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ABSTRACT 
In this study, we consider the summatory function of convolutions of the Möbius function with harmonic numbers, 

and we show that these summatory functions are linked to the distribution of prime numbers. In particular, we give 

infinitely many asymptotics which are consequences of the Riemann hypothesis. We also give quantitative 

estimate for the moment function which counts non-integer hyperharmonic numbers. Then, we obtain the 

asymptotic behaviour of hyperharmonics. 
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Harmonik Tipi Toplamlar Üzerine Bazı Sonuçlar 
 

ÖZET 
Bu çalışmada, Möbius fonksiyonunun harmonik sayılarla konvolüsyonunun toplamsal fonksiyonunu ele alacağız 

ve bu toplamsal fonksiyonun asalların dağılımı ile ilişkili olduğunu göstereceğiz. Özel olarak, Riemann hipotezinin 

sonucu olan sonsuz çoklukta asimptotik vereceğiz. Ayrıca tamsayı olmayan hiperharmoniklerin sayaç 

fonksiyonunun momentleri için niceliksel bir kestirim vereceğiz. Sonra da hiperharmoniklerin asimptotik 

davranışını elde edeceğiz. 
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I. INTRODUCTION 
 

In this note, first we study the interaction between the Möbius function and hyperharmonic numbers. In 

particular, we work on the summatory function of convolutions of the Möbius function with 

hyperharmonic numbers, and we show that these summatory functions are related to the distribution of 

prime numbers. We write  

 

𝑓(𝑥) = 𝑂𝑡(𝑔(𝑥)) 

 

or 

 

𝑓(𝑥) ≪𝑡 (𝑔(𝑥)) 

 

to emphasize that the big-𝑂 constant may depend on the finite tuple 𝑡. The summatory function  

 

∑ 𝜇(𝑛)

𝑛≤𝑥

 

 

of the Möbius function has been studied extensively. For instance, for any fixed but arbitrary 𝜀 > 0, the 

collection of estimates 

 

𝑀(𝑥) = 𝑂𝜀 (𝑥
1
2

+𝜀)                                                                                                                                                 (1) 

 

is equivalent of the Riemann hypothesis. Even the estimate 𝑀(𝑥) = 𝑜(𝑥) is known to be equivalent to 

the Prime Number Theorem (see Chapter 4 of [2]), which states that 

 

𝜋(𝑥) ~ 
𝑥

log 𝑥
, 

 

where 𝜋(𝑥) = |{𝑝 ≤ 𝑥: 𝑝 is prime}| is the prime counting function.  

 

Now, we define harmonic numbers. Harmonic numbers are defined by the sequence of partial sums of 

the harmonic series, namely 

 

ℎ𝑛 = ∑
1

𝑘

𝑛

𝑘=1

 

 

for 𝑛 ≥ 1. These numbers have been studied recurrently and attracted considerable attention. For 

instance, it was shown in [7] that there is no harmonic number which is an integer except 1. It is well-

known that 

 

ℎ𝑛 = log 𝑛 + γ + 𝑂(1/𝑛)                                                                                                                                     (2) 

 

and a finer one is 

 

ℎ𝑛 ∼ log 𝑛 + γ +
1

2𝑛
− ∑

𝐵2𝑘

2𝑘𝑛2𝑘

∞

𝑘=1

= log 𝑛 + γ +
1

2𝑛
−

1

12𝑛2
+

1

120𝑛4
− ⋯                                         (3) 

 

as 𝑛 tends to infinity, where 𝛾 is Euler's constant and 𝐵𝑚 is the 𝑚th Bernoulli number. Next, we define 

hyperharmonic numbers. Hyperharmonic numbers were first defined in the book of Conway and Guy 
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[3] and they generalize harmonic numbers. The 𝑛th hyperharmonic number of order 𝑟 ≥ 2 is defined 

recursively by 

 

ℎ𝑛
(𝑟)

= ∑ ℎ𝑘
(𝑟−1)

𝑛

𝑘=1

, 

 

where ℎ𝑛
(1)

= ℎ𝑛. By [3], one has that ℎ𝑛
(𝑟)

 can be expressed in terms of binomial coefficients and 

harmonic numbers with the formula 

 

ℎ𝑛
(𝑟)

