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ABSTRACT

Water is one of the most important resources for human life and health. Global climate change, industrialization and 
urbanization pose serious dangers to existing water resources. Water quality has traditionally been predicted by expensive, 
time-consuming laboratory and statistical analysis. However, machine learning algorithms can be applied to determine the 
water quality index in real time efficiently and quickly. With this motivation, a dataset obtained from the Kaggle website was 
used to classify water quality in this research. Some features were found to be empty in the data set. Traditional methods (drop, 
mean imputation) and regression method were applied for null values. After the null values were completed, RF, Adaboost and 
XGBoost were applied for binary classification. Gridsearch and Randomsearch methods have been applied in hyper parameter 
optimization. Among all the algorithms used, the SXH hybrid method created with the Support Vector Regression (SVR) and 
XGBoost methods showed the best classification performance with 99.4% accuracy and F1-score. Comparison of our results 
with previous similar studies showed that our SVR XGboost Hybrid (SXH) model had the best performance ratio (Accuracy, 
F1-score). The performance of our proposed model is proof that hybrid machine learning methods can provide an innovative 
perspective on potable water quality.

Keywords: Water Quality Index, Machine Learning, Classification, Imputation Methods, Regression.

JEL Classification Codes:  C38, Q25, Q56

Referencing Style:  APA 7

Cilt 23 • Sayı 2 • Nisan 2023
SS. 265/278

Doi: 10.21121/eab.1252167
Başvuru Tarihi: 17.02.2023 • Kabul Tarihi: 01.03.2023

Potable Water Quality Prediction Using Artificial Intelligence 
and Machine Learning Algorithms for Better Sustainability

IDID

INTRODUCTION

Water is the primary resource for all human, animal, and 
plant life. Although its primary use was potable water, it 
was also used for industry, agriculture, and commerce. 
One of the essential elements for maintaining human 
life is water. Water is necessary for the continuation of 
life events in our bodies. It is also the primary energy 
source and provides life force by producing electrical 
and magnetic energy in every body cell. Some elements 
and compounds in potable water are necessary for the 
human body, provided they are not more than necessary. 
Because they are the elements that make up the structure 
of cells, the basic unit of living things. The biological 
solvent effect of water ensures that vitamins and minerals 
are transported and dissolved in the body. It also plays a 
role in regulating body temperature, functioning of the 
kidneys, and cleansing the body. Access to potable water 
is essential to prevent various water-borne diseases. The 
fact that the earth is covered with 71% water gives the 
appearance that there is plenty of water in the world, but 
the rate of potable water is very low. Only 1.2% can be 
used as potable water (National Geographic, 2022).

Unsafe potable water causes more than 1.5 million 
deaths from diarrhea each year, mostly infants and young 
children (WHO, UNICEF, World Bank, 2022). Due to its vital, 
economic, and strategic importance, water continues its 
potential to be the most discussed topic of today and 
the near future. Globalization, global climate change, 
industrialization, and large amounts of domestic waste 
seriously threaten existing water resources. Another 
issue in the water use of the sectors is the pollution of the 
existing water potential. Fresh water, which has already 
become limited and valuable, is irreversibly polluted due 
to not treating industrial and domestic wastes. Obtaining 
clean water due to purification from contaminated water 
requires great costs. Potable water refers to water suitable 
for human consumption. It should be in a structure that 
will not endanger human health, and that is not contrary 
to the working principles of metabolism. After being 
collected from rivers, lakes, and wells, potable water is 
presented to the consumer through various processes.

