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ABSTRACT
In social science researches, there may be cases where a category of the dependent variable is seen hundred times less 
(more) than the other category. Events like wars, mass migrations or coups in social sciences; an event of interest in binary 
variable(s) may have very low prevalence, resulting in low or even zero cell counts in one or two cells in the 2X2 tables of 
two factors. In this case, independent variable predict the dependent variable perfectly or almost perfectly, and this leads 
to an issue called complete or quasi-complete separation problem in statistical modelling. This study aims to compare 
three methods suggested in the literature for the quasi-complete separation in a real small dataset; penalized maximum 
likelihood (Firth-type), exact logistic regression and bayesian logistic regression. Methods were compared via odds ratios, 
odds’ standard error estimates, confidence intervals and statistical significance. Parameter estimates were obtained under 
three different models with binary and continuous variables. Results show that all methods can provide convergence in 
the presence of quasi-complete separation. In conclusion, bayesian logistic regression estimates tend to be superior than 
the other methods in terms of estimation of standard errors.

Keywords: Rare events, zero cell count, quasi-complete separation, bayesian logistic regression, penalized maximum 
likelihood

1. Introduction
Frequency of occurence of a category of binary

dependent variable may be considerably rare than the 
other, in medical, social and political science researches. 
For example a side effect of a drug may be seen only in 
out of 1000 patients; similar rare event cases may be 
observed in wars, coups, mass migrations as examples 
of this rarity in economic analysis (King and Zeng, 
2001: 693). The level of rarity depends on the event’s 
prevalence. However, in rare events, depending of the 

level of rarity and due to randomness, the existence of 
zero frequency cells can be seen in 2X2 tables between 
a dependent variable and an independent variable. 
Suppose that of the 28 patients who have similar 
complaints treated at the same psychiatry clinic, 15 get 
treatment by medication and 13 by psychotherapy. In 
table 1a and 1b, we show two examples of rare event 
scenarios we may end up observing from this patient 
population response distribution for these patients by 
therapy:

Table 1: Representative 2x2 tables for zero cell count

1.a Two zero cells

Yes Response

No

Treatment type Medication 0 15

Psychotheraphy 13 0

1.b One zero cell

Yes Response

No

Treatment 
type

Medication 0 15

Psychotheraphy 10 3
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It is seen that in both cases, the therapy covers 
the entire part of the zero outcomes of the response 
to treatment. These situations occur if the responses 
and non-responses can be perfectly separated by a 
single risk factor or linear combination of risk factors 
and called separation (Heinze and Schemper, 2002: 
2409). The first statement in Table 1.a (two zero cells) 
refers to complete separation and Table 1.b refers to 
quasi-complete separation. In both types, maximum 
likelihood estimates of logistic regression does not 
exist. In other words concavity can not be achieved 
in iterations leading infinite function and it is called 
as convergence failure. Convergence does not occur 
because one or more parameters in the model become 
theoretically infinite (Webb et al., 2004: 274).

Even in some cases where maximum likelihood es-
timates exist, one can suspect about the uniqueness of 
the maximum likelihood estimation and the reliability 
of the estimation results. Large odds ratio estimates, 
large standard error estimates and hence, wide confi-
dence intervals put the models far from interprability. 
Separation is more common in small samples (Heinze 
and Schemper, 2002:2409). This is because the number 
of observations per cell is less and therefore probability 
of zero cells is higher.

This study aims to compare three methods sug-
gested in the literature for the quasi-complete sepa-
ration problem in a small dataset; penalized maximum 
likelihood (Firth type), exact logistic regression and 
bayesian logistic regression. For this aim, data obtai-
ned from 53 feasibility reports of public transportation 
investments subordinated by the Ministry of Transpor-
tation and Infrastructure of Republic of Turkey is used. 
The paper is organized as follows. Section 2 discusses 
the methods proposed for quasi-complete separation. 
Section 3 presents the literature review of empirical 
studies directly related to this study, followed by Se-
ction 4 providing the empirical analysis. In Section 5, 
discussions, conclusions and future work are provided.

