
 
 
 

 
RESEARCH ARTICLE 

105 
 

 

STABILIZED FEM SOLUTION of MAGNETOHYDRODYNAMIC FLOW in DIFFERENT 

GEOMETRIES 

 

Harun SELVİTOPİ
* 

 
*Erzurum Technical University, Faculty of Science, Department of Mathematics, harun.selvitopi@erzurum.edu.tr, 

ORCID:0000-0001-5958-7625 

 

 

 
Receive Date:14.04.2022                              Accepted Date: 16.06.2022 

 

 

 

ABSTRACT 

 

In this study, the stable numerical solution of the magnetohydrodynamic (MHD) flow in different 

geometries is presented using the stabilized finite element method (FEM). Numerical solution of 

coupled convection-diffusion type MHD equations have been acquired for the different Hartmann 

numbers (𝑀𝑖) and different angles of the MHD flows. The resultant matrix-vector system has been 

solved as a whole with the reciprocal MHD flow and boundary conditions. We have observed from 

the solution of reciprocal MHD flow when the Hartmann number increases the velocity and the 

induced magnetic field of the flows decrease. We have been acquired the stable numerical solution for 

the 𝑀𝑖 = 102 Hartmann number. The obtained stable numerical results are displayed by graphics. 

 

Keywords: Magnetohydrodynamic, Stabilized-FEM, Different Geometries 

 

1. INTRODUCTION 

 

Magnetohydrodynamic flow is popular among researchers, due to the fluid is under the influence of 

the magnetic field, such that engineers, medical scientists, etc. Therefore there is a wide range of 

theoretical, experimental like in [1–3] and numerical studies about MHD flow. Because of the coupled 

nature of the problem the theoretical results can obtain special cases of the problem. Therefore the 

numerical methods have been used to obtain the numerical solution of MHD equations. The finite 

element solution of fully developed MHD flow in channels has been obtained by Singh and Lal in [4] 

for the steady-state form of the problem in the different geometries. The boundary element method 

(BEM) solution of MHD flow problems for the high values of Hartmann number has been obtained in 

[5]. In [6], numerical solution of the MHD flow problems is obtained using the dual reciprocity 

boundary element method(drbem) with the external electrically conducting medium. Aydın and 

Selvitopi [7] have been solved the MHD flow problems in an unbounded conducting medium using 

stabilized FEM in the pipe and BEM for the exterior region considering rectangular and circular pipe 

with the different angle of the induced magnetic field and high values of Reynolds number, magnetic 

pressure and magnetic Reynolds numbers. The BEM solution of magnetohydrodynamic channel flows 

has been obtained in [8] for the high Hartmann numbers. The numerical methods, FEM, finite 

difference method (FDM), BEM and meshless methods, etc., have been applied to obtain the 
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numerical solution of MHD flow problems in different geometries i.e. rectangular and circular duct 

case until this time. 

 

In general, it has been considered in the studies that there is only one MHD flow in the pipe up to 

now. In this study, we have considered two MHD flow in the T-junction. Therefore, this study has two 

important novelty according to literature, the first one is the geometry of the pipe and the other is it 

has two MHD flow equations in junction. Tezer-Sezgin and Aydın [9] have obtained the numerical 

solution of the MHD flow in one, two and three parallel ducts which are separated by conducting 

walls and there is only one MHD flow in the all ducts using stabilized-FEM for the high Hartmann 

numbers. There are many studies in the literature about fluid flow in T-junction. The flow is organized 

in T-junction as division or the combination of a fluid flow. Vimmr and Jon´aˇsov´a [10] have 

considered the coronary and femoral bypasses model and they solved the non-newtonian blood flow 

using finite volume method with the fourth order Runge-Kutta algorithm. In [11] the numerical 

modeling and Piv measurement comparison were presented for the division and the combined fluid 

flow in T-junction with two inlets and only one outlet. Moshkin and Yambangwai [12] have solved 

the pressure-driven startup laminar flows in T-junction using the finite volume method. Beneˇs, et al. 

