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ABSTRACT
The purpose of this paper is to introduce and study a function space Aﬁ;; (]Rd) to be a linear space of
functions h € L%V(Rd) whose fractional Fourier transforms F,h belong to the Wiener-type space
W (B,Y)(R%), where w is a Beurling weight function on R*. We show that this space becomes a
Banach algebra with the sum norm ||A||;, + ||Fzhllws,y) and @ convolution operation under some
conditions. We find an approximate identity in this space and show that this space is an abstract Segal
algebra with respect to L},V(Rd) under some conditions.
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Kesirli Fourier Doniisiimleri Wiener-tipi Uzaylarda olan Fonksiyon
Uzaylar1 Uzerine Bir Not

OZET
Bu calismanin amact w, R% kiimesi iizerinde bir Beurling agirlik fonksiyonu olmak iizere F,h kesirli
Fourier domiistimii W (B, Y)([R{d) Wiener-tipi uzayma ait h € L}N(]Rd) fonksiyonlarinin bir vektor
uzayl olan Ag:a ]Rd) fonksiyon uzayini tanitmak ve calismaktir. Bu uzayin bazi kosullar altinda,
l”lliw + [[Fehllwesy) toplam normu ve O girisim islemiyle birlikte bir Banach cebiri oldugu
gosterildi. Bu uzayda bir yaklagik birim bulundu ve bu uzayimn L1, (]Rd) uzayina gore bir soyut Segal
cebiri oldugu gosterildi.
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L. INTRODUCTION

In this paper, we study on R%. C, ([R{d) denotes the space of all continuous, complex-valued functions
on R? with compact support, and C,(R%) indicates the space of continuous, complex-valued functions
on R¢ which vanish at infinity, [1]. (Lp (]Rd), B ||p) denotes the usual Lebesgue spaces for 1 < p <
co. Throughout this paper, we will use Beurling weights, i.e. measurable and locally bounded
functions w on R? which satisfy w(x) > 1 and w(x + y) < w(x)w(y), for all x,y € R%. Letn > 1.

A weight function w is called weighted function of regular growth if w (%) < w(x) and there are

constants C > 0 and ¢ > 0 such that w(nx) < Cn°w(x) for all x € R%. pr (Rd) denotes weighted
Lebesgue space i.e.

L5, (RY) = {h|hw € LP(R%)},
forl <p < oo, Lﬁ,(Rd) is a Banach space with the norm ||A]l, , = [[Aw]|,, [2].

Let B be any subset of R%. yp indicates characteristic function of B. The space L},, (Rd) is the set of
all measurable functions (equivalence classes) h such that hyy € Ll(Rd) for any compact subset K of
R®. This space is topological vector space with the senimorms h — ||/yk||;. A BF-space on R% is a
Banach space that is continuously embedded into L%OC(]Rd), [3]. A normed space of measurable
functions is called F-space, if every convergent sequence has a subsequence converging almost
everywhere. If the space is complete, then it is called BF-spaces, [4]. A normed space (4, ||.||4) of
measurable functions is called solid, if for all f € A and any measurable function h satisfying
|h(x)| < |f(x)| almost everywhere, implies h € A and ||4||4 < ||f |l4> [4]- Let h be any function from
R? into C. The translation and character (modulation) operators are defined by Tyh(x) = h(x —y)
and M, h(x) = exp(iwx)h(x) for all y,w € R%, respectively, [5]. (X,]|.|lx) is called (strongly)
translation invariant if T,,h € X (and ||Tyh||X = ||h||y i.e. strongly) for all h € X and y € R%. The
strongly character invariance similar to definition of the strongly translation invariance. A
commutative Banach algebra (B, ||.||g) that is a subset of commutative Banach algebra (4, ||. || 4) is
called a Banach ideal of 4 if hf € B and the inequalities ||h||4 < ||h||p and ||hf]lg < ||k|I5]If]]4 hold
forall h € B, f € A, [6]. A Banach space (X (]Rd), -1l X) of complex-valued measurable functions on
R? is called homogeneous Banach space if it is strongly translation invariant and the function y —
T,h from R? into X([R{d) is continuous for h € X([R{d), [7]. Let (X,]|.|lx) be a Banach algebra.
(Y, 1I-1ly) is said to be an abstract Segal algebra with respect to (X, |.||x) if it has the following
properties [8]:

1. (Y, ]|-lly) is a Banach algebra and is a dense ideal in X.
2. There exists M; > 0 such that ||h||x < M,||h||y forallh €Y.
3. There exists M, > 0 such that [|hf ||y < M||A|x]|f]ly forallh, f €Y.