= (
𝑛 + 𝑟 − 1

𝑟 − 1
) (ℎ𝑛+𝑟−1 − ℎ𝑟−1).                                                                                                               (4) 

 

Equation (4) gives the order of growth of ℎ𝑛
(𝑟)

 

 

ℎ𝑛
(𝑟)

= 𝑂𝑟(𝑛𝑟−1 log 𝑛).                                                                                                                                           (5) 

 

The summatory function of the von Mangoldt function Λ(𝑛) plays a central role in number theory and 

it is known that the estimate 

 

∑ Λ(𝑛)

𝑛≤𝑥

∼ 𝑥                                                                                                                                                            (6) 

 

is equivalent of the Prime Number Theorem. Moreover, the Riemann hypothesis is equivalent to the 

estimates 

 

∑ Λ(𝑛)

𝑛≤𝑥

= 𝑥 + 𝑂ε (𝑥
1
2

+ε)                                                                                                                                   (7) 

 

where 𝜀 > 0. Next, we recall Wiener-Ikehara theorem (see [6]). This theorem states that if we have non-

negative real numbers 𝑎(𝑛) and its Dirichlet series  

 

∑
𝑎(𝑛)

𝑛𝑠

∞

𝑛=1

 

 

is analytic in ℜ(𝑠)  ≥  𝑏, with a simple pole of residue 𝑐 at 𝑏, then we have  

 

∑ 𝑎(𝑛)

𝑛≤𝑥

∼
𝑐𝑥𝑏

𝑏
. 

 

It is a Tauberian theorem, and it also yields the Prime Number Theorem, as the Riemann Zeta function 

ζ(𝑠) does not vanish on the line σ = 1, see Chapter 13 of [4]. 

 

In this paper, motivated by convolutions of the Möbius function, we begin by focusing on the arithmetic 

function  

 

α𝑟(𝑛) = 𝑛𝑟−1μ(𝑛) ∗ ℎ𝑛
(𝑟)

 

 

and its summatory function  
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𝑆𝑟(𝑥) = ∑ α𝑟(𝑛)

𝑛≤𝑥

. 

 

At a first sight, the behaviour of 𝑆𝑟(𝑥) is not clear, seems chaotic, even it is not obvious the sum is 

positive after a while. We will see that this sum is actually connected to the distribution of prime 

numbers. Note that the trivial estimate for 𝑆𝑟(𝑥) is 𝑂𝑟(𝑥𝑟 log2 𝑥) which can be seen as follows: as μ(𝑛) 

is bounded by 1 and by Theorem 3.10 of [2] 

 

|𝑆𝑟(𝑥)| ≤ ∑ (𝑛𝑟−1 ∗ ℎ𝑛
(𝑟)

)

𝑛≤𝑥

= ∑ 𝑛𝑟−1

𝑛≤𝑥

𝐻𝑟 (
𝑥

𝑛
)                                                                                            (8) 

 

where  

 

𝐻𝑟(x) = ∑ ℎ𝑛
(𝑟)

n≤x

. 

 

By (5) and partial summation (Abel's identity, Theorem 4.2 of [2]), we see that  

 

𝐻𝑟(𝑥) = ∑ ℎ𝑛
(𝑟)

𝑛≤𝑥

≪𝑟 ∑ 𝑛𝑟−1 log 𝑛

𝑛≤𝑥

≪𝑟 𝑥𝑟 log 𝑥 .                                                                                         (9) 

 

By (8), (9) and partial summation again, one infers that  

 

|𝑆𝑟(𝑥)| ≪𝑟 ∑ 𝑛𝑟−1
𝑥𝑟

𝑛𝑟

𝑛≤𝑥

log
𝑥

𝑛
≪𝑟 𝑥𝑟 log2 𝑥 .                                                                                                  (10) 

 

Now we state our first theorem which is better than the trivial estimate (10). Furthermore, assuming the 

Riemann hypothesis, one can control the remainder term of 𝑆𝑟(𝑥)  for every 𝑟 ≥ 1 and we obtain 

infinitely many asymptotics which are implied by the Riemann hypothesis.  

 

Theorem 1.1. Let 𝑟 ≥ 1 be given. Then we have  

 

𝑆𝑟(𝑥) ∼
𝑥𝑟

𝑟!
. 

