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izotropik 3-uzay I3 Cayley-Klein uzaylarindan biridir ve Oklidyen uzayda standart Oklidyen uzaklik ile
izotropik uzakligin degisiminden elde edilir. Bu calismada, I3 uzayinda, sabit relatif (izotropik Gauss) ve
sabit izotropik ortalama egrilikli yiizeyler tizerine gesitli siniflandirmalar ifade edilmistir. Ozel olarak, I3
uzayinda sabit egrilikli helikoidal yuzeyler siniflandirilip, bu yizeyler Gzerinde bazi 6zel egriler analiz

Classification Results on Surfaces in The Isotropic 3-Space
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The isotropic 3-space I3 which is one of the Cayley-Klein spaces is obtained from the Euclidean space by
substituting the usual Euclidean distance with the isotropic distance. In the present paper, we give
several classifications on the surfaces in I3 with constant relative curvature (analogue of the Gaussian
curvature) and constant isotropic mean curvature. In particular, we classify the helicoidal surfaces in I3
with constant curvature and analyze some special curves on these.

1. Introduction

Differential geometry of isotropic spaces have been
introduced by Strubecker (1942), Sachs (1978,
1990a, 1990b), Palman (1979) and others.
Especially the reader can find a well bibliography
for isotropic planes and isotropic 3-spaces in Sachs
(1990a, 1990b).

The isotropic 3-space 1% is a Cayley-Klein
space defined from a 3-dimensional projective
space P(R3) with the absolute figure which is an
ordered triple (@, f,, f,), where @ is a plane in
P(R3) and f,,f, are two complex-conjugate
straight lines in @, see (Milin Sipus, 2014). The
in P(R?’) are

introduced in such a way that the absolute plane

homogeneous coordinates

@ is given by X, =0 and the absolute lines f,, f,
by

Xo=X,+iX, =0, X, =X, -iX,=0.
The intersection point F(0 : 0 : 0 : 1) of these
two lines is called the absolute point. The group of
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motions of 1% isa six-parameter group given in the
X X X

1 =% X =% X =5 by

(% %5 % )= 00,5, % )

X, = a+ X, COS¢— X, sing,

affine coordinates

, ) 1)
X, =b+X,Sing+ X, CoS @,

(xlx2x3) ,
X; = C+dX, +€X, +X,,
where a,b,c,d,e, ¢ e R.
Such affine transformations are called isotropic
congruence transformations or i-motions. It easily
seen from (1.1) that i-motions are indeed

composed by an Euclidean motion in the XX, —
plane (i.e. translation and rotation) and an affine
shear transformation in X; — direction.

Consider the points X= (Xl, X2,X3) and
y= (yl, Y,, y3). The projection in X, — direction
onto R?, (Xl,XZ,X3)H (Xl, XZ,O), is called the top
view. The isotropic distance, so-called i-distance of
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two points X and Y is defined as the Euclidean
distance of their top views, i.e.,

=y, = 3y, -, F-

j=1

(1.2)

The i-metric is degenerate along the lines in X; —
direction, and such lines are called isotropic lines.
The plane containing an isotropic line is called an
isotropic plane.

Let M ?be a surface immersed in 3. M2 is
called admissible if it has no isotropic tangent
planes. We restrict our framework to admissible
regular surfaces. For such a surface M 2 the
a,,,d,,,a,, of its first fundamental

form are calculated with respect to the induced
metric.

coefficients

The normal vector field of M ? is always the
isotropic vector (0,0,1) since it is perpendicular to

all tangent vectors to M 2.
The coefficients b,,b,,b,, of the second

fundamental form of M? are calculated with

respect to the normal vector field of M 2. For
details, see Sachs (1990b), p. 155.

The relative curvature (so called isotropic
Gaussian curvature) and isotropic mean curvature
are respectively defined by

— det(bii) — a;,h,, —2a,,b;, +a,b,
det(a, )’ 2det(a; ) '

The surface M ? is said to be isotropic flat (resp.
isotropic minimal) if K (resp. H) vanishes.

The curves and surfaces in the isotropic spaces
have been studied by Kamenarovic (1982, 1994),
Pavkovic (1980) and Divjak and Milin Sipus (2008),
Milin Sipus and Divjak (1998).

Most recently, Milin Sipus (2014) classified the
translation surfaces of constant curvature

generated by two planar curves in I®. And then
some classifications for the ones generated by a
space curve and a planar curve with constant
curvature were obtained in (Aydin, 2015).