According to the WHO (2022), water producers are 
responsible for ensuring the safety and quality of their 
products. The US Environmental Protection Agency 
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(EPA) establishes rules and guidelines for a wide range 
of contaminants, such as chemicals and bacteria that can 
cause disease, that is present in public drinking water 
supplies. It sets legal limits for more than 90 pollutants 
in potable water. Potable water quality rules guarantee 
that consumers can access reliable, sufficient, and secure 
drinkable water. With industrialization and urbanization, 
it is one of the primary responsibilities of city managers 
to deliver healthy potable water to citizens. Water quality 
refers to the standards for water’s chemical, physical and 
biological properties (Liou, 2004). The abundance and 
complexity of the variables that define water quality 
make it difficult to measure and calculate water quality. 
Therefore, water quality indexes have been created to 
assess the acceptability of water for various uses. This 
idea compares the appropriate standards and the water 
quality measure. Non-water professionals can easily 
understand the results of the water quality index (WQI), 
which presents a significant amount of water quality data 
in a single figure (Abed et al., 2022). The water quality 
index combines different parameter values in different 
units and sizes into a single dimensionless number with 
the help of different aggregation functions, sub-indexes, 
and weighting factors. 

Traditional testing has numerous flaws, but we must 
overcome them if we are to ensure that human water is safe 
and aquatic ecosystems are stable. The laboratory test can 
measure multiple parameters and give accurate results, 
but the processes are very long. Artificial intelligence (AI) 
approaches are becoming more and more common for 
accurately and quickly detecting and monitoring water 
quality in real time. Unlike traditional models, AI models 
offer better solutions for nonlinear problems. AI has many 
uses in different fields. AI technology is frequently used in 
many business areas, such as medicine, health, education, 
military, agriculture, economy, finance, automotive, 
telecommunications, mining, media, banking, and many 
more. However, due to their unique characteristics, it is 
difficult to research the quality of different water types 
(seawater, groundwater, fresh water, etc.). Machine 
learning (ML) methods, a sub-branch of AI, are seen as 
an effective tool to overcome these difficulties (Zhu et al., 
2022).

One of the problems that have a significant impact on 
performance when using ML methods is missing data. 
Before using the data for ML models, making decisions 
about missing values is necessary. Missing data refers to 
the lack of observations in the data set, which is expected 
but cannot be recorded. Missing values in real-world 
data can occur for a number of reasons, such as unsaved 

observations and corrupted data. Work on missing data 
must be done in advance because ML algorithms do not 
accept data with missing values. Also, completely ignoring 
missing values can lead to biased results. Ignoring 
missing values can become a minimum-size dataset 
where ML applications will be meaningless. Missing data 
is considered insignificant when it makes up less than 
1% of the total data. Up to 5% of a rate is regarded as 
manageable. However, rates above the 5% cutoff and close 
to 15% call for diverse treatment strategies. Filling in the 
missing value is one of the primary methods. Mean value 
imputation or regression imputation can be used to fill in 
the missing value. There are also modern techniques, such 
as deep learning and expectation approaches. Studies also 
use hybrid methods (Zhang et al., 2020; Rani et al., 2021).

The rest of this article is divided into the following 
sections: First, a literature review was conducted, and 
related studies were presented. Then, the material and 
method are described. Next, the recommended hybrid 
model is presented in Chapter Proposed Hybrid Model. 
The final section presents results, comparisons, and 
discussion.

RELATED WORK

Most studies in the literature use traditional laboratory 
analyses and data analysis to measure the quality of 
water. Some recent studies have determined water 
potability with ML methods. AI, ML, and deep learning 
methods are used on very different data sets in various 
fields. A machine may mimic human behavior thanks 
to AI technology. A subfield of AI called ML enables 
computers to learn from past data without explicit 
programming automatically. Deep learning is an AI 
technique that trains computers to analyze data in a 
way similar to how the human brain does it.