 

Conditionally, if the Riemann hypothesis holds, then  

 

𝑆𝑟(𝑥) =
𝑥𝑟

𝑟!
+ 𝑂𝑟,𝜀 (𝑥𝑟−

1
2

+𝜀). 

 

Note that when 𝑟 = 1, the results of the above theorem are reminiscent of equations (6) and (7) 

respectively. 

 

Now let  

 

𝑆(𝑥) = |{(𝑛, 𝑟) ∈ [0, 𝑥] × [0, 𝑥] ∶ ℎ𝑛
(𝑟)

∉ ℤ }|. 
 

In other words, the function 𝑆(𝑥) counts the number of pairs (𝑛, 𝑟) in the finite rectangle [0, 𝑥] × [0, 𝑥] 

where the corresponding hyperharmonic number ℎ𝑛
(𝑟)

 is not an integer. In [5], it was obtained that  

 

𝑆(𝑥) = 𝑥2 + O (𝑥
2.475
1.475), 
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which means that non-integer hyperharmonics have the full asymptotic in the first quadruple. Recently 

in [1], the previous result was improved and obtained that 

 

𝑆(𝑥) = 𝑥2 + 𝑂𝐴 (
𝑥

2000
1475

(log 𝑥)𝐴
).                                                                                                                            (11) 

 

Our second result is about the asymptotic of 𝑘th moments of the counting function 𝑆(𝑥): 

 

Theorem 1.2. Let  

 

𝑇𝑘(𝑥) = ∑ (1 −
𝑛

𝑥
)

𝑘

𝑛≤𝑥

𝑆(𝑛). 

 

Then we have  

 

𝑇𝑘(𝑥) = 𝑐𝑘𝑥3 + 𝑂𝑘,𝐴 (
𝑥

3475
1475

(log 𝑥)𝐴
) 

 

where  

 

𝑐𝑘 =
2

(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)
. 

 

Our next result is the asymptotic of ℎ𝑛
(𝑟)

: 
 

Proposition 1.3. Let 𝑟, ℓ ≥ 2 be given natural numbers. For sufficiently large 𝑛, there are explicitly 

computable constants 𝑎𝑟,𝑘 ,  𝑏𝑟,𝑘 ,  𝑐𝑟,𝑗 where 0 ≤ 𝑘 ≤ 𝑟 − 2 and 1 ≤ 𝑗 ≤ ℓ − 1 such that  

 

ℎ𝑛
(𝑟)

=
𝑛𝑟−1 log 𝑛

(𝑟 − 1)!
+

(γ − ℎ𝑟−1)𝑛𝑟−1

(𝑟 − 1)!
+ ∑(𝑎𝑟,𝑘𝑛𝑘 log 𝑛 + 𝑏𝑟,𝑘𝑛𝑘) + ∑

𝑐𝑟,𝑗

𝑛𝑗

ℓ−1

𝑗=1

+ 𝑂𝑟,ℓ (
1

𝑛ℓ
) ,

𝑟−2

𝑘=0

 

 

where γ denotes Euler’s constant. 

 

 

II. PRELIMINARIES 
 

To obtain our second result, we need the following lemma. 

 

Lemma 2.2. Let 𝐴 be any positive real number. For any θ >  −1 and sufficiently large 𝑥, we have 

 

𝐻(𝑥, 𝜃, 𝐴) = ∫
𝑡𝜃𝑑𝑡

logA 𝑡

𝑥

2

≪𝜃,𝐴

𝑥𝜃+1

log𝐴 𝑥
. 

 

 

Proof. Integration by parts yields that 

𝐻(𝑥, 𝜃, 𝐴) = ∫
𝑡𝜃𝑑𝑡

log𝐴 𝑡

𝑥

2

≪𝜃,𝐴

𝑥𝜃+1

log𝐴 𝑥
+ ∫

𝑡𝜃𝑑𝑡

log𝐴+1 𝑡

𝑥

2

. 
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If we divide the latter integral into two parts via 𝑥ε for 𝜀 =
𝜃+1

𝜃+2
, then we get that  

 