2.	Solutions for quasi-complete separation
There are some methods in the literature for the 

solution of the quasi-complete separation problem. So-
lutions like increasing the amount of data by artificially 
inflating the zero cells (https://support.minitab.com), 
deletion of problem variables, combining dummy 
variable categories can be useful in first step (Allison, 
2008: 7). While these approaches may sound practicle 
to a degree, they either does not solve the problem at 
hand or they do so with a potential bias in estimation 

of odds ratios. Therefore, more appropriate approaches 
such as penalized maximum likelihood (Firth, 1993), 
exact logistic regression (Mehta and Patel, 1995) and 
bayesian logistic regression have been proposed. We 
now describe each of these methods briefly.

2.1.	 Penalized maximum likelihood

Logistic regression model is defined as 
 w h e r e 

 denotes the sample of  observa-
tions and  independent variables. 
Maximum likelihood estimate of regression para-
meters are obtained as a result of score equation 

 where  is like-
lihood function. Firth (1993) suggested to maximize 

 in order to obtain 
finite estimates and reduce bias where  
is penalty function. If this modification is applied to 
logistic model, the score equation becomes ‘modi-
fied’ score equation 

.  H e r e ,   a r e 
the ith diagonal elements of the hat matrix 

 with nxp dimensions and 
. 

After this, Firth-type estimates can be obtained iterati-
vely the usual way until convergence is obtained:

Where the superscript ( ) refers the  iteration 
(Henze and Schemper, 2002: 2411-2412; Eyduran, 2008: 
326).

2.2.	 Exact logistic regression

The general idea was to base inferences on exact 
permutational distributions of the sufficient statistics 
that correspond to the regression parameters of 
interest, conditional on fixing the sufficient statistics 
of the remaining parameters at their observed values 
(King and Ryan, 2002: 164). The aim of exact conditi-
onal analysis is to determine how likely the observed 
response is with respect to all  possible responses 
(Derr, 2009). To perform conditional inference the 
sufficient statistics for the  in the unconditional like-
lihood function are calculated as . The 
probability density function for , the 
vector of sufficient statistics, all binary sequences y that 
generate observable t.

https://support.minitab.com
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where  is the number of 
sequences generating . If  is accepted as 
nuisance parameter, then the corresponding sufficient 
statistics for given  is . Similarly,  and  is defi-
ned as parameters of interest. For creating conditional 
likelihood, nuisance parameters can be removed from 
the analysis by conditioning on their sufficient statistics:

where  is the number of vectors such that 
 and . Exact logistic regression esti-

mates of  is the value that maximizes the conditional 
likelihood (Derr, 2009; King and Ryan, 2002: 164).

Because the conditional distributions of sufficient 
statistics requires summing over discrete patterns of 
covariate values, relatively sparse and/or small data in 
particular patterns of categorical covariates often lead 
to degenerate estimates. The inclusion of continuous 
covariates only magnifies this issue of sparseness. 
Hence, this makes the exact method less attractive 

for researchers whose analysis includes combination 
of continuous and categorical independent variables 
(Zorn, 2005: 162).

2.3.	 Bayesian logistic regression

Bayesian analysis has following steps: it starts with 
a prior distribution on the unknown parameters and 
updates this with the likelihood of the data, yielding a 
posterior distribution which is used for inferences and 
predictions.

In binary logistic regression, likelihood function is 
written below for :

or

and the likelihood contribution from the ith subject 
is,

so the likelihood function over a data set of n subjects is then;

A priori distribution of a parameter is a probabi-
lity distribution that includes information that is not 
explicit about the parameter before analyzing the 
data. Existing literature proposes fully informative or 
noninformative priors in bayesian analysis. The issue 
of priors for logistic regression models can be found 
in Gelman et al. (2008) and Gelman et al. (2013). In this 
study, normal distribution (with 0 mean and 1 variance) 
was preferred considered to be most competible with 
data (with most plausible odds ratios and standard 
errors) similar to Greenland et al. (2000), Soliman et al. 
(2013) and Kocak (2017).