Aydin and Mihai (2016) established a method
to calculate the second fundamental form of the
surfaces of codimension 2 in the isotropic 4-space
|* and classified some surfaces in |* with
vanishing curvatures.

In this paper, the helicoidal surfaces in I* with
constant isotropic mean and constant relative
curvature are classified. Further some special
curves on such surfaces are characterized.
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2. Classifications of surfaces in isotropic spaces

This section is devoted to recall the classification

results on hypersurfaces (also surfaces of

codimension 2) in the isotropic (n +1)—space | "

(n22) into seperate subsections, such as the

translation  hypersurfaces, the homothetical

hypersurfaces (so-called factorable surfaces),

Aminov surfaces, the spherical product surfaces.

2.1. Translation hypersurfaces in | n+t

The present author introduced the translation

surfaces in |° generated by a space curve and a
planar curve as follows (for details, see Aydin
(2015))

r(uy.u,)
= () £ (u)+ 4 (U, ) Folu )+ 95(u,))

and classified the ones with constant curvature by
the following theorems:

(2.1)

be a
| ® with
constant relative curvature K. Then it is either a

Theorem 2.1. (Aydin, 2015) Let M?

translation surface given by (2.1) in

generalized cylinder, i.e. K, =0, or parametrized

by one of the following

(i)

r(ul,uz): (f, B fi + g2’al(fl)2 +|Z_f(gz)2 + 51
+ 5:9,);

(ii)

r(ul1u2):(fl’a2(fl)z +B, 1+ gzaﬂs(fl)z +
+ K01a3 (_2K0§12)3/2 + B fL +,9,),

where «; are nonzero constants and ,Bj some

constants for 1L<1<4 and 1< j<6.

(Aydin, 2015) Let M?
translation surface given by (2.1) in

be a
with
constant isotropic mean curvature H,. Then it is

Theorem 2.2.
I 3

determined by one of the following expressions

(i)

r(u,u,)= (fl, f,+0,, Hyf2+B.f,+ B, 1, +ﬁsgz),
(ii)

r(u,u,)=(F 8, £+ 950 (Ho —a ) () +a,(g, )
+Bsfi+ 55 9,);

(iii)

240
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r(u,,u,)=( fl,—aisln|cos(a3 f1)|+ 9,,H,f>+ 3, f,+ where xeR" and aj, B¢ aresome constants

"‘a%zEXp(asgz)"'ﬂs fi+0:9,),
where; are nonzero constants and 3, some
constants 1 <1 <3 and 1< j<9.

Remark 2.3. /sotropic minimal translation surfaces
can also be classified by Theorem 2.2 as taking

H, = 0 in the statements (i)-(iii) of the theorem.

A translation hypersurface (M " F) in 1" is
parametrized by

X :R" 1™ x> (x, F(x)),
F(X) ::Zn: fj(Xj)1 xeR",

where fj are smooth functions of one variable for

all je {1,..., n}, (Aydin and Ogrenmis, 2016).
For more details of I'”l,see (Chen et al,,

2014), (Sachs, 1978) and (Milin Sipus and Divjak,
1998).
Some classifications were obtained for such

hypersurfaces in | "2 Via the following results:

Theorem 2.4. (Aydin and Ogrenmis, 2016) Let
(M " F) be a translation hypersurface in 1™ with
nonzero constant relative curvature K,. Then it

has of the form
X(x):{x,Zajxf +B,X, +g}
j=1

where XeR", «.

j are nonzero constants and

,Bj , & some constants forall | € {1,..., n} such that
n
-1
j:laj T Ko-
In particular, if (M " F) is isotropic flat in 1™,
then it is congruent to a cylinder from Euclidean
perspective.

Theorem 2.5. (Aydin and Ogrenmis, 2016) Let
(M " F) be a translation hypersurface in 1™ with
constant isotropic mean curvature H , . Then it has

of the form

X(x):{x,iajxf + B X, +g],

forall je {1,...,n} such that Y a; =5H,.

2.6. minimal  translation
hypersurfaces in Lare also classified by Theorem

2.5 as taking H, =0.

Remark Isotropic

II'H—

2.2. Homothetical hypersurfaces in 1 "™

defined the
as follows: A

Aydin (2016)
homothetical hypersurfaces in

and Ogrenmis
I n+1
hypersurface M "of | is called a homothetical
hypersurface (Mn,H) if it is the graph of a
function of the form:

H(X, X, ) = h(x) 0 (),
where hy,...,h, are smooth non-constant functions

of one real variable.