𝐻(𝑥, 𝜃, 𝐴) ≪𝜃,𝐴

𝑥𝜃+1

log𝐴 𝑥
+ ∫

𝑡𝜃𝑑𝑡

log𝐴+1 𝑡

𝑥𝜀

2

+ ∫
𝑡𝜃𝑑𝑡

log𝐴+1 𝑡

𝑥

𝑥𝜀
 

                   ≪𝜃,𝐴

𝑥𝜃+1

log𝐴 𝑥
+ ∫ 𝑡𝜃𝑑𝑡

𝑥𝜀

2

+
1

log(𝑥𝜀)
∫

𝑡𝜃𝑑𝑡

log𝐴 𝑡

𝑥

𝑥𝜀
 

                   ≪𝜃,𝐴

𝑥𝜃+1

log𝐴 𝑥
+

𝑥𝜀(𝜃+1)

𝜃 + 1
+

𝐻(𝑥, 𝜃, 𝐴)

log 𝑥
. 

 

This gives the desired result.                        ∎ 

 

 

III. PROOF OF THEOREM 1.1 
 

Let 𝑟 ≥ 1 be fixed. For the first part of the theorem, we apply the Wiener-Ikehara theorem, as it yields 

the result directly in a clear way. By (2) and (4), we see that 

 

hn
(r)

= (
𝑛 + 𝑟 − 1

𝑟 − 1
) (log(𝑛 + 𝑟 − 1) + γ + s(𝑛) − h𝑟−1) 

 

where 𝑠(𝑛) = 𝑂(1/𝑛). As we have 

 

log(𝑛 + 𝑟 − 1) = log (𝑛 (1 +
𝑟 − 1

𝑛
)) = log 𝑛 + log (1 +

𝑟 − 1

𝑛
) = log 𝑛 + 𝑂𝑟(1/𝑛), 

 

we obtain that  

 

ℎ𝑛
(𝑟)

= (
𝑛 + 𝑟 − 1

𝑟 − 1
) (log 𝑛 + 𝑎𝑟 + 𝑂𝑟(1/𝑛))                                                                                                (12) 

 

where 𝑎𝑟 = γ − ℎ𝑟−1. Observe that  

 

(
𝑛 + 𝑟 − 1

𝑟 − 1
) =

(𝑛 + 1)(𝑛 + 2) ⋅⋅⋅ (𝑛 + 𝑟 − 1)

(𝑟 − 1)!
=

𝑛𝑟−1

(𝑟 − 1)!
+

𝑟(𝑟 − 1)𝑛𝑟−2

2(𝑟 − 1)!
+ ⋯ + 1                       (13) 

 

is a polynomial in 𝑛 of order 𝑟 − 1. Thus by (12) and (13), we have  

 

ℎ𝑛
(𝑟)

=
𝑛𝑟−1 log 𝑛

(𝑟 − 1)!
+

𝑎𝑟𝑛𝑟−1

(𝑟 − 1)!
+

𝑏𝑟𝑛𝑟−2 log 𝑛

(𝑟 − 1)!
+ 𝑂𝑟(𝑛𝑟−2)                                                                        (14) 

 

where 𝑏𝑟 = 𝑟(𝑟 − 1)/2. Note also that, 𝑏1 = 0 and 𝑏𝑟 > 0 when 𝑟 ≥ 2. As 𝛼𝑟(𝑛) = 𝑛𝑟−1𝜇(𝑛) ∗ ℎ𝑛
(𝑟)

, 

 

∑
𝜇(𝑛)

𝑛𝑠

∞

𝑛=1

=
1

𝜁(𝑠)
  and   ∑

log 𝑛

𝑛𝑠

∞

𝑛=1

= −𝜁′(𝑠)                                                                                                    (15) 

 

for ℜ(𝑠)  >  1 and by (14), one obtains for ℜ(𝑠)  >  𝑟 that 

𝛺𝑟(𝑠) = ∑
𝛼𝑟(𝑛)

𝑛𝑠

∞

𝑛=1

= ∑
𝑛𝑟−1𝜇(𝑛)

𝑛𝑠

∞

𝑛=1

⋅ ∑
ℎ𝑛

(𝑟)

𝑛𝑠

∞

𝑛=1

=
1

𝜁(𝑠 − 𝑟 + 1)
⋅ ∑

ℎ𝑛
(𝑟)

𝑛𝑠

∞

𝑛=1
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            =
1

(𝑟 − 1)!
(−

𝜁′(𝑠 − 𝑟 + 1)