In order to introduce the Wiener-type space, let us give some expressions: For any Banach space
(B, |- llg) there exists a homogeneous Banach space (4,].||4), continuously embedded into
(Cb (Rd), B ||oo), which is a regular Banach algebra under pointwise multiplication operation (i.e.
separating points from closed sets), and which is closed under complex conjugation, such that
(B, |l115) is continuously embedded into topological dual of 4o(R%) = A(R?) N C,(R?) and is a
Banach module over A under pointwise multiplication operation (i.e. ||[fglls < llgllgllfll4 for all f €
A, g € B). Here AO([R{d) that is given above is a topological vector space with respect to usual
inductive limit topology. Let BlOC(Rd) be the space of all h € A[)([R{d) such that ph € B for all ¢ €
Ao(Rd), where AZ)([R{d) is the topological dual of A, (]Rd). The space By, (Rd) is a topological vector
space with respect to the family of seminorms h — ||@k||5. Let O be any open subset of R with
compact closure. Let (Y, ||. ||y) be a solid translation invariant BF-space on R%. Then the Wiener-type
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space W (B, Y)(]Rd) consist of all g € By, (Rd) such that the mapping G = x = [|g||p(x0) belongs to
the space Y, where ||g||p(x0) is the restriction norm of g over x0. This space has a norm that defined
as |lgllwe,yy = lIGlly. The spaces B and Y are called the local and the global component of
W(B,Y) (]Rd), respectively, [3]. Let f € CC([Rd) be any non-zero window-function and h €
Bloc(Rd). The control function K(f,h) is defined as K(f,h)(y) = ||(Tyf)h||3 for y € R®. This
function is a continuous function from R% into (0, 0). Then we also define the Wiener-type space
W(B,Y)(R?) as

W(B,Y)(RY) = {h € Bjy.(R?)|K(f,h) € Y}.

This space is endowed with the norm ||h|ly(g,y) = [IK(f, R)lly, [9]. Some families of Wiener-type
spaces are studied in [10-12].

Let h € L1(R). The Fourier transform A (or Fh) of the function h is defined as

h(w) = Fh(w) = (\/ﬁ)_l f_J:: h(x)exp(—iwx) dx.

The fractional Fourier transform is a generalization of the Fourier transform with a paramater a. Let §

be Dirac delta function (i.e. §(x) = {08’ z;g and f_t: 6(x)dx = 1). The fractional Fourier

transform with angle a of h € L*(R) is given by

+o0

Feh() = [ Keloydh(dy
such that

1 —icota i

— o exp (E (x% + y?)cota — ixycoseca), a # mn,mé€ 7L
Ka(x'Y) = n

5(y — x), a=2mn,meZ

5(y + x), a=02m+1)r,meL

If we take a = g, then the fractional Fourier transform coincides the Fourier transform, [13—17]. The

definition of the fractional Fourier transform on R is given below [18]: Let us take a = (ay, **, ag)
such that each q; is related to j-th coordinates of the variables of the function K, (x,y), where x =

(x1,,%4), ¥ = (y1, ", ¥q) € R%. Then the fractional Fourier transform of h € Ll(Rd) is

400 400
Feh@) = [ = | Keuho)dy

such that
Ko(x,y) = Ka,, ay) (X, Xas Y1, Ya) = Kal(xl'yl)Kaz (x2,¥2) Kad(xd'Yd)-

Throughout this paper, we get a; # mm, m € Z for all j = 1,2, -+, d. Therefore, the fractional Fourier
transform of h € L*(R%) is taken
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1-icota;

F.h(x) = TIL,

27

f . h(y)exp ( ?zlé(sz + y]-z)cotaj - ixjyjcosecaj) dy. (1)
R

The fractional Fourier transform F,h of h € Ll(]R{d) belongs to Co(R%), [19]. Hence the operator F,, is
an integral operator with kernel function K,(x,y). Then the operator F, is a linear operator from
L*(R?) into Co(R*). Let z = (—y;cotay, -, —ygcotay) for all y = (y3,-+,y4) € R% The @
convolution operation is defined as

d

h(y)f(x —y)exp Z iyj(y]- - x]-)cota']- dy
j=1

(hOf)(x)

pd
[ noom s oy

Rd
for all &, f € L*(R?), [20,21].