In third step, the likelihood function is updated 
with a priori distribution, and parameter estimates are 
obtained from this posterior distribution:

 is likelihood of  and  is an integral. This 
statement transforms the maximum likelihood estima-
tion into a sort of position of the posterior distribution. 
To summarize, the Bayesian approach refers to how 
to update existing knowledge with new knowledge 
(prior) (Gelman and Hill, 2007: 143; Rainey, 2016: 341; 
Cengiz, et al. 2013: 16).

3.	Literature review
In this section, empirical studies which are related to 

the aim of the study directly were included.

Gavanji (2019) determines the factors effect occu-
pational injuries in Saskatchewan . Between 2007-2016, 
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occupational injury rate in examined sample is 0,006%, 
which can be considered quitely rare. The study uses 
Firth logistic regression because conventional logistic 
regression including multiple categorical covariates. 
So, using Firth regression provides interpretable odss 
ratios and confidence intervals.

Kocak (2016), proposed an empirical bayesian 
estimation procedure for odds ratio of rare events and 
provides a formal test procedure. He compared the 
Bayesian approach with Exact Logistic and Firth appro-
aches in terms of statistical power achieved through 
extensive simulations using no event and varying event 
rate scenarios. He showed that new method, which can 
be applied only for a single descriptive variable, is stron-
ger in terms of keeping of Type 1 error and narrower 
confidence intervals compared to other methods. The 
method also predicted odds ratios even in extreme rare 
event scenarios.

Muchlinski et al. (2015) compared three types of 
logistic regressions including Firth type penalized 
regression with random forests method in rare events 
data. The dependent variable is a binary measure of 
whether a civil war onset occurred for a given country. 
Results show that the alghoritmic random forest appro-
ach provides significantly more accurate predictions 
on such a dependent variable than any of the logistic 
regression models implied.

Van Der Paal (2014) evaluated the performance of 
binomial linear regression model using different link 
functions and different primary distributions in rare 
events data. Four different data sets were obtained 
from UCI (Machine Learning Repository) database 
which have different rarity levels. Root mean squared 
error (RMSE), misclassification error rate (ER), the false 
positive rate (FPR), false negative rate (FNR) and the 
area under ROC curve (AUC) were used as performance 
measures. the relevant part of the study can be sum-
marized as follows: at 1.34% rarity, except for the AUC, 
Bayes method with weakly informative prior distributi-
on, gives better results than the Firth method. At 3.7% 
rarity, Bayes method shows better results than Firth’s. At 
14.3 % rarity, except for FPR and at 52.1% rarity except 
for ER and FPR, Bayes method gives better results than 
Firth’s method.

Soliman, et al. (2013) studied small data sets 
which have separation problem. Firth bias-corrected 
regression, exact logistic regression, penalized logistic 

3 In Turkey, investment feasibility report is requested by the Ministry of Transportation and Infrastructure for investments which have 
investment amount of 10 million TLs and above by 2018.

regression, removal of the variable causing separation, 
and a Bayesian logistic model with a weakly informative 
prior were compared in means of empirical performan-
ce. Estimation results show that The Bayesian model 
produced plausible confidence intervals of odds ratio. 
Firth’s method produced implausibly large parameter 
estimates and wide confidence intervals.

Botes (2013) compared the Firth’s method, exact 
logistic regression and hidden logistic regression 
under complete and quasi-complete separation for 
different data sizes. These three methods were com-
pared by Pearson chi-square and Hosmer-Lemeshow 
test statistics. According to the results, exact logistic 
regression provides good estimation results when the 
common variables are the same data type, particularly 
categorical. In other words, degenerate results are 
obtained in combination of both categorical and con-
tinuous variables. Firth method achieved significant 
results when both categorical and continuous variable 
combinations were used. The hidden regression model 
performed well in terms of model significance, but in 
particular the non-significant coefficient estimates in 
the small sample. In general, the probabilities of each 
of the three methods in the large sample are very close 
to the observed values.