𝜁(𝑠 − 𝑟 + 1)
+ 𝑎𝑟 −

𝑏𝑟𝜁′(𝑠 − 𝑟 + 2)

𝜁(𝑠 − 𝑟 + 1)
+

𝐺𝑟(𝑠)

𝜁(𝑠 − 𝑟 + 1)
)                                    (16) 

 

where  

𝐺𝑟(𝑠) = ∑
𝑔𝑟(𝑛)

𝑛𝑠

∞

𝑛=1

 

 

and  

 

𝑔𝑟(𝑛) = 𝑂𝑟(𝑛𝑟−2).                                                                                                                                              (17) 

 

As the Riemann Zeta function 𝜁(𝑠) does not vanish on the line ℜ(𝑠)  =  1, we get that 𝛺𝑟(𝑠) can be 

extended to an analytic function in ℜ(𝑠)  ≥  𝑟, with a simple pole at 𝑟. Note that  

 

ζ(𝑠) =
1

𝑠 − 1
+ 𝐴(𝑠) 

 

where 𝐴(𝑠) is analytic in ℜ(𝑠)  ≥  1 (actually 𝐴(𝑠) is an entire function). Therefore, 𝛺𝑟(𝑠) has residue  

 
1

(𝑟 − 1)!
 

 

at 𝑟 as we have 

  

−
𝜁′(𝑠 − 𝑟 + 1)

𝜁(𝑠 − 𝑟 + 1)
=

1

𝑠 − 𝑟
+ 𝐾(𝑠), 

 

where 𝐾(𝑠) is analytic in ℜ(𝑠)  ≥  𝑟. Since for ℜ(𝑠)  ≥  1 we have  

 

∑
𝛬(𝑛)

𝑛𝑠

∞

𝑛=1

= −
𝜁′(𝑠)

𝜁(𝑠)
, 

 

the coefficients of  

 

−
𝜁′(𝑠 − 𝑟 + 1)

𝜁(𝑠 − 𝑟 + 1)
  

 

are non-negative, as they are 𝑛𝑟−1Λ(𝑛). By (15) and (17), the coefficients 𝛽𝑟(𝑛) = 𝑏𝑟𝑛𝑟−2 log 𝑛 +
𝑔𝑟(𝑛) of the series −𝑏𝑟ζ′(𝑠 − 𝑟 + 2) + 𝐺𝑟(𝑠) satisfy 

 

𝛽𝑟(𝑛) ≤ 2𝑏𝑟𝑛𝑟−2 log 𝑛                                                                                                                                      (18) 

 

for sufficiently large 𝑛. As 𝜇(𝑛) is bounded by 1, for 𝑛 large enough we see that  

 

|𝑛𝑟−1𝜇(𝑛) ∗ 𝛽𝑟(𝑛)| ≤ 𝑛𝑟−1 ∗ 2𝑏𝑟𝑛𝑟−2 log 𝑛 

 

by (18). Therefore, the coefficients of  

 

𝐴𝑟(𝑠) = −
𝜁′(𝑠 − 𝑟 + 2)

𝜁(𝑠 − 𝑟 + 1)
+

𝐺𝑟(𝑠)

𝜁(𝑠 − 𝑟 + 1)
− 2𝑏𝑟𝜁′(𝑠 − 𝑟 + 2)𝜁(𝑠 − 𝑟 + 1) 

 

are non-negative after a while. Hence, the coefficients of  
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𝐵𝑟(𝑠) = 𝛺𝑟(𝑠) − 2𝑏𝑟𝜁′(𝑠 − 𝑟 + 2)𝜁(𝑠 − 𝑟 + 1) 

 

are non-negative after a while, it is analytic in ℜ(𝑠)  ≥  𝑟 with a simple pole of residue  

 
1

(𝑟 − 1)!
− 2𝑏𝑟𝜁′(2) 

 

at 𝑟. Similarly, the Dirichlet series 𝐴𝑟(𝑠) and −2𝑏𝑟𝜁′(𝑠 − 𝑟 + 2)𝜁(𝑠 − 𝑟 + 1) are analytic in ℜ(𝑠)  ≥
 𝑟 with a simple pole of residue −2𝑏𝑟𝜁′(2) at 𝑟. So, we may apply the Wiener-Ikehara theorem to the 

functions 𝐴𝑟(𝑠), 𝐵𝑟(𝑠) and −2𝑏𝑟ζ′(𝑠 − 𝑟 + 2)𝜁(𝑠 − 𝑟 + 1) to conclude the desired asymptotic 

 

𝑆𝑟(𝑥) ∼
𝑥𝑟

𝑟!
. 