Consumers’ health can be adversely affected by the 
quality of potable water. Potable water quality is mainly 
affected by the quality of the extracted water and its 
processing, distribution, and preservation processes 
before it reaches the consumer. Therefore, effective and 
rapid potable water quality assessment approaches 
gain importance when economic developments, 
technological developments, and the health of the 
increasing population are considered. Using AI and 
ML algorithms for potable water quality prediction 
can lead to a more sustainable approach to managing 
water resources. By providing real-time monitoring, 
early detection, and optimized treatment options, these 
algorithms can help ensure the availability of safe and 
clean water for communities worldwide.
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Chafloque et al. (2021) used a neural network-based 
algorithm to attempt to predict if water is fit for human 
use. The model they used achieved a 70% accuracy 
rate. Their study ignored null values by removing them 
from the data set. In another study using different ML 
methods to estimate water drinkability, the k-nearest 
neighbor and support vector machines LASSO LARS 
and stochastic gradient descent gave the best results 
according to different evaluation parameters. The study 
excluded null values from the data set (Kaddoura, 2022). 
In another study using the same data set, ML methods 
J48, Naive Bayes, and multi-layer percepton (MLP) were 
used to predict water quality. They filled null values 
with mean and median. MLP gave the highest accuracy 
(Abuzir and Abuzir, 2022).

Xin and Mou (2022) stated that sulfate, pH, solids, 
and hardness are the most critical factors in predicting 
water quality. The ML methods that give the best 
results in their work are XGBoost, CatBoost, and LGBM, 
respectively. Fen et al. (2021) obtained 75.83% overall 
prediction accuracy with the decision trees algorithm. 
Using ML methods, Patel et al. (2022) achieved 81% 
accuracy with Random Forest and Gradient Boost. They 
used the mean method for null values.

Azrour et al. (2022) developed a model that can 
predict the water quality index and, subsequently, the 
water quality class. The neural networks predicted the 
water quality class with an accuracy exceeding 85%. 
Dilmi and Ladjal (2022), using LSTM, one of the deep 
learning methods, used different feature extraction 
techniques to improve classification quality. They found 
an accuracy rate of 99.72% in the study. 

Ahmed et al. (2019) tested different ML algorithms 
using four parameters: temperature, turbidity, pH, 
and total dissolved solids. MLP stood out as the best 
method, with 85% accuracy. Aldhyani et al. (2020) state 
seven important parameters, such as conductivity, pH, 
and nitrate, in the data set containing 1679 samples. 
Support Vector Machines gave better results than KNN 
and Naive Bayes algorithm with the highest accuracy 
rate of 97%. 

MATERIALS AND METHODS

This section describes the materials (dataset), hardware, 
and software tools used in our proposed hybrid ML model 
and the methods applied to fill in the missing value and 
the binary classification method.

Description of Dataset Used in Our Work

The search for a suitable dataset for this research 
started with reading similar studies from the past, 
browsing the internet, and reviewing many other 
scientific sources. In the first investigation, we collected 
several datasets containing water quality parameters 
and started to analyze them. Finally, we selected the 
dataset “Water Quality” from the Kaggle website for 
water quality estimation, which was then used to train 
and test the model (Kadiwal, 2022). We chose the dataset 
to include important parameters used in water quality 
measurement. The dataset contains a total of 3276 data.

Figure 1 presents the distribution of the features in the 
dataset. Of the ten key features presented in Figure 1, 9 
are for water properties, and one is for the “potability” of 
water. The “potability” value is either 0 or 1. 0 represents 
non-potable water, and 1 represents potable water.

Figure 1. Distribution of features in the water quality dataset
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The pH value is a unit of measurement expressing the 
acidity or alkalinity of any water. Water hardness is usually 
the amount of calcium and magnesium dissolved in the 
water. Total Dissolved Solids (TDS) include minerals, 
cations, anions, heavy metal ions, and small amounts 
of organic matter dissolved in water and cannot be 
retained by simple filtration methods such as sand filters. 
The higher the TDS in the water, the more foreign matter 
there is. Chloramines are formed by adding ammonia to 
chlorine during drinking water treatment. Sulphate is one 
of the most important lines that rain dissolves. The high 
isolation powers in our water can be detrimental when 
combined with shield and army, the two most common 
hardness components. Conductivity is a property that 
determines the purity of water. The lower the conductivity 
of the water, the fewer the ions in it. Organic carbon in 
spring water comes from natural and artificial sources, 
including decaying organic matter. Drinking water is safe 
for ingestion by humans. Its value is 0 or 1.

