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In literature, there are many papers on the sums of element orders of finite groups. In this study we
deal with the cases in symmetric groups. Our main aim is to investigate the sums of element orders in
symmetric groups and to give some properties of the sum of element orders in symmetric group.
Moreover, we derive the formula for such sums.

Simetrik Gruplarda Eleman Mertebelerinin Toplamlari

Ozet

Anahtar kelimeler

Literatiirde sonlu gruplarin eleman mertebelerinin toplami zerine birgok ¢alisma yer almaktadir. Bu

Sonlu grup;
Simetrik gruplar;
Eleman mertebelerinin
toplami;
Eleman mertebesi.

¢alismada simetrik gruplardaki durumlar tizerinde durulacaktir. Amacimiz simetrik gruplarda eleman
mertebelerinin toplamini incelemek ve simetrik gruplarda eleman mertebelerinin toplamlarinin bazi
ozelliklerini vermektir. Ayrica, bu toplamlar igin bir formil Gretmektir.

1. Introduction

Sums of element orders in finite groups is an
interesting subject, which was studied in varies
papers (see Amiri (2009), Amiri and Amiri (2011),
Herzog et al. (2018)). Our main starting point is given
by the papers H. Amiri et al. (2009), H. Amiri and
S.M.J. Amiri (2011) which studied on the sums of
element orders in finite groups. Given a finite group
G, we denote the sum of element orders in G by
Y(G). Historically, the most enlightening in this area
is due H. Amiri, S.M.J. Amiri and I.M. Isaacs, who
introduced the function ¥(G) on G for a finite
group G. Amiri et al. (2009) and proved that Y (G) <
Y (Cy), where C, denotes a cycle group of order n.
In Herzog et al. (2018), M. Herzog, P. Longobardi and
M. Maj studied to find an exact upper bound for the
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sums of element orders in non-cyclic finite groups.
Let S,, denote the symmetric group of degree n. In
this note we will focus on the study of ¥(S,,). Our
goal is to derive an explicit formula for the sum of
element orders in S,,.

2. Preliminaries

This section contains necessary definitions and
preliminary results.

Notice that an arbitrary permutation o € S,, can be
written as a product of disjoint cycles. Suppose that
o has cycles of length py,p,,...,p,, Where p; =
Dy = =Py, 2ieqbi =n and 1’s in this list are
included for fixed points. The sequence p =
(p1, 02, -, Pr) is said to be the cycle type of . For
instance, if 0 € Sg and ¢ = (1345)(278), then o
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has cycle type (4,3,1,1). If g is a k-cycle in S,,, where
k < n, then the cycle type of ¢ is (k, 1, ...,1), and
the number of 1’s in the sequence is n — k. The
order of a permutation expressed as a product of
disjoint cycles is the least common multiple of the
lengths of the cycles, namely,

o(o) =lem(py, Py, ooy Pr)- (2.1)
Let n be a positive integer, a sequence of positive
integers p = (p1, P2, ---,Pr) such that p; =2p, =
-+ > p,and Yi_; p; = nis called a partition of n. It
is well-known that there is a bijection between the
set of all partitions of n and the set of the conjugacy
classes of Sj,.

Lemma 2.1. Any two elements of S,, with the same
cycle type are in the same conjugacy class.

Lemma 2.2. Let G be a group. Then G is the disjoint
union of its conjugacy classes.

Let s be the number of distinct conjugacy classes of
G. We suppose that the numbers of elements in the
conjugacy classes are nq,n,, ..., ns. These integers
satisfy the class equation

|G| =ny +ny + -+ ng.

The number of partitions of a positive number n is
equal to the number of conjugacy classes of S,,.

Lemma 2.3. In S, let p = (p,p2, -, Pr) be a
partition of n such that for 1 < i < n, k; of the parts
are i. Then, the number of permutations having
cycle type p = (p1, P2, ---, Pr) In Sy, is calculated by
the following formula
Ap = =1 #:lkl

This lemma will be an important ingredient in the
proof of our main result. For more details we refer
to (Gorenstein 1968, Herstein 1958, Herzog et al.
2018).

3. Main Results

This section is devoted to the description of the sum
of element orders in symmetric group S,,. An explicit
formula for Y(S,) will be given by the following
theorem.

Theorem 3.1. In S,,, let p = (p1,p2, .., Pr) be a
partition of n and A, denotes the number of
permutations which have cycle type p. Then

Y(Sp) = Ap.lem(py, p2, ..., Pr).