Next results
hypersurfaces in | ™1 with constant isotropic mean
and relative curvature.

classify the homothetical

Theorem 2.7. (Aydin and Ogrenmis, 2016) Let
(M " H) be a homothetical hypersurface in |™*
with constant isotropic mean curvature H . Then
it is isotropic minimal, i.e. H, =0 and has one of

the following forms

(i)

X(x)= (XH {ijj +e }]
j=1
where X € R" and 7 €j some constants;
(ii)

X(x)= (x,

for xe R" and nonzero constants ai,Bi7i

n

[Tb ol )+ ook )

i1

je {l,...,n} such that Zn:aj =0.

=L

Theorem 2.8. (Aydin and Ogrenmis, 2016) Let

(M”,H) be an isotropic flat homothetical

™. Then it has one of the

Z hj(xj))

j=3

hypersurface in
following forms:

i) X(x)= (x, yexplayx, +a,X,)

for nonzero constants y,a,, ,,

AKU FEBID 16 (2016) 021301
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(i) X(x)= (X’yjf—[l(x" Ay j

where XeR", y,a; are nonzero constants and

ﬂj some constants, je{l,...,n} such that

Yha =1

2.3. Spherical product surfaces and Aminov

.14
surfaces in |

The present author and I. Mihai (see Aydin and
Mihai (2016)) established a method to calculate the
second fundamental form of the surfaces of

codimension 2 in the isotropic 4-space |*. Then
ones classified the Aminov surfaces, given by

r:1x[0,2z)—1*,
(u,v)~ r(u,v) = (u,v,r(u)cosv, r(u)sinv),
with vanishing curvature as follows:

Theorem 2.9. (Aydin and Mihai, 2016) The isotropic

flat Aminov surfaces in 1* are only generalized
cylinders over circular helices from Euclidean
perspective.

Theorem 2.10. (Aydin and Mihai, 2016) There does

not exist an isotropic minimal Aminov surface in
14

Furthermore, same authors derived the
following classification results for the spherical

product surface (M 2.c, ®C2) of two curves C;
and C, in | * which is defined by

r=c®c, : R> >1°,

(uv) (U, £, @), f, )V, f, W) g(v)),
where the curves C,(U) =(u, f,(u), f,(u)) and

¢,(v)=(v,g(v)) are called generating curves of
the surface.

Theorem 2.11. (Aydin and Mihai, 2016) Let
(M Z,C1 ® Cz) be a isotropic flat spherical product
surface in | *. Then either it is a non-isotropic plane
or one of the following satisfies
(i) C, is a planar curve in 13 lying in the non-
isotropic plane Z = const.;

(ii) C, is a line in |3

(iii) €, is a curvein | 3 of the form

¢, (u)= (u, fl(u),/ljw/1+ (fl’ )Zdu + 5),

AEER, A#0;

(iv) C, is alinein |2,

Theorem 2.12. (Aydin and Mihai, 2016) There does
not exist an isotropic minimal spherical product

surface in | 4 except totally geodesic ones.

. . . 3
3. Helicoidal surfaces in |

The rotation surfaces in the Euclidean 3-space R3
with constant mean curvature have been known
for a long time Delaunay (1841), Kenmotsu (1980).

A natural generalization of rotation surfaces in R?
are the helicoidal surfaces that can be defined as
the orbit of a plane curve under a screw motion in
R3.

Such surfaces in R® with constant mean and
constant Gaussian curvature have been classified
by (Do Carmo and Dajczer, 1982). These
classifications were extended to the ones with
prescribed mean and Gaussian curvatures by
(Baikoussis and Koufogiorgos, 1998)

The helicoidal surfaces also have been studied
by many authors as focusing on curvature

properties in the Minkowskian 3-space R?’, the

. 1
pseudo-Galilean  space G; and  several

homogeneous spaces, see (Arvanitoyeorgos and
Kaimakamis, 2010), (Beneki et al., 2002) etc.

Morever, there exist many works related with
the helicoidal surfaces satisfying an equation in
terms of its position vector and Laplace operator in
R® and R}. For example see (Baba-Hamed and
Bekkar, 2009), (Choi et al., 2010), etc.

Now we adapt the above notion to
Considering the i-motions given by (1.1), the

3
.

Euclidean rotation in the isotropic space | is given
by in the normal form (in affine coordinates)

X, = X, COS# — X, Sin ¢,
X, = X, SiN ¢ + X, COS ¢,
X, = X,

where ¢ € R.