Let G be a locally compact Abelian group and G is dual group of G. The space A, (G) to be the space
of g € L*(G) such that § € Lp(@) for 1 < p < . This space and its properties investigate in [22-25].
The weighted type of this spaces are studied in [26,27]. For the some other spaces that define by
Fourier transform, we refer [28-31]. Also there are some spaces which define by other time-frequency
operators, [32,33].

II. MAIN RESULTS

Definition 2.1. Let w be a weight function on R%. Let B and Y be a solid translation invariant BF-
space on R%, and local and the global component of W (B, Y)(Rd), respectively. The set Aﬁ;a (Rd)
consist of all functions h € LY, (Rd) such that the fractional Fourier transforms F,h € W (B, Y)(]Rd).
Since the space L1, ([R{d) is a linear space, then 0 € L1, (Rd). By using (1), we get F,0 = 0. From the
linearity of space W (B, Y)(]Rd) clearly 0 € W(B, Y)(]Rd). This means that the zero function belongs
to Ag:{v(Rd) and so the set Aﬁ;n (Rd) is non-empty. By using the linearity of the spaces L},V(]R{d) and
W (B, Y)(]Rd), and the linearity property of the operator F,, it is easy to see that Ag;n (Rd) is a linear
space. Let us define a function on this linear space as

IRl 42y = IRllLw + Fahllw .y

for all h € Agy,(R®). Since (LY, (R%), |l llow) and (W(B,Y)(R%), || lwes,y)) are normed spaces,
then ||h||1,, = 0 and ||F;h|[wgy) = 0. Then we have

IRl 2y = llhllw + IFehllwesyy 2 0

for all h € Ag:fv (Rd). By using the norms ||. ||y, and || |lws,y), and the linearity property of the
operator F,, we obtain

ARl = 12kl 1y + I FuAhllws vy
= 2ll1Allsw + A el sy = 12111RI
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and

Ih+gll sy = llh+ gllLw + 1Fa(h + Dllway)

= |lh+ glliw + lIFeh + Fgllwesy)
< lhllyw + lgllyw + IFRllwey) + 1F2gllwey)
= ||kl 8y + llgll ;¥

a,w a,w

forall h,g € Agja(Rd) and1 € C. Leth € Ag:; R%). If ”h”AE',‘A’, = 0, then we get h = 0 by using the
norms ||.|ly,w and || |lw,y). If h =0, then Fzh =0 by (1), and so ”h”Ag;,’,’V = 0. Since the above
mentioned properties are satisfied, the function ||. || ABY, iS a norm on Ag:{v(Rd). If we take B =
LP(R?) and Y = LY, (R%), then W(LP(IR{d), Lﬂ,(Rd)) (R?) = L},(R?), [3]. Therefore the space

Aqn,(R?) coincides to the space Ay (R?) which is given in [21].
Theorem 2.2. The space (A’j’,;{v(u&d), B ”AB'Y) is a Banach space.

Proof. Let (h,)nen be a Cauchy sequence in Aﬁ:ﬁ, (Rd). Hence, (hy)ney and (Fyhy)pen are Cauchy
sequences in L1, ([R{d) and W (B, Y)(]Rd), respectively. It is well known that the spaces L1, (Rd) and
W (B, Y)(]Rd) are Banach spaces. Thus there exist h € L%V(]Rd) and f € W(B,Y)(]Rd) such that
lhn — Rllyw = 0 and ||Fyhy, — fllws,y) = 0. Since (B, ||.llz) and (Y, [|.|ly) are solid translation
invariant BF-spaces, then the space W(B,Y)(]Rd) is also a solid translation invariant BF-space
[34,35]. Besides, since the space W(B,Y)(]Rd) is a BF-space, then the sequence (F h;)nen that
satisfies ||Fzhn — fllwsy) = 0 has a subsequence (Fyhp, )n,en that converges to the function f
almost everywhere [4]. Therefore by using the inequality

|Fah(u) - f(u)l = |Fah(u) - Fahnk(u) + Fahnk(u) _f(u)l

1-icota;

STIL s | |5 fa | (e = RO + |Ehy, () = £ ()]
1-icota;

<TIL | 52| Wne = Rllaw + [Fihn, () = F Q01

we may write Fph = f almost everywhere. Thus ||h, — h|| 8y — 0 and h € Ag:{v (Rd). This means
aw
(Agjfv(]l%d), Il ||Ag,‘):/) is a Banach space.