WQI is measured according to various parameters of 
water. Water quality index calculation methodology is 
listed as follows (Brown et al., 1972).

1. Collecting data on various physicochemical water 
quality parameters

2. Calculation of the proportionality constant “K” (“si” is 
the standard value of the nth parameter)

    (1)

3. Calculate the quality grade for the nth parameter 
(qn) with n.

   (2)

4. Calculation of weight of units for parameters

   (3)

5. Water Quality Index Calculation Formula

   (4)

In the proposed model, water quality measurement is 
assessed using ten critical water quality indicators from 
the preferred dataset. Reference levels of the water quality 
index are classified by the World Health Organisation 
(WHO). According to (Brown et al., 1972), the index level 
must be less than 50 for water to be potable.

The figure 2 presents the data of 1,998 for non-potable 
waters and 1,278 for potable waters in the dataset. The 
figure shows that the data set is unbalanced.

The dataset contains a high proportion of features 
with missing values. Figure 3 shows the distribution of 
missing values for the three features. Missing values were 
approximately 15% for “pH,” 24% for “Sulphate,” and 5% 
for “Trihalomethanes” property.

Data Preprocessing

As part of data preprocessing, non-numeric data is 
converted to numeric numbers. In addition, the duplicate 
data is deleted, and only the necessary data is kept. In 
data preprocessing, NULL values are primarily detected. 
The algorithm must be able to function without any 
missing data because null values signify missing data. 
The method can also produce more accurate results by 
substituting null values. As observed in Figure 3’s graphic, 
the values for “pH,” “Sulphate,” and “Trihalomethanes” are 
NULL.

After processing the missing data, non-numeric entries 
in the data set were converted to numeric values. The 
next stage of data preparation is data normalization. The 
normalization method, a standard scaler, was used to 
place the data in the range [0, 1] (Kaushik et al., 2019; Graf 
et al., 2022). After the normalization step, the (0,1) data 
are transformed into a TensorFlow, labeled for features 
and classification. Following the TensorFlow step, the 
input and output parameters of the learning model are 
defined. Finally, the data set is divided into two subsets 
as training and testing.

Briefly, our data preprocessing consists of the following 
stages:

• Storing and checking the data set in computer 
memory

• Detection and processing of missing data

• Conversion of nominal data to numerical data

• Normalize data using the standard scaler

• Subdivision into subsets for the Water Quality 
dataset:

 o Training set: 2,620

 o Test set. 656

The training and test data sets are separated by 80% 
and 20%, respectively.
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set. When the table is examined in detail, the importance 
degrees of the “Sulfan” and “pH” features are in the first 
two places in both methods.

Prediction of Missing Values Using Support Vector 
Regression (SVR)

Water quality is sensitive data; it may be insufficient 
to impute water data using other methods of imputing 
missing values (e.g., mode, mean, median). Therefore, 
there is a need for an innovative method for filling in 
missing values. In the first step of our proposed method, 
missing features were detected. These features are; “pH,” 
“Sulfate,” and “Trihalomethanes.” Next, the features with 
positive correlation were determined in the correlation 
matrix of the features in Table 2.

Feature Engineering and Importance

Feature engineering is applied to handle missing data 
and improve model prediction accuracy. The correlation 
matrix method was used to identify the connections 
between the features.

Table 1 presents the correlations representing the 
relationships between the features in the dataset. As a 
first step in feature engineering, the missing values of 
the three features in Figure 3 were determined. Then, 
a correlation matrix was created for each feature with 
missing values in these features. Finally, the importance 
scores of the features in the dataset were obtained.