[13] have been obtained the numerical simulation of the laminar and turbulent flows of Newtonian 

and non-Newtonian fluids in T-junction with one inlet and two outlets that the mathematical model of 

the flows is Reynolds averaged Navier-Stokes equations using finite volume method with the artificial 

compressibility method. Matos and Oliveria [14] have presented the numerical solution of the steady 

and unsteady non-Newtonian inelastic flows using the finite volume method in a planar T-junction for 

the high values of Reynolds numbers. The volume of the fluid solution of the ferrofluid microdroplets 

in T-junction with an asymmetric magnetic field has been given in [15]. In [16] the numerical solution 

of the Newtonian, incompressible and thermostatic flow in T-junction has been investigated using the 

volume of fluid method.  The application of the FEM for the linear and non-linear physical problems 

is presented in [17,19]. 

 

In the present study, we have obtained the stable numerical solution of the MHD flow in a T-junction 

using streamline upwind Petrov–Galerkin (SUPG) type stabilized FEM for the different values of 

Hartmann number.  

 

The paper is introduced as follows. In Section 2 physical problem and the mathematical model of the 

problem are given. The stabilized finite element formulation of the considered problem is presented in 

Section 3. The obtained numerical results using stabilized FEM are given and discussed in Section 4. 

The conclusion is given in the last section. 

 

2.  MATERIAL AND METHOD 

 

2.1. Physical Problem And Mathematical Model 

The steady, reciprocal MHD flow has been considered in a T-junction. In the T-junction, there are two 

different flows under the influence of the magnetic field with different angle. The length of the 

channel has been assumed enough long and the problem dimension is reduced to two-dimension.  
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Figure 1. Problem domain. 

 

The mathematical model of the considered problem is obtained by Navier-Stokes and Maxwell 

equations: 

 

 

where  𝑀𝑥𝑖
= 𝑀𝑖𝑠𝑖𝑛𝜃𝑖, 𝑀𝑦𝑖

= 𝑀𝑖𝑐𝑜𝑠𝜃𝑖, ∆𝑃1 = −1 and ∆𝑃2 = 1. 𝑀𝑖 is the nondimensional parameter 

(Hartmann Numbers), describing 𝑀𝑖 = 𝐵0𝐿0√𝜎/√𝜇. Here 𝜃𝑖 is the angle between applied magnetic 

field and 𝑦 −axis and 𝐿0, 𝜎, 𝜇 are the characteristic length, electrical conductivity and viscosity of the 

fluid respectively. In the solution domain we have been considered the boundary consitiond as: 

 

V=0, B=1 in Ω𝑖𝑛𝑙𝑒𝑡  
𝜕𝑉

𝜕𝑛
= 0   in  Ω𝑜𝑢𝑡𝑙𝑒𝑡  

(2) 

 

2.2. Stabilized Fem Formulation 

Appliying the standard finite element method to the coupled equations in (1), we get weak 

formulation using lineer function space 𝐿 = (𝐻0
1(Ω))2 as: Find {𝑉𝑖 , 𝐵𝑖} ∈ {𝐿 × 𝐿} such that 

 

𝐵(𝑉𝑖; 𝐵𝑖 , 𝑤1; 𝑤2)= (−∆𝑃𝑖 , 𝑤1),  ∀{𝑤1; 𝑤2} ∈ {𝐿 × 𝐿}  (3) 

 

where  

 

∇2𝑉𝑖 + 𝑀𝑥𝑖

𝜕𝐵𝑖

𝜕𝑥
+ 𝑀𝑦𝑖

𝜕𝐵𝑖

𝜕𝑦
= ∆𝑃𝑖  

∇2𝐵𝑖 + 𝑀𝑥𝑖

𝜕𝑉𝑖

𝜕𝑥
+ 𝑀𝑦𝑖

𝜕𝑉𝑖

𝜕𝑦
= 0 

 

 

i=1,2 (1) 

𝐵(𝑉𝑖; 𝐵𝑖 , 𝑤1; 𝑤2)=(∇Vi, ∇w1) − (𝑀𝑥
𝜕𝐵𝑖

𝜕𝑥
, 𝑤1) − (𝑀𝑦

𝜕𝐵𝑖

𝜕𝑦
, 𝑤1)+(∇Bi, ∇w2) − (𝑀𝑥

𝜕𝑉𝑖

𝜕𝑥
, 𝑤2) −

(𝑀𝑦
𝜕𝑉𝑖

𝜕𝑦
, 𝑤2) 
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Then, the variational formulation is written by the choice of finite dimensional subspaces  𝐿ℎ ⊂  𝐿, 

defined by triangulation of the domain. Specifying a finite element discretisation, the weak 

formulation becomes: Find {𝑉𝑖ℎ
; 𝐵𝑖 ℎ

} ∈ {𝐿ℎ × 𝐿ℎ} such that 

 