Now let C be a curve lying in the isotropic
X, X5 — plane given by c(u) = (f(u),O, g(u)), where

f,geC?and f ;tO;t%. By rotating the curve C

around Z — axis and simultaneously followed by a
translation, we obtain that the helicoidal surface of

AKU FEBID 16 (2016) 021301
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first type in |® with the profile curve C and pitch
h is of the form

r(u,v)=(f (u)cosv, f (u)sinv,g(u)+hv)
heR.

Similarly when the profile curve C lies in the
isotropic X,X; —plane, then the helicoidal surface

(3.1)

of second type in | ® with pitch h is given by
r(u,v)=(~ f (u)sinv, f (u)cosv, g(u)+hv) 5.2
heR. '

In the particular case h =0, these reduce to

the surfaces of revolution in 13, Also when gisa

constant, then it is a helicoid from Euclidean
perspective.

Remark 3.1. The coordinate functions f and g of
the profile curve C of a helicoidal surface in 13 are

. . 2
arbitrary functions of class C“ and so one can

take f(u)=u.

Remark 3.2. Since both type of the helicoidal
surfaces are locally isometric, we only will focus on
the ones of first type.

Let M ? be a helicoidal surface of first type in
[®. Then the matrix of the first fundamental form

aof M?is

i St 3

u
where (a”):(aij )_1. Thus the Laplacian of M?
with respect to a is
_ 1 2, 0 ij O

A= —M i,jz—lﬁ_ui[1 |det(a; )a a_uJ

and by taking U, =U and U, =V, we get
10,0 18

ou® u?ov?’
putting r,(u,v)=ucosv, r,(u,v)=usinv and
r3(u,v)= g(u)+ hv, one can easily seen that

Ar,=Ar1,=0 and Argzig’+ q”,
u

where the prime denotes the derivative with
respect to U. Assuming AT, =Ar, AeR, we

can obtain that A must be zero and

1g’+g”:0. (3.3)
u

After solving (3.3), we derive g(u)= aln|u|+,8
for « R\ {0}, BeR.

Thus we have the following result

Proposition 3.3. Let M % be a helicoidal surface of

A € R.Then

it is isotropic minimal and has the form
r(u,v)=(ucosv,usinv, e Inju/+hv+ j)

for « e R\ {0}, S eR.

first type in | satisfying A L =Ar

4. Helicoidal surfaces of constant curvature in |°
Let us consider the helicoidal surface of first type

M2 in 13 Then the components of the second
fundamental form are

14 h ’
b,=9" b, = . b,, =ug’. (4.1)
Thereby, the relative curvature K of M % s
3N~ 2
u -h
L=’ 42)
u

Assume that M 2 has constant relative curvature
K,. We have to consider two cases:

Case (a). K vanishes. It follows from (4.2) that
" 2
99" =15 or
S\3

g'(u)=(a—2—2J ,aeR". (43)

After integrating (4.3), we obtain
h
g(u)=vau?-h? + harctan(ﬁj.
au” —h

Case (b). K is a nonzero constant K,. Then we

can rewrite (4.2) as
2

[P h
a’g :Kou+u—3

or
2

g’(u)=(K0u2 _h_2+ J/J , yeR. (4.4)
u
By integrating (4.4), we derive

~oaq)- -2 et
Q(U)—4[2d(u) 2harctan( 2nd) J+
/4 2

+\/K_0In‘y+2(K0u +4/K0d(u))‘}

where y € R and d(u)z\/Kou4 —h? + ?.

AKU FEBID 16 (2016) 021301
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Thus, we have the next result

Theorem 4.1. Let M 2 be a helicoidal surface in |°

with constant relative curvature K. Then we have

the following items

(i) when K, =0, M % has the form
r(u,v)=(ucosv,usinv,g(u)+hv),

g(u)=vau?—h? + harctan(+)

Jar w2/ (45)
aeR",
(i) otherwise, i.e. K, # 0, it is of the form
r(u,v) =(ucosv,usinv, g(u) + hv),
d(U) h —2h? +yu?
u) =——>——arctan +
g(u) 5 o (2hd(u) ) we)

4 Infy + 20K,0° + K, d )]
d(u) =Ko —h?+ 2, yeR.

Example 4.2. Take h=1, o =1, uefL,5] and
Ve [0,472'] in (4.5). Then M ?becomes isotropic
flat and can be drawn as in Figure 1.