Table 2 shows the significance scores of the features of 
the Random forest and XGBoost algorithms in the data 

Figure 2. Classification of the potability of the water in the data set used

Figure 3. Distribution of missing values in the data set used
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Positively correlated features;

• For “pH”: [‘Hardness,’ ‘sulfate,’ ‘Conductivity,’ 
‘Organic_carbon,’ ‘Trihalomethanes]

• For “Sulphate”: [‘pH, ‘Organic_carbon,’ 
‘Chloramines’]

• For “Trihalomethanes”: [‘Chloramines,’ 
‘Conductivity’]

Figure 4 shows the step-by-step process of filling in the 
missing values. The steps in the sequence were repeated 
until all columns were filled.

Binary Classification

In this stage, ML methods were trained for binary 
classification to distinguish between potable and non-
potable water conditions in the water quality dataset.

The proposed classification method architecture for 
measuring potable water quality is shown in Figure 5. 
The classification architecture in the figure is designed 
by using hyperparameters (n_estimators, max_depth, 
etc.) of the learning model to obtain the best results. 
Hyperparameters have been adjusted for best results.

A supervised learning method was adopted in the 
research. The water quality dataset labels potable water 
as potable (1) or non-potable (0). Our learning model is 
first trained with the training set, then binary classification 
prediction is performed with the test data.

PROPOSED HYBRID MODEL (SVR+XGBOOST)

ML algorithms have been proposed for the classification 
model of potable water quality. In this direction, the main 
objective of the study is to predict the intended labelled 
data with the best performance by training the data in 

Table 1. Correlation matrix of Water Quality attributes

Table 2. Significance scores of water quality dataset attributes

Feature(s)
Random Forest 
Feature importance (%)

XGBoost 
Feature importance (%)

Sulfate 26.8 13.8

pH 20.9 13.6

Chloramines 13.4 13.1

Hardness 10.5 12.5

Solids (TDS) 8.9 12.7

Trihalomethanes 5.6 8.1

Conductivity 4.9 9.1

Turbidity 4.6 8.3

Organic Carbon 4.5 8.9
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data points is the goal of SVM regression. As previously 
noted, SVM can be used for various issues, including 
classification, clustering, and regression issues. For the 
estimation of water quality and parameters, successful 
results have been obtained in previous studies using the 
support vector regression algorithm (Wang et al., 2020; 
Wang et al., 2011). Within the scope of our study, support 
vector regression method was applied to fill the missing 
parameters in the water quality data set. The Grid Search 
method is adopted as the hyperparameter for support 
vector regression parameters. Grid search parameters are 
set as follows.

the training set to recognise input-output mappings. 
Inferential functions are then produced after that. These 
functions then translate the new unlabeled data into 
the correct class in a subsequent stage (testing process) 
(Kaushik et al., 2019; Graf et al., 2022).

Vapnik presented the current fundamental SVM 
method in the early 1990s (Vapnik, 1998). Support vector 
machines (SVMs) assess classification and regression 
analysis data. SVMs are algorithms developed for 
supervised learning. It contributes to the learning model 
by analyzing large amounts of data to find relationships 
between data and detecting relationship states. Finding 
the ideal hyperplane with the smallest distance to all 

Figure 4. The steps followed in the proposed approach to fill in the missing value

Figure 5. Classification architecture for potable water
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• kernel(‘sigmoid’,’linear’,’poly’)

• degree (1,7,9,2)

• gamma (‘scale’,’ auto’)

• C (1.2,1.3,1.4,1.7

The best parameters for the SVR model:

• kernel: ‘poly’ 

• degree: 2

• gamma: ‘auto’ 

• C: 1.2

Gradient Boost Machines (GBM), one of the most 
effective algorithms for supervised learning, is 
implemented in XGBoost (XGB), one of its variants. 
Additionally, it can be used to address issues regarding 
regression and classification. The XGB algorithm does well 
in many ML challenges. For various predictive modeling 
use cases, logistic regression modeling appeared to be 
the best approach. However, as time went on, it lost out 
in the literature to XGBoost. Despite its strong algorithm 
adaptability, it learns thanks to parallel and distributed 
computing quickly and provides expert memory use. 
In order to make the final prediction choice, XGBoost 
uses a number of different models to provide an output, 
making it an ensemble learning technique. In the 
decision process of the classification and training model 
architecture for the detection of potable water quality, a 
detailed methodological survey of studies in the literature 
was performed. Our potable water hybrid model was 
chosen after comparisons with single algorithm models 