Theorem 2.3. The space (Ag:g,([l{{d), I 1l AB,Y) is a Banach algebra with ® convolution operation.
aw

Proof. The space (Ag:ﬁ, (Rd), B ||A3,y) is a Banach space by Theorem 2.2. Let g, h € Aﬁ;; (]Rd).
a,w

Then g, h € L},V(Rd) and F, g, F,h € W(B, Y)(]Rd) by the definition of the space Ag:g,(]Rd). Since the
space L1, ([R{d) is a Banach algebra with @ convolution operation (see [21]), we have

lgOhllLw < llgllywllhlliw- 2

Also, we shall write
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d d
21 i
Ftgom @] = [ || ] exp[ > ~Luzeotay | 1mgliFhao)
=i | \& G)

< |FehW)] Jga lg(®ldt < [FeR@I1IG 1w

by Theorem 7 in [21]. It is known that the fractional Fourier transform of a function belongs to
Co(R%), [19] and so it is continuous on R%. Thus F,(gOh) is a measurable function on R%. Since
(B, |- llg) and (Y, ||-|ly) are solid translation invariant BF-spaces, then the space W (B, Y)(]Rd) is also
a solid translation invariant BF-space [34,35]. By using the solidity of the space W (B,Y) (Rd) and
inequality (3), we obtain F, (g@h) € W (B,Y)(R?) and

||Fa(99h)||w(3,y) < ||Fah||9||1,w||W(B,Y) = ||g||1,w||Fah||W(B,Y)- 4)
Combining (2) and (4), we get

lgOhll oy = lgOhll1u + I (90Nl sy,

5
< gl wlllsw + 19wl Ehllwesyy < lgll o 1]l o ®

Theorem 2.4. The space (Ag:;(Rd), -1l As,y) is a Banach ideal on L%V(]Rd) with @ convolution

operation.

Proof. Let h € Ag:g,(ﬂ%d) and g € L}”(Rd). By the definition of the space Al;;;(mzd), clearly h €
L},V(]R{d). Then we have the inequality (2). By using the inequality (3) and solidity of the space
W (B, Y)(]Rd), we get F,(g@h) € W(B, Y)(Rd) and the inequality (4). Hence, by combining (2) and
(4), we obtain

lgOhll zx < llgllswllhll .
aw aw
Besides, by the definition of the norm ||.|| 8y, we have ||h|[w < |lh|| 8y. Thus, the space
aw aw

(Ag:f:,([l{{d), Il. ||Ag:‘a;) is a Banach ideal on L3, (R?).

Proposition 2.5. Let w be a weight function of regular growth on R%. If C, ([R{d) c W(B, Y)([R{d),
then A}y, (R?) is dense in LY, (R®).

Proof. Let us take a set F&‘W(]Rd) = {g € LL(RH|F,g € CC(]Rd)}. Then it is known that the set
Fgw (R%) is dense in L}, (Rd) by Corollary 2.14 in [36]. Since C, (Rd) c W(B,Y) (Rd), then we get

F&,(RY) < Abr (RY) < LY, (RY).

By using this inclusion and the density of Fg,, (RY) in L}, (Rd), it is easy to see that Ag:; (Rd) is
dense in L}, (R%).

Proposition 2.6. Let w be a weight function of regular growth on R<. If C, ([R{d) c W(B, Y)([R{d),
then Ag:{v(Rd) is an abstract Segal algebra with respect to L},V(]R{d).

Proof. The space Ag:a (Rd) is a Banach algebra and also is a Banach ideal on L‘l,v(]R{d), in addition the
inequality ||gOhl| ;8y < ||gllywllhll ;5¥ holds for all g,h € Ag:g,(ﬂ%d) by Theorem 2.3 and Theorem
aw a,w
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2.4. Furthermore, from the structure of the norm ||.|| ;8y, we may write an inequality ||hl[;, <
[ aBY forall h € Aﬁ;n (Rd). Finally, it is shown that Aﬁ;n (Rd) is dense in L1, ([R{d) by Proposition
2.5. Thus under the given conditions, Ag:ﬁ, ([R{d) is an abstract Segal algebra with respect to L}, (Rd).

Theorem 2.7. Let B be a strongly character invariant space on R%. Suppose that translation and
character operators are continuous in B and also CC(]Rd) is dense in Y. Let z=

(=y,cotay, ..., —yqcotay) forally = (vq,...,y4) € R%.
1. T,M,h € A, (R?) and

Ty Mhll 5y < wODIIRI 5y
for all h € Agy, (RY).