 

Now we prove the second part of the theorem. Suppose that the Riemann hypothesis holds. Then as 

given in the introduction before, we have  

 

𝜓(𝑥) = ∑ 𝛬(𝑛)

𝑛≤𝑥

= 𝑥 + 𝑂𝜀 (𝑥
1
2

+𝜀)                                                                                                                 (19) 

 

and 

 

𝑀(𝑥) = ∑ 𝜇(𝑛)

𝑛≤𝑥

= 𝑂𝜀 (𝑥
1
2

+𝜀).                                                                                                                       (20) 

 

By (16), we see that  

 

𝑆𝑟(𝑥) =
𝑎𝑟

(𝑟 − 1)!
+

1

(𝑟 − 1)!
(∑ 𝑛𝑟−1

𝑛≤𝑥

Λ(𝑛) + ∑(μ(𝑛) ∗ β𝑟(𝑛))

𝑛≤𝑥

)                                                     (21) 

 

where β𝑟(𝑛) = 𝑏𝑟𝑛𝑟−2 log 𝑛 + 𝑔𝑟(𝑛) and 𝑔𝑟(𝑛) = 𝑂𝑟(𝑛𝑟−2). By partial summation and (19) we have 

that 

 

∑ 𝑛𝑟−1𝛬(𝑛)

𝑛≤𝑥

= 𝑥𝑟−1𝜓(𝑥) − (𝑟 − 1) ∫ 𝜓(𝑡)𝑡𝑟−2
𝑥

1

𝑑𝑡 

                          = 𝑥𝑟 − (𝑟 − 1)
𝑥𝑟

𝑟
+ 𝑂𝑟,ε (𝑥𝑟−

1
2

+ε) =
𝑥𝑟

𝑟
+ 𝑂𝑟,ε (𝑥𝑟−

1
2

+ε).                                            (22) 

 

Now we estimate the sum 𝐵(𝑥) = ∑ (μ(𝑛) ∗ β𝑟(𝑛))𝑛≤𝑥 . Note that  

 

𝐵(𝑥) = ∑ 𝛽𝑟(𝑛)𝑀 (
𝑥

𝑛
)

𝑛≤𝑥

.                                                                                                                                   (23) 

 

By (18), (20) and (23), we obtain that 

 

𝐵(𝑥) ≪𝑟,ε ∑ 𝑛𝑟−2 log 𝑛

𝑛≤𝑥

⋅ (
𝑥

𝑛
)

1
2

+ε

≪𝑟,ε 𝑥𝑟−
1
2

+ε.                                                                                          (24) 

 

Combining (21), (22) and (24), we get that  
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𝑆𝑟(𝑥) =
𝑥𝑟

𝑟!
+ 𝑂𝑟,ε (𝑥𝑟−

1
2

+ε).                                                                                                                            (25) 

 

This completes the proof.                          ∎ 

 

 

IV. PROOF OF THEOREM 1.2 
 

By (11), we know that 𝑆(𝑛) = 𝑛2 + 𝑅(𝑛) where 𝑅(𝑛) = 𝑂𝐴 (
𝑛

2000
1475

(log 𝑛)𝐴). Thus, 

 

  𝑇𝑘(𝑥) = ∑ (1 −
𝑛

𝑥
)

𝑘

𝑛≤𝑥

𝑆(𝑛) 

= ∑ [(∑ (
𝑘

𝑖
) (−1)𝑖

𝑛𝑖

𝑥𝑖

𝑘

𝑖=0

) ⋅ (𝑛2 + 𝑅(𝑛))]                                                                                      (26)

𝑛≤𝑥

 

              = ∑ 𝑛2

𝑛≤𝑥

−
𝑘

𝑥
∑ 𝑛3

𝑛≤𝑥

+ ⋯ +
(−1)𝑘

𝑥𝑘
∑ 𝑛𝑘+2

𝑛≤𝑥

+ 𝑂𝑘,𝐴 (∑
1

𝑥𝑖
∑ 𝑛𝑖

2≤𝑛≤𝑥

𝑘

𝑖=0

⋅
𝑛

2000
1475

(log 𝑛)𝐴
). 