(Kaddoura, 2022; Chafloque et al., 2021) compared to 
previous hybrid models based on superior performance 
results (Zhang et al., 2020; Rani et al., 2021). SXH consists 
of 5 layers, as shown in Figure 6: Input, SVR, Missing 
Value, XGBoost, and Output layers. SVR algorithm is used 
for the estimation of missing values. XGBoost algorithm 
was used for classification.

Briefly, the stages of our proposed SXH model are as 
follows:

1. Ten inputs (X0, ... Xn) in the water quality dataset;

2. Estimation of missing values in the SVR layer (P0);

3. Preparation of the new dataset with the predicted 
values for the input of the XGBoost layer;

4. Classification in the XGBoost layer;

5. Modeling of decision transmission (potability, 
non-potable) to the output layer (Y0, ... Yn).

Hyperparameter tuning of the proposed model 
has been accomplished through random search and 
grid search, the programmer’s heuristic, and previous 
experiments and literature reports (Xie et al., 2019).

The random search and grid search parameters of the 
proposed model are listed below:

• n_estimators: (400 ,800,1000)

• learning_rate (0.5,1)

• max_depth’: range (1, 11, 2)

Figure 6. Proposed model architecture
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RESULTS

After applying the dataset to each of the Random 
Forest, AdaBoost, and SXH algorithms, confusion matrices 
(Tables 3-5) were generated.

When Table 3 is examined in detail, the complexity 
matrix is seen according to the imputation methods 
of 3 different missing values. According to Table 3, the 
management obtained the highest REGRESSION missed 
value imputation using the RF model, the potable water 
samples (1), and predicted potable water samples with 
387. On the other hand, the closest value to REGRESSION 
with 382 was obtained by the MEAN missing value 
method.

When Table 4 is examined, the imputation methods 
assign the missing values, and the predicted potable 
water samples using the AdaBoost model were obtained 
by the REGRESSION imputation method as 404. The value 
close to the highest value was obtained from the MEAN 
missing value imputation method with 396.

Table 5 presents the results of the proposed SXH 
method for estimating potable water quality. According 

The best parameters for the model:

Random search for: (400, 1, 1)

For Grid search: (1000, 0.5, 1)

RESULTS AND COMPARISON OF PREVIOUS 
WORK

This section will first define the performance measures 
for the suggested models. Second, filling in missing 
values and the results of our binary classification models 
will be presented. Then the performances of the models 
will be compared. Finally, our results will be compared 
with previous water quality studies using different 
methods. As in previous studies, four popular measures 
were used to evaluate performances. These are accuracy 
(1), precision (2), recall (3), and f1 score (4). In addition, 
the Confusion Matrix table, which presents the summary 
of the estimation results in a classification problem, is 
used.

Table 3. Random forest confusion matrix for Grid search hyperparameter tuning

Missing value 
imputation method (s) Predicted (1) Predicted (0)

DROP
Actually (1) 197 34

Actually (0) 100 72

MEAN
Actually (1) 382 30

Actually (0) 97 174

REGRESSION
Actually (1) 387 25

Actually (0) 39 205

Table 4. AdaBoost confusion matrix for Grid search hyperparameter tuning

Missing value 
imputation method (s) Predicted (1) Predicted (0)

DROP
Actually (1) 190 41

Actually (0) 126 46

MEAN
Actually (1) 396 16

Actually (0) 151 93

REGRESSION
Actually (1) 404 8

Actually (0) 23 221
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to Table 5, potable water samples (1) and predicted with 
the proposed SXH model obtained the highest predictive 
value with a score of 412. All potable water samples were 
predicted to be true with the proposed model. However, 
non-potable(0) 3 water samples were predicted as 
potable. Results from the tests are shown in Table 6, 
Table 7, and Table 8, respectively. The tables present the 
classification metrics obtained from each ML method.