2. Assume that C.(R%) N A ]Rd) is dense in A ]Rd) Then the mapping y — T,,M,h from
R® into AJ), (RY) is contmuous.

Proof. 1. Let h € Ag:{v(Rd). Then the definition of Ag:{v(ﬂ%d) implies h € L‘l,v(]R{d) and F,h €
W (B, Y)(]Rd). It is well known that the space L}, ([R{d) is translation and character invariant space and
the inequality ||T, k|, < w(¥)||h]l1,w holds for all y € R®. Therefore we shall write

ITy Mzl w < wD NI All1w- (6)
Let us take v = (—y;cosecay, -, —ygcosecay) forall y = (yy,*++,¥4) € R%. Thus we have
Fy(TyMh)(u) = exp Z > cota] M, F, h(u) @)

by the equality (2.55) in [36]. Since B is strongly character invariant, then W(B,Y)(]Rd) is also
strongly character invariant by Corollary 1.4 in [35]. Hence we obtain

ex L 2 . h d
P S yfcota; | MyFyh € W(B,Y)(R%)
j=1

and

d
Fe Ty M) sy = [exp (ZE yicote || 1My Fehllway, -
M,F,

h| |W(B,Y) = ||Fah||W(B,Y)-
Consequently, combininig (6) and (8), we get

”TyMzh”Ag:‘}; < W(y)”h”Ang

2. We will show continuity at 0. Assume that h € A5 ;(Rd) and (Yp)neny € R such that limy, = 0.

n—-oo

Let z = (—y;cotay, -+, —ygcotay) for all y = (yq,-,y4) € R, It is known that the mapping y —
T,,M;h is continuous from R? into LY, ([R{d) by Theorem 2.1 in [36]. Now, let us take the sequences
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(Zy)neny and (Vp)pey 1IN R% where j sequences of coordinates z,; = —ypjcota; and v,; =
—Ynjcosecq;. By the continuity of y — T),,M,h, we shall write

Ty, Mz, h = hll1,w — 0 €
as n approaches infinity. From the equality (6), we get

1P (T M = )l 5 ) = NP (T M, 1) = F|

W(B,Y) W(B)Y)

< ”exp (Zjd:l%yrzljcotaj) M, Fyh
—exp (Z]-‘Ll %y,zljcota]-) Fyh || W
+ ||exp (Zjdﬂziyrzljcotaj) Fah—Fah” (10)

W(B,Y)
= ||M,, Fyh— Fah||W(B’Y)
d i

+|exp (ZL15 2 cote;) — 1| IFahllwsy)-

Let us take v = (—y;cscay, -+, —ygcscagy) for all y = (yq,++,v4) € R%. Obviously, the mapping
y - v from R? into R? is continuous. Using that is given in the hypothesis, we say that the mapping
y = Myh from R% into W(B, Y)(]Rd) is continuous (see Lemma 1.5 in [35]). Therefore the
composition mapping y — M,h from R? into W (B,Y) (Rd) is continuous. In the other words, we can
write

1M, Foh — Fyhl| 0 (11)

ﬁ
W(B)Y)

as n approaches infinity. Let us define p,, = exp (Zjdﬂ% y,zljcota]-) —1 for all n € N. By using

convergence of the sequence (Y, )nen to zero, we get |p,| = 0 as n approaches infinity. By combining
(9), (10) and (11) we obtain

”TJ’nMZnh - h”Ag“,’V = ”TJ’nMZnh - h”lyw + ”FQ(TYnMZnh - h)”W(B,Y)

= ”TYnMZnh - h”l‘w + ”MVnFah - Fah”
+onlllFzhllweiyy = 0

W(BY)

as n approaches infinity. This means that the function y — T,,M,h is continuous at 0. Let us take any
fixed point y* = (y;,--,vs) € R%. Hence we get
Ty_yMy_p(Ty-Mp-h)(x) = exp(iy*z — iy*Z*)TyMzh(x)s

where z* = (—yjcotay, -, —yjcotay) for all x € R% by the proof of Theorem 2.17 (2) in [36].
Therefore, we may write

|TyM,h —Ty-M,-h

|A§'VYV = |lexp(iy*z* — iy*2)Ty_y*M,_p+(TyMy-h) — Ty M+ h

| BY -
Aa,w

Let us take Ty«M,+h = g. Then g € A’j,;; (Rd) by the first part of this theorem. Thus we have
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|TyM,h — TyM,-h

Ly = lespCiy'z” = iy"2)Ty M, g — gl
= ”TY—y*Mz—z*g - g”Ag,‘):/
+ligll 2 lexp(iy*2) — exp(iy*z7)|.