𝐵(𝑉𝑖ℎ
; 𝐵𝑖ℎ

, 𝑤1ℎ
; 𝑤2ℎ

)= (−∆𝑃𝑖ℎ
, 𝑤1ℎ

) ,   ∀{𝑤1ℎ
; 𝑤2ℎ

} ∈ {𝐿ℎ × 𝐿ℎ}. (4) 

 

We have been decoupled the equations in (1), using the transformations 𝑈𝑖 = 𝑉𝑖 + 𝐵𝑖  and 𝑍𝑖 = 𝑉𝑖 −
𝐵𝑖  to be able to apply the SUPG type stabilized FEM technique. Using the transformations 𝑈𝑖 = 𝑉𝑖 +
𝐵𝑖  and 𝑍𝑖 = 𝑉𝑖 − 𝐵𝑖 , we obtain the decoupled convection-diffusion type equations as: 

 

∇2𝑈𝑖 + 𝑀𝑥

𝜕𝑈𝑖

𝜕𝑥
+ 𝑀𝑦

𝜕𝑈𝑖

𝜕𝑦
= ∆𝑃𝑖  

∇2𝑍𝑖 − 𝑀𝑥

𝜕𝑍𝑖

𝜕𝑥
− 𝑀𝑦

𝜕𝑍𝑖

𝜕𝑦
= ∆𝑃𝑖  

 

 

i=1,2 (5) 

 

We have been considered the SUPG type stabilization technique to obtain the smooth behaviour of the 

induced magnetic field and the velocity for the large values of 𝐻𝑎 which contained in the convection-

dominated convection-duffusion type equations in (4). That is; find {𝑈𝑖ℎ
, 𝑍𝑖ℎ

} ∈ {𝐿ℎ × 𝐿ℎ} such that 

 

(∇𝑈𝑖ℎ
, ∇v1ℎ

) − (𝑀𝑥

𝜕𝑈𝑖ℎ

𝜕𝑥
, 𝑣1ℎ

) − (𝑀𝑦
𝜕𝑈𝑖ℎ

𝜕𝑦
, 𝑣1ℎ

)+ 

(∇𝑍𝑖ℎ
, ∇v2ℎ

) + (𝑀𝑥

𝜕𝑍𝑖ℎ

𝜕𝑥
, 𝑣2ℎ

) + (𝑀𝑦

𝜕𝑍𝑖ℎ

𝜕𝑦
, 𝑣2ℎ

)

+ 𝜏𝐾 {(−𝑀𝑥

𝜕𝑈𝑖ℎ

𝜕𝑥
− 𝑀𝑦

𝜕𝑈𝑖ℎ

𝜕𝑦
+ ∆𝑃𝑖ℎ

, −𝑀𝑥

𝜕𝑣1ℎ

𝜕𝑥
− 𝑀𝑦

𝜕𝑣1ℎ

𝜕𝑦
)

+ (𝑀𝑥

𝜕𝑍𝑖ℎ

𝜕𝑥
+ 𝑀𝑦

𝜕𝑍𝑖ℎ

𝜕𝑦
+ ∆𝑃𝑖ℎ

, 𝑀𝑥

𝜕𝑣2ℎ

𝜕𝑥
+ 𝑀𝑦

𝜕𝑣2ℎ

𝜕𝑦
)}

= (−∆𝑃𝑖ℎ
, 𝑣1ℎ

) + (−∆𝑃𝑖ℎ
, 𝑣2ℎ

) 

(6) 

 

 

∀{𝑣1ℎ
, 𝑣2ℎ

} ∈ {𝐿ℎ × 𝐿ℎ}, 𝑣1ℎ
= 𝑤1ℎ

+ 𝑤2ℎ
,  𝑣2ℎ

= 𝑤1ℎ
− 𝑤2ℎ

 with the stabilization parameter [20] 