When Table 6 is examined in detail, it is seen that the 
highest performance for the RF model is obtained with 
the REGRESSION method, one of the null value filling 
methods. The accuracy and F1-score results obtained 
with the REGRESSION method were 90.24% and 90.18%, 
respectively. With the MEAN method closest to this 
performance, accuracy and F1-Score scores of 81.40% 
and 80.79% were obtained, respectively.

When Table 7 is examined, the highest performance for 
the Adaboost model was obtained with the REGRESSION 

method, one of the null-filling methods. The accuracy 
and F1-score obtained by the REGRESSION method were 
95.27% and 95.24%, respectively. On the other hand, the 
accuracy results of MEAN and DROP imputation methods 
showed poor performance at 74.54% and 58.56%, 
respectively.

When Table 8 is examined in detail, the highest 
performance for the SXH model was obtained with the 
REGRESSION method, one of the null-filling methods. 
The accuracy obtained with the REGRESSION method 
and the F1-score score of 99.54% was obtained. RF and 
AdaBoost results are presented in Table 6 and Table 7. The 
proposed SXH results in Table 8 outperformed the results 
of the RF models in Table 6 and the AdaBoost models in 
Table 7. These performance results are the main reasons 
we recommend the SXH method.

Random search and Grid search hyperparameter results 
are presented in Table 9. When the table is examined in 

Table 6. Random forest results for binary classification 

Missing value imputation 
method (s)

Category Accuracy 
(%)

Precision
(%)

Recall 
(%)

F1-score
(%)

DROP

Model 66,74938 67,01052 66,74938 64,88053

Potable 79,82196 66,32997 85,28139 74,62121

Non-Potable 57,35608 67,92453 41,86047 51,79856

MEAN

Model 81,40556 81,94947 81,40556 80,79328

Potable
90,25974 79,74948 92,71845 85,74635

Non-Potable 74,13333 85,29412 64,20664 73,26316

REGRESSION

Model 90,24390 90,20731 90,24390 90,18132

Potable 92,21184 90,84507 93,93204 92,36277

Non-Potable 88,35821 89,13043 84,01639 86,49789

Table 5. SXH confusion matrix for Grid search hyperparameter tuning

Missing value 
imputation method (s) Predicted (1) Predicted (0)

DROP
Actually (1) 162 69

Actually (0) 84 88

MEAN
Actually (1) 375 37

Actually (0) 97 147

REGRESSION
Actually (1) 412 0

Actually (0) 3 241
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In Table 10, comparisons of the results of our hybrid 
method with other studies using the “Water Quality” data 
set we used within the scope of the study are presented. 
The table is detailed by Fen et al. (2021); by deleting the 
missing values from the data set, they obtained 86.67% 
and 85.78% accuracy and F1-score, respectively, with 
the Extra trees classifier method. Filling in the missing 
values with the mean value, Patel et al. (2022) achieved 
an acceptable accuracy rate of approximately 80% with 
RF and F1-score. Other studies performed poorly, staying 
below 80% accuracy.

In the hybrid method we recommend, it is seen that the 
accuracy and F1-score score of 99.64% is approximately 

detail, the results obtained with the Grid search method 
showed better performance than those obtained with 
Random Search in all accuracy, Precision, Recall, and F1-
score metrics. For this reason, the Grid Search method 
has been adopted in our proposed model.

Outcomes from Our SXH Model Compared to Earlier 
Works

This section presents a table comparing our SXH model 
with previous drinking water quality studies using ML 
methods, considering accuracy and F1-score parameters. 
According to the results obtained, it was determined that 
the use of SXH outperformed RF and Adaboost in this 
study.