Let £ > 0 be given. By using continuity of the function y — exp(iy*z) from R? into C and continuity
at zero of the function y — T,,M,h, there exists § > 0 such that

|TyM,h — Ty-M,-h

Ly <

when ||y — y*|| < . Since y* is an arbitrary fixed point, then the function y — T,,M,h is continuous
on R%,

Proposition 2.8. Assume that all the hypotheses given in Theorem 2.7 are satisfied. Let CC(]Rd) be a
dense subset of W(B,Y) (Rd) and w be a weight function of regular growth on R%. Then Aﬁ;& (Rd)
has an approximate identity with compactly supported fractional Fourier transforms.

Proof. Let us define a set H = {hy, hy, -, hy} such that h; € Ay, (RY) for all j = 1,2, k. Let h €
Ag:z,([l{{d) and z = (—y cotay, -, —ygcotay) for all y = (yq,-+,y4) € R%. It is shown that the
function y — T),M;h from R? into Ag:{v (]Rd) is continuous by Theorem 2.7. Let € > 0 be given. By
the continuity of y — T, M, h, there exist positive §; such that

£
1Ty M,y — hj”Ag:‘l;J <3
whenever ||y|| < g; forall j = 1,2,-+-, k. Let § = min{g; lj =1,2,:--, k}. Then we get

i (12)

I TyMh; — hj”Ag:‘i; <3

whenever ||y|| < 6 forallj =1,2,-,k.Let g € CC([Rd) c L%V(]Rd) be a positive function that
suppg < {x € R*|||x|| < &}
and fRd g(x) dx = 1. Therefore, by the definition of & convolution, we shall write
(9Oh)E) ~ () = [ GOITMby(o) dy = y) = [ 9OI(Ty Mty () = By ) ly
R4 R4

for all x € R% and j = 1,2,--, k. By using (12), we obtain

lg@h; — hjll yzr = f gO)(TyM.h; — hy) dy

d BY
R Agw

< f LTy M.hj — b oy dy
suppg o

&

&
<5 fuppgl 9O dy =3

(13)
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for all j=1,2,---,k. Let K=max{||hj||AB,Y|j= 1,2,---,k}. Let us take the set F({‘W(Rd) =
a,w

{9 € Li,(RY)|F,g € C.(R*)}. Then it is known that the set F{, (R%) is dense in L, (R?) by
Corollary 2.14 in [36]. From this density, there exists a function f € F{\,,(R?) where

g = Fllw < 5 (14)
Since CC([Rd) is a subset of W(B, Y)([Rd), then f € Ag:; ]Rd). By using (13) and (14), we get
IfOh; — byl oy < IfOh; — gkl ex + gOh; — yll o

<llg- f||1,w||hj||Ag.‘Y” +1g0h; — hjll 5y <&

for all j = 1,2, -+, k. Hence, for every infinite subset H = {hq, hy, -+, hy} of A’j,;; (Rd) and every £ >
0 there exists a function f € F({‘W(Rd) such that

10 ~hyll gy < (1)

for all j = 1,2, -+, k. Therefore, there exists an approximate identity of Ag‘;,([Rd) that is defined by
functions f € F§,, (R%) which ensure inequality (15) for every infinite subset H = {hy, hy, -, hy} of
Ag:g,(]l%d) and every € > 0, by Proposition 1.3 in [37]. This means Ag‘;,([Rd) has an approximate
identity with compactly supported fractional Fourier transforms.

I1I. CONCLUSION

In this study, we investigate a subalgebra of L1, (Rd) (with @ convolution operation) that fractional
Fourier transforms of its elements belong to W (B, Y)(Rd). Let G be a locally compact abelian group
and G be the dual group of G. It is known that the space ALY (G) consisting of all functions h € L, (G)
whose Fourier transforms belong to Wiener-type spaces W(B,Y), [35]. Let us take a; = % forall j =
1,2,:--,d such that @ = (a1, @y, -, a4). Therefore, the @ convolution opeator and the fractional
Fourier transform coincide the usual convolution and the Fourier transform, respectively. Hence the
space Ag:a (]Rd) corresponds the space Aﬁ,‘y(]R{d) which is given in [35]. This means that this study
extend some results of [35] for G = R%,
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