Figure 1. A helicoidal surface K, =0, h=1.

The isotropic mean curvature H of M? is
given by

!
2H=2g"
u
Suppose that M 2 has constant isotropic mean

curvature H,. Then putting g'=p, we obtain
the following Riccati equation

p’+£:2HO. (4.7)
u
Solving (4.7) we get

g(u)z%u2 +alnju/+

for some constants @, f €R and a #0.
Therefore we have proved the next result:

Theorem 4.3. Let M ? be a helicoidal surface in |°
with constant isotropic mean curvature H,. Then

it has the following form
r(u,v)=(ucosv,usinv, g(u)+hv), .
g(u)="2u® +alnju[+ B, @ e R\ {0} 48)

Example 4.4. Let us put h=15, H;=-a=-1,

B=0, uell5] and ve[-z, 7] in (4.8). Then

we draw it as in Figure 2.
-5

-10

-1sf
5 o s

Figure 2. A helicoidal surface H, =—1, h=1.5.

. e . 3
5. Special curves on the helicoidal surfaces in |
For more details of special curves on the surfaces

in 1® such as, geodesics, asymptotic lines and lines
of curvature, see Sachs (1990b), p. 163-181.
In this section we aim to investigate such curves

on a helicoidal surface in |°.

Let M ? be a helicoidal surface in 13, then any
point of a curve on M % has the position vector
r(u(s),v(s)) =r(s) = (u(s)cos(v(s)),u(s)sin(v(s)),
g(u(s)) +hv(s)), (5.1)
where S is arc-length parameter of r(S). Denote
the derivative with respect to S by a dot. Then
t(s) =1(s) = (t,(5),t,(5),t;(S)) is the tangent
vector of r(S). We can take a side tangential
vector o(S) = (Ul(S), o,(8), 0, (S)) in the tangent
plane of M % such that

ol +o; =1 ot +o,t,=0,t0,-t,0, =1
Therefore we have an orthonormal triple
{t,a, N = (0,0,1)}. The second derivative of (S)
with respect to S has the following decomposition

AKU FEBID 16 (2016) 021301
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= K0 + K, N,
where K, and k, are respectively called the
geodesic curvature and normal curvature of r(S)

on M2, The curve r(S) is called geodesic (resp.,
asymptotic line) if and only if its geodesic curvature
K, (resp., normal curvature x,,) vanishes.

The first derivative of G(S) with respect to S

has the decomposition
o=—-Kkt+1, N,

in which T is called the geodesic torsion of I(S)
on M2,

In terms of the components of the first
fundamental form of MZ, the side tangential
vector o is given by

1

C="T"T—— [(a:I.Zu + 3.22\7) ry— (allu + alZV) rv]'
Jdet(a;)
So, the geodesic curvature of r(S) on M? in % s
given by
K, (s)=u?(V)’ —uuv —2(u)’v—uvi.  (5.2)
It is easliy seen from (5.2) that the curves

v=const. on M? are geodesics of M ? but not
the curves U =const., which implies the next

result.

Theorem 5.1. The V —parameter curves on the

. . . 3 .
helicoidal surfaces in |° are geodesics but not U—
parameter curves.

The normal curvature of r(s) on M % in |® is

RVEEN | 12

,(8) = 9"(U)" — 2 (0v)+ ug (v

By (5.3) the curves U =const.
lines of M ?if and only if g is a constant function.

(5.3)

are asymptotic

Similarly the curves V =const. are asymptotic lines
of M? ifand onlyif g is alinear function.

Hence, we have proved the following

Theorem 5.2. (i) The U—parameter curves on a

helicoidal surface in 1® are asymptotic curves if
and only if it is a helicoid from Euclidean
perspective;

(i) the V —parameter curves on the helicoidal
surfaces in 1 are asymptotic curves if and only if
g is a linear function.

On the other hand a curve on a surface is called
a line of curvature if its geodesic torsion T4

vanishes. The function T, can be defined as
dv? —dudv du?®
a‘ll a‘lZ a22
b, b, by
Ty =
det(a;)a

2. (3. .
Hence, a curve on M “ in |7 is a line of curvature
if and only if the following equation satisfies

_ (EJ (u) +(ug’ - ug")av + (hu)(v)’ =0.

Therefore we can give the following result.

Theorem 5.3. The parameter curves on the

. . . 3 . .
helicoidal surfaces in |° are lines of curvature if
and only if these are surfaces of revolution.
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