Table 7. Adaboost results for binary classification

Missing value imputation 
method (s) Category Accuracy 

(%)
Precision

(%)
Recall 

(%)
F1-score

(%)

DROP

Model 58,56079 57,03100 58,56079 54,98061

Potable 74,21384 60,12658 82,25108 69,46984

Non-Potable 48,36066 52,87356 26,74419 35,52124

MEAN

Model 74,54268 77,20280 74,54268 71,46662

Potable 93,85797 72,39488 96,11650 82,58603

Non-Potable 61,82048 85,32110 38,11475 52,69122

REGRESSION

Model 95,27439 95,31767 95,27439 95,24170

Potable 97,50390 94,61358 98,05825 96,30513

Non-Potable 93,14456 96,50655 90,57377 93,44609

Table 8. SXH results for binary classification

Missing value imputation 
method (s) Category Accuracy 

(%)
Precision

(%)
Recall 

(%)
F1-score

(%)

DROP

Model 62,03474 61,66987 62,03474 61,76621

Potable 64,43299 65,85366 70,12987 67,92453

Non-Potable 59,80861 56,05096 51,16279 53,49544

MEAN

Model 79,57317 79,61361 79,57317 78,83460

Potable 87,58389 79,44915 91,01942 84,84163

Non-Potable 72,90503 79,89130 60,24590 68,69159

REGRESSION

Model 99,54268 99,54599 99,54268 99,54210

Potable 100,00000 99,27711 100,00000 99,63724

Non-Potable 99,08953 100,00000 98,77049 99,38144
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14% better than the highest study. This success of 
our study was realized with the effect of the null value 
regression and binary classification method we used.

CONCLUSION

As a human right, safe and clean potable water and 
health protection are vital for fully enjoying the right to 
life. However, a number of pollutants reduce the quality 
of drinkable water. Water quality indices are approaches 
that simplify the expression of potable water status. 
In this way, it enables individuals and institutions not 
experts in water quality to obtain information about 
the water quality status and use this data comfortably, 
quickly, and efficiently. Predicting potable water quality 
is an essential aspect of ensuring its sustainability. AI and 
ML algorithms can be powerful tools for this task.

This study presents a new hybrid model that predicts 
the drinking water quality index. First, the performance 
of the methods that fill in the missing values in the 
data set and then the performance of the classification 
algorithms are measured. Finally, a hybrid model was 
created with a combination of algorithms that gave the 
best results. 

The SXH model we used in the study performed best 
in all binary potable water classifications according 
to accuracy and F1-score values. Our SXH model was 
also compared with other potable water prediction 

models using various methods. By comparison, the 
accuracy performance of our proposed model was 
found to outperform the closest run by about 13%. It 
also performed about 14% better than the most in the 
other performance metric, the F1-score. The results 
show that the hybrid method is a very successful model 
for potable water estimation. It is aimed to apply the 
method we propose for further studies to a different data 
set that includes other parameters used in measuring 
water quality. In addition, water analysis organizations 
or companies can apply our proposed hybrid model to 
the data they have obtained to determine potable water 
quality.

In the administration of water resources, ecological 
restoration and establishment of mechanisms that will 
rearrange water consumption according to industry, 
agriculture, and drinking water needs are important. In 
this framework, existing and planned projects have to be 
reviewed.

Table 9. Comparison of results of hyperparameter methods

Method(s) Model(s) Accuracy (%) Precision (%) Recall (%) F1-score (%)

Random 
Search Our Proposed -SXH 99,39024 99,39611 99,39024 99,38920

Grid Search Our Proposed -SXH 99,54268 99,54599 99,54268 99,54210

Table 10. Comparison Table of Our SXH Model Results with Previous Works

Author(s) Proposed Model Accuracy (%) F1-Score (%)

Kaddoura, 2022 ANN - 63.90

Chafloque et al., 2021 Neural Network 69.00 -

Abuzir and Abuzir, 2022 Multi-layer perceptron (MLP) - 75.90

Xin and Mou, 2022 XGBoost 81.51 80.78

Fen et al., 2021 Extratrees classifier 86.67 85.78

Patel et al., 2022 Random Forest 81.00 81.50

Our Proposed SXH 99.54 99.54
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