1650173-18 pages. doi:10.1142/S0219498816501735
[3] Călugăreanu, G., (2015) UU rings, Carpathian J. Math., 31(2), 157-163. doi:10.37193/CJM.2015.02.02
[4] Călugăreanu, G., Pob, H.F. On stable range one matrices, Preprint
[5] Garcia, J.L., (1989) Properties of direct summands of modules, Commun. Algebra, 17, 7392. doi: 10.1080/00927878908823714
[6] Khurana, D., Lam, T.Y., (2004) Clean matrices and unit-regular matrices, J. Algebra, 280, 683-698. doi:10.1016/j.jalgebra.2004.04.019
[7] Nicholson W. K., (1977) Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229, 269-278. doi:10.1090/S0002-9947-1977-0439876-2
[8] Wu, Y., Tang, G., Deng, G., Zhou, Y., (2019) Nil-clean and unit-regular elements in certain subrings of $M_{2}(\mathbb{Z})$, Czechoslovak Math. J., 69(1), 197-205. doi:10.21136/CMJ.2018.0256-17

[^0]: *Corresponding Author: gunseli.gumusel@atilim.edu.tr, gumuselgunseli @ gmail.com