 

Note that for any positive integer 𝑗, the sum  

 

∑ 𝑛𝑗

𝑛≤𝑥

= 𝑝𝑗([𝑥]) 

 

where 𝑝𝑗 is a polynomial of degree 𝑗 + 1 and its leading coefficient is 
1

𝑗+1
. Thus by (26), we see that 

 

𝑇𝑘(𝑥) = 𝑐𝑘𝑥3 + 𝑂𝑘(𝑥2) + 𝑂𝑘,𝐴 (∑
1

𝑥𝑖
∑ 𝑛𝑖

𝑛
2000
1475

(log 𝑛)𝐴

2≤𝑛≤𝑥

𝑘

𝑖=0

)                                                                     (27) 

 

where 

 

𝑐𝑘 = ∑
(𝑘

𝑖
)(−1)𝑖

𝑖 + 3

𝑘

𝑖=0

.                                                                                                                                              (28) 

 

If we put  

𝐺(𝑥, 𝜃, 𝐴) = ∑
𝑛𝜃

(log 𝑛)𝐴

2≤𝑛≤𝑥

≪𝜃,𝐴 ∫
𝑡𝜃𝑑𝑡

(log 𝑡)𝐴

𝑥

2

, 

 

we get by Lemma 2.2 that  

 

𝐺(𝑥, θ, 𝐴) ≪θ,𝐴

𝑥θ+1

(log 𝑥)𝐴
.                                                                                                                                  (29) 

 

Combining (27) and (29), we arrive at the asymptotic 
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𝑇𝑘(𝑥) = 𝑐𝑘𝑥3 + 𝑂𝑘,𝐴 (
𝑥

3475
1475

(log 𝑥)𝐴
).                                                                                                                  (30) 

 

Finally, to finish the theorem we show that 𝑐𝑘in (28) is 
2

(𝑘+1)(𝑘+2)(𝑘+3)
. As we have 

 

𝑥2(1 − 𝑥)𝑘 = ∑ (
𝑘

𝑖
) (−1)𝑖

𝑘

𝑖=0

𝑥𝑖+2, 

 

we see that 𝑐𝑘 = ∫ 𝑥2(1 − 𝑥)𝑘1

0
𝑑𝑥. By change of variables 𝑢 = 1 − 𝑥, we obtain that  

 

𝑐𝑘 = ∫ 𝑢𝑘(1 − 𝑢)2
1

0

𝑑𝑢 

 

and the previous definite integral is 
2

(𝑘+1)(𝑘+2)(𝑘+3)
.                        ∎ 

 

 

V. PROOF OF PROPOSITION 1.3 
 

By (3) and the fundamental equation (4) of hyperharmonic numbers, we know that  

 

ℎ𝑛
(𝑟)

= (
𝑛 + 𝑟 − 1

𝑟 − 1
) (ℎ𝑛+𝑟−1 − ℎ𝑟−1) 

         ∼
(𝑛 + 1) ⋯ (𝑛 + 𝑟 − 1)

(𝑟 − 1)!
 

                  ⋅ (log(𝑛 + 𝑟 − 1) + 𝛾 +
1

2(𝑛 + 𝑟 − 1)
− ∑

𝐵2𝑘

2𝑘(𝑛 + 𝑟 − 1)2𝑘

∞

𝑘=1

− ℎ𝑟−1).                          (31) 

 

If we see the binomial term as a polynomial in 𝑛, then we observe that  

 

(𝑛 + 1) ⋯ (𝑛 + 𝑟 − 1)

(𝑟 − 1)!
= 𝑃𝑟(𝑛) = ∑ 𝑑𝑟,𝑖𝑛𝑖

𝑟−1

𝑖=0

,                                                                                               (32) 

 

with 𝑑𝑟,𝑟−1 =
1

(𝑟−1)!
. For 𝑛 is sufficiently large and any positive integer 𝑡, we have 

 

1

(𝑛 + 𝑟 − 1)𝑡
=

1

𝑛𝑡
⋅ (

1

1 +
𝑟 − 1

𝑛

)