Guns and Vanacker (2012) has considered the rare 
events as natural hazards, in geomorphology field. They 
introduce some probabilistic approach based on Mon-
te Carlo simulations in rare event logistic regression 
where the dichotomous dependent variable indicates 
the presence or absence of a landslide. They conclude 
that the modified rare event logistic regression based 
on Monte Carlo simulations to estimate the robustness 
of the regression estimates prevents  instability of the 
results due to sampling bias, even in small data sets.

4.	Empirical analysis
In this section, empirical analysis is shown including 

data, variables and results.

4.1.	 Data and variables

This study aims to compare three methods sugges-
ted in the literature for the quasi-complete separation 
problem in a small dataset; penalized maximum likeliho-
od (Firth type), exact logistic regression and bayesian 
logistic regression. For this aim, data obtained from 53 
feasibility reports3 of public transportation investments 
generated between 2011-2015 years subordinated by 
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the Ministry of Transportation and Infrastructure of 
Republic of Turkey is used.

The comparison of methods was investigated under 
three different models. The first model only includes 
the problem variable, a qualitative variable is added in 
second model and a continuous variable is added in 
third model. In doing so, it is aimed to see if estimation 
performance of methods with distinct types of variable 
combinations would change. For the methodology 
and path, Kocak (2017) and Botes (2013) was taken as 
reference. Descriptive statistics are in the Appendix A. 
Variables used in this study are as follows:

Dependent variable

Cost/benefit ratio (C/B): It is a binary variable crea-
ted by making the cost / benefit ratio calculated during 
economic analysis of public transport investments. It 
takes value of 1 if an investment’s benefit is equivalent 
to or exceeds its costs, and 0 otherwise.

Independent variables

Sector: It shows the sector where investment is imp-
lemented. It takes value of 1 if the investment is applied 
on highway, and 0 otherwise (seaway or airway). This 
variable is also causes separation.

Region: It shows the region where investment is 
implemented. It is created by the electricity consump-
tion of regions as a regional development indicator4. It 
takes value of 1 if the region (s) where the investments 
covers the ‘top’ by the electricity constumption classifi-
cation, and 0 otherwise.

Implementation period: A continuous variable 
shows the estimated implementation period of an 
investment.

4.2.	 Empirical findings

The 2x2 table between the variable of the depen-
dent variable and the sector variable is as follows:

4 For the regional electricity constumption classification see General Directorate of Energy Affairs Bulletin (2015): http://www.enerji.gov.tr/
File/?path=ROOT/1/Documents/E%C4%B0GM%20Periyodik%20Rapor/Mart-Nisan%20B%C3%BClteni_son.pdf 

Table: 2x2 table between C/B and sector

C/B              Sector

Highway Other Total

<1 (Coded as ) 0 19 19

≥1 (Coded as 1) 23 11 34

Total 23 30 53

The presence of zero count in one cell is seen in 
Table 2 between the C/B and the highwaysector 
variable. Hence, quasi-complete separation problem 
exists. In this case, maximum likelihood estimates 
are not available. After detecting the quasi-complete 
separation in the data, Firth-type penalized maximum 
likelihood, exact logistic regression and bayesian logis-
tic regression was applied. Estimations are separately 
made under three the models in which only the sector 
(problematic), sector and region (binary) variable, 
sector and duration of implementation (continuous) 
includes. Model statistics are in Appendix B. Estimation 
results are below: 

As seen in Table 3, type penalized maximum like-
lihood estimates have the highest odds ratios and stan-
dard errors. The method also has big standard errors, 
the confidence intervals of odds are highest among 
other methods. Exact logistic regression method’s odds 
ratios are smaller than Firth’s and higher than bayesian 
method’s. Nevertheless, exact method can not give in-
terpretable standard error estimate for the problematic 
variable, which leads to an upper limit of confidence 
interval as +infinity. Bayesian logistic regression estima-
tes seem more rational compared to other two: in the 
context of more plausible odds ratios, small standard 
errors and narrow confidence intervals. When odds’ 
significances are examined, Firth-type estimates can 
be considered as having the smallest probability of 
significance- due to bigger standard error.