 

𝜏𝐾 = {

ℎ𝐾

2𝐻𝑎
     𝑖𝑓     𝑃𝑒𝐾 ≥ 1

ℎ𝐾
2

12
     𝑖𝑓     𝑃𝑒𝐾 < 1

  (7) 

 

Here, ℎ𝑘 is the diameter of the eşlement 𝐾 and 𝑃𝑒𝐾 = ℎ𝐾
𝐻𝑎

6
 is the Peclet number. 
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Eventually, using the inverse transformations 𝑉𝑖 = (𝑈𝑖 + 𝑍𝑖)/2 and 𝑍𝑖 = (𝑈𝑖 − 𝑍𝑖)/2 one can get the 

final system of the stabilized FEM discrete formulation for the induced magnetic field and the 

velocity:  

(∇Vih
, ∇w1h

) − (𝑀𝑥

𝜕𝐵𝑖ℎ

𝜕𝑥
, 𝑤1ℎ

) − (𝑀𝑦

𝜕𝐵𝑖ℎ

𝜕𝑦
, 𝑤1ℎ

) + (∇Bih
, ∇w2h

) − (𝑀𝑥

𝜕𝑉𝑖ℎ

𝜕𝑥
, 𝑤2ℎ

)

− (𝑀𝑦

𝜕𝑉𝑖ℎ

𝜕𝑦
, 𝑤2ℎ

) + 𝜏𝐾 (𝑀𝑥

𝜕𝑉𝑖ℎ

𝜕𝑥
+ 𝑀𝑦

𝜕𝑉𝑖ℎ

𝜕𝑦
, 𝑀𝑥

𝜕𝑤1ℎ

𝜕𝑥
+ 𝑀𝑦

𝜕𝑤1ℎ

𝜕𝑦
)

+ +𝜏𝐾 (𝑀𝑥

𝜕𝐵𝑖 ℎ

𝜕𝑥
+ 𝑀𝑦

𝜕𝐵𝑖ℎ

𝜕𝑦
, 𝑀𝑥

𝜕𝑤2ℎ

𝜕𝑥
+ 𝑀𝑦

𝜕𝑤2

𝜕𝑦
)

= (−∆𝑃𝑖ℎ
, 𝑤1ℎ

) + 𝜏𝐾 (∆𝑃𝑖ℎ
, 𝑀𝑥

𝜕𝑤2ℎ

𝜕𝑥
+ 𝑀𝑦

𝜕𝑤2ℎ

𝜕𝑦
) 

 

(8) 

 

∀{𝑤1, 𝑤2} ∈ {𝐿ℎ × 𝐿ℎ}. Then, the solution of the system (8) has been given the induced currents and 

the velocity of the fluid.  

 

3. NUMERICAL RESULTS 

 

In this section, we have given the stabilized FEM solution of MHD equations (1) in a T-Junction for 

the different Hartmann numbers and different angles. We have been considered the 𝐻𝑎 = 1, 10 and 

100. The angles between MHD flow and 𝑦 −axis 𝜃1,2 = 𝜋/4 and 𝜋/2. 

 

 

Figure. 1. Velocity for 𝑀1 = 1 and 𝜃1 = 𝜋/2. 
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Figure. 2. Velocity for 𝑀2 = 1 and 𝜃2 = 𝜋/2. 

 

 

Figure. 3. Magnetic induction for 𝑀1 = 1 and 𝜃1 = 𝜋/2. 
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Figure. 4. Magnetic induction for 𝑀2 = 1 and 𝜃2 = 𝜋/2. 

 

 

Figure. 5. Velocity for 𝑀1 = 100 and 𝜃1 = 𝜋/2. 
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Figure. 6. Velocity for 𝑀2 = 100 and 𝜃2 = 𝜋/2. 

 

 
Figure. 7. Magnetic induction for 𝑀1 = 100 and 𝜃1 = 𝜋/2. 
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Figure. 8. Magnetic induction for 𝑀2 = 100 and 𝜃2 = 𝜋/2. 

 

 
Figure. 9.  Velocity for 𝑀1 = 10 and 𝜃1 = 𝜋/4. 
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Figure. 10.  Velocity for 