𝑡

=
1

𝑛𝑡
⋅ (∑(−1)𝑗

(𝑟 − 1)𝑗

𝑛𝑗

∞

𝑗=0

)

𝑡

= ∑
𝛽𝑗,𝑟,𝑡

𝑛𝑗+𝑡

∞

𝑗=0

,                                   (33) 

 

where β𝑗,𝑟,𝑡 's are explicitly computable constants. Therefore we have 

∑
𝐵2𝑘

2𝑘(𝑛 + 𝑟 − 1)2𝑘

∞

𝑘=1

= ∑ ∑
𝐵2𝑘β𝑗,𝑟,2𝑘

2𝑘𝑛𝑗+2𝑘

∞

𝑗=0

∞

𝑘=1

= ∑
𝜃𝑘,𝑟

𝑛𝑘

ℓ+𝑟−1

𝑘=2

+ 𝑂𝑟,ℓ (
1

𝑛ℓ+𝑟−1
), 

 

for some θ𝑘,𝑟's which are explicitly computable constants. As 𝑛 is sufficiently large, we also obtain that 
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 log(𝑛 + 𝑟 − 1) = log 𝑛 + log (1 +
𝑟 − 1

𝑛
) = log 𝑛 + ∑

(−1)𝑘−1

𝑘
(

𝑟 − 1

𝑛
)

𝑘∞

𝑘=1

= log 𝑛 + ∑
𝛼𝑘,𝑟

𝑛j

ℓ+𝑟−1

𝑘=1

+ 𝑂𝑟,ℓ (
1

𝑛ℓ+𝑟−1
)                                                                              (34) 

 

with explicitly computable constants α𝑗,𝑟’s. Plugging in equations (32), (33) and (34) into equation (31), 

we derive that  

 

ℎ𝑛
(𝑟)

= 𝑃𝑟(𝑛) ∙ (log 𝑛 + (𝛾 − ℎ𝑟−1) + ∑
𝛼𝑘,𝑟

𝑛𝑘

ℓ+𝑟−1

𝑘=1

+
1

2𝑛
∑

𝛽𝑘,𝑟,1

𝑛𝑘

ℓ+𝑟−1

𝑘=0

 − ∑
𝜃𝑘,𝑟

𝑛𝑘

ℓ+𝑟−1

𝑘=2

+ 𝑂𝑟,ℓ (
1

𝑛ℓ+𝑟−1
))  

            = (∑ 𝑑𝑟,𝑖𝑛𝑖

𝑟−1

𝑖=0

) ⋅ (log 𝑛 + (𝛾 − ℎ𝑟−1) + ∑
𝜅𝑘,𝑟

𝑛𝑘

ℓ+𝑟−1

𝑘=1

+ 𝑂𝑟,ℓ (
1

𝑛ℓ+𝑟−1
)) 

 

where 𝜅𝑘,𝑟 = 𝛼𝑘,𝑟 +
𝛽𝑘−1,𝑟,1

2
− 𝜃𝑘,𝑟 with 𝜃1,𝑟 = 0.  Hence we get that 

 

ℎ𝑛
(𝑟)

=
𝑛𝑟−1 log 𝑛

(𝑟 − 1)!
+

(𝛾 − ℎ𝑟−1)𝑛𝑟−1

(𝑟 − 1)!
+ ∑ 𝑑𝑟,𝑖𝑛𝑖(log 𝑛 + (𝛾 − ℎ𝑟−1))

𝑟−2

𝑖=0

+ ∑ ∑
𝑑𝑟,𝑖𝜅𝑘,𝑟

𝑛𝑘−𝑖

ℓ+𝑟−1

𝑘=1

𝑟−1

𝑖=0

+ 𝑂𝑟,ℓ (
1

𝑛ℓ
). 

If we rearrange the terms after doing the corresponding calculations, we deduce the desired result of the 

proposition.                            ∎
                

 

 

VI. CONCLUSION 
 

In this note, we have seen that convolutions of the Möbius function with harmonic type sums and their 

summatory functions were closely related to the prime number theory and the Riemann Zeta function. 

Besides, asymptotic of the moment function related to the non-integer hyperharmonic numbers and the 

asymptotic of hyperharmonics were obtained. 
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