Table 3: Model with the problematic variable

Method Variable Odds Ratios St.error C.I. (%95) Prob.

Penalized (Firth-type) maximum likelihood Sector 79.69 117.69 (4.41, 
1440.28) 0.003

Exact logistic regression Sector 49.70 N/A (7.51 +INF) ≤0.0001

Bayesian logistic regression Sector 14.03 0.2970 (3.44, 41.66) ≤0.0001
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Tablo 4: Model with the problematic and a binary variables

Method Variable Odds St.error C.I. (%95) Prob.

Penalized (Firth-type) maximum likelihood
Sector 76.31 116.62 (3.81,

1525.59) 0.005

Region 0.12 0.10 (0.02,
0.68) 0.016

Exact logistic regression
Sector 43.37 N/A (6.12,

+INF) ≤0.0001

Region 0.11 0.10 (0.009,
0.77) 0.021

Bayesian logistic regression
Sector 13.14 0.35 (3.37,

39.54) ≤0.0001

Region 0.32 0.006 (0.09,
0.76) 0.019

It can be seen from Table 4 that estimation results do 
not differ much for problematic variable. In other wor-
ds, adding a binary variable does not seem changing 
the results much on behalf of the problematic variable.  
Penalized maximum likelihood estimates have the big-
gest odds ratios, with smallest significance, also bigger 
standard errors with largest confidence intervals,  Exact 
logistic regression, similar to the results above, does not 
have standard error estimates of problematic variable. 
Bayesian logistic regression has the most interpretable 
results again for the problematic variable. When we see 
estimation results for the variable added, odds ratios 
are closer in all methods. Standard error estimates are 
small, with the smallest estimated in bayesian logistic 
regression. Exact logistic regression has the estimation 

of standard error and upper limit of confidence inter-
vals for added variable.

In Table 5, estimates for the model including prob-
lematic variable and the continuous variable. From 
the table, it can be seen that odds ratios are estimated 
smaller than the previous models for the problematic 
variable; penalized maximum likelihood estimated 
odds ratio is 60.03, exact odds ratio is 37.34 and ba-
yesian odds is 10.61. Nevertheless, big standard error 
and large confidence intervals problems of Firth-type 
estimations exist. Similarly, exact logistic regression 
still does not have no standard error for problematic 
variable but has infinite upper limit of confidence 
interval. Bayesian logistic regression has still the most 
plausible results.

Tablo 5: Model with the problematic and a continuous variables

Method Variable Odds St.error C.I. (%95) Prob.

Penalized (Firth-type) maximum likelihood
Sector 60.03 88.27 (3.36,

1071.26) 0.005

Implementation 
period 1.62 0.69 (0.70,

3.76) 0.255

Exact logistic regression
Sector 37.34 N/A (5.64,

+INF) ≤0.0001

Implementation 
period 1.70 0.75 (0.67,

4.76) 0.299

Bayesian logistic regression
Sector 10.61 0.32 (3.22,

38.06) ≤0.0001

Implementation 
period 0.27 0.07 (0.09,

0.80) 0.223
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5.	Discussions
In some data sets, a category of binary variable /

variables can be seen very low in total responses, 
even with zero cell counts in one or two cells in the 
2X2 tables between the dependent and the indepen-
dent. In this case, independent variable predict the 
dependent variable perfectly and separation problem 
arises. Separation, complete or quasi-complete, causes 
other problems as convergence failure of maximum 
likelihood, unstable odds ratios process, unreliable 
estimates (Kocak, 2017:2). In separation, there are so-
lution methods which aim to eliminate zero cell from 
2x2 tables like increasing the amount of data deletion 
of problem variables, combining dummy variable ca-
tegories simply. But in some cases, these methods can 
not be implemented or fail. Other solution techniques 
that provide reliable maximum likelihood estimates are 
penalized maximum likelihood approach, exact logistic 
regression and bayesian logistic regression.