Proof. The function y(S,,) is defined as

S = ) o),

OES,

where o(o) denotes the order of o € S,. The
number of all permutations with cycle type p =
(p1, P2, -, Pr) is calculated by (2.1). Hence, the sum
of orders of permutations with cycle type p =
(1,02, - Pr) is Ap.lcm(py, P2, ..., ). Considering
for each partition p of n, we obtain ¥ (S,,) which is
the sum of orders of all permutations in S,,, that is,
we get

Y(Sp) = Ap.lem(py, 2, -, Pr)-
Therefore, the proof of theorem completes.
O

Now, we can see some information on partitions of
n, the sizes of conjugacy classes and the element
orders of S, for the cases n=3 and n =4.
Moreover, we see how the formula is applied to the

cycle sizes.
Forn =3,
Table 1. The case of n = 3
Partition Elements with Size of Element order
the cycle type conjugacy
class
1+1+1 @) Agin=1 lm(1,1,1)=1
2+1 (12), (13), (23) Ay =3 lem(2,1) = 2
3 (123), (132) Az =1 lem(3) =3

1/)(53) = A(lylrl).lcm(l,l,l) + A(Zrl).lcm(z,l)
+A(3).lcm(3)
=11+32+23

= 13.
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Forn =4,
Table 2. The case of n = 4
Partition  Elements with Size of Element order
the cycle type conjugacy
class
1+1+1+1 Q) A(1,1,1,1) Iem(1,1,1,1) =1
=1
2+1+1 (12),(13),(14), Agin =6 lm(2,1,1)=2
(23),(24),(34)
2+2 (12)(34), Apay =3 lem(2,2) = 2
(13)(24),
(14)(23)
3+1 (123), (132), Aiy) =8 lem(3,1) = 3
(234), (243),
(124), (142),
(134), (143)
4 (1234), (1243), Ay =6 lem(4) = 4

(1324), (1342),
(1423), (1432)

Y(S4) = A1) lem(1,1,1,1)
+A2,11)-1em(2,1,1) + A2 2).1em(2,2)
+A(3,1).1cm(3,1) + Ay).Iem(4)
=11+62+32+83+64
= 67.

Proposition 3.2. Let S, be symmetric group of
degree n forn > 3. Then,

|Sx
>

P(Sp) <

Proof. Since S,, for n > 3 is non-cyclic and 2 is the
smallest prime divisor of |[S,|, this implies that

o(x) Slsz—”l for each x €§,. But o(1) =1, so

YS) < syl -1 (B) + 1<

|Sn|?
-
o
Recall that let n be a positive number, the Euler
function @ (n) is the number of integers k such that

1<k<n and (k,n) = 1. We can calculate the
Euler function ¢ (n) by the following formula

(1—1)
-

p|n,p prime

p(n) =n. (3.2)

Theorem 3.3. Let S,, be symmetric group of degree
n. Then,

(i) Forn > 3, (Sp) < 1Sul (ISnl)-

.. 1
(ii) Forn < 3, ¥(Sy) > 5 1Snl @(ISy D).
Proof.

(i) By Proposition 3.2,

Spl? U1
5L < 2 1Sul @IS

PY(Sp) <
(i) It is clear to see for the casesn = 1,2,3.
O

Lemma 3.4. Let |S,| be the order of symmetric
group of degree n with the largest prime divisor p.
Then,

1
§0(|Sn|) =E |Sn|-

my

Proof. Let |S,|=p; Dy % .05 ¢ where p;’s are

prime, m;’s are positive integersandp; = 2 < p, <
-+ < pr =p. Using (3.2), the Euler's function
@ (|S,]) satisfies the following equality:

P11 = 15,1 (1 - %) (1- %) (1= %)

O

Proposition 3.5. Let (|5 | be the cyclic group of
order |S,|, where S,, is a symmetric group of degree
n. Then,

1
¥(Cis,1) > 5|5n|2-

Proof. It is clear that l/)(C|5n|) > |Sule(ISn]). By
Lemma 3.4, we have
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1 1
¥(Cis,1) > 1Snl 5 15a] = 5|sn|2,

as required.
O

Theorem 3.6. Let S, be the symmetric group of
degree n forn > 3. Then,

Y(Sp) <Y(Cps,y)s
where C|s | denote the cyclic group of order [S,,|.
Proof. By Theorem 3.3 (i),

|Sn
2

P(S,) < < ISnloUSn) < ¥(Cis,))-
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