This study aims to compare different estimation 
approaches mentioned above when quasi-complete 
seperation exists in a rare event data. For this aim, data 
obtained from 53 feasibility reports of public transpor-
tation investments generated between 2011-2015 
years subordinated by the Ministry of Transportation 
and Infrastructure of Republic of Turkey is used. During 
the statistical analysis of data, zero cell was seen in 
the 2x2 table of dependent and the sector variable. 
Then, the methods proposed in the literature have 

been tried to solve the problem of separation. Hence, 
logistic regression estimates could not be obtained. 
Then,  estimation procedures in separation case was 
impemented. Analyzes performed with different 
variable combinations. All three methods achieved 
convergence. To summarize the results generally, the 
penalized maximum likelihood estimations result in 
very high odds ratios. Also the confidence intervals of 
odds ratios are much larger compared to the other met-
hods’. The odds of exact logistic regression are smaller 
than penalized maximum likelihood method and larger 
than the bayesian method. In all three models, exact 
results cannot give standard error estimates, besides, 
the upper limit of confidence intervals of problematic 
variable go towards +Inf. The bayesian logistic regres-
sion provides reasonable odds ratios estimates, smaller 
standard errors and narrower confidence intervals 
compared to other two methods. Bayesian method also 
have similar and smaller p-values of odds ratios. The 
methods do not differ in superiority in three models 
created with different types of variables. For all that, 
when continuous variable included odds ratios’ and 
standard errors estimates qualitatively smaller in pena-
lized maximum likelihood approach. It is obvious that 
each method has its own advantages. Nevertheless, 
bayesian logistic regression estimates has a tendency 
to be superior compared to other methods in analyzing 
the data used in this study due to the relatively reaso-
nable difference ratios estimates, small standard error 
estimates and narrower confidence intervals.
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Appendix A: Descriptive statistics of variables

Variable Frequency Percentage

Cost/benefit ratio
≥1 33 62.26

<1 20 37.74

Sector
Highway 23 43.40

Otherwise 30 56.61

Region (according to electricity constumption)
Upper region 20 37.74

Otherwise 33 67.26

Implementation period
Minimum Maximum Mean

1 7 3.09434

Appendix B: Model statistics

Model with problematic variable

Penalized maximum likelihood

Wald chi2 8.79

Prob>chi 0.0030

Penalized log-likelihood: -19.60

AIC 43.21

BIC 47.15

Exact logistic regression
Model score 22.27

Pr>score ≤0.0001

Bayesian logistic regression

Log-marginal likelihood -27.0972

Acceptance rate 0.26

DIC 47.77

Model with problematic and a binary variable

Penalized maximum likelihood

Wald chi2 11.62

Prob>chi 0.003

Penalized log-likelihood: -15.87

AIC 37.75

BIC 43.66

Exact logistic regression
Model score 26.85

Pr>score ≤0.0001

Bayesian logistic regression

Log-marginal likelihood -24.94

Acceptance rate 0.26

DIC 42.63
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Model with problematic and a continuous variable

Penalized maximum likelihood

Wald chi2 8.76

Prob>chi 0.01

Penalized log-likelihood: -17.97

AIC 41.95

BIC 47.86

Exact logistic regression
Model score 22.79

Pr>score ≤0.0001

Bayesian logistic regression

Log-marginal likelihood -29.92

Acceptance rate 0.25

DIC 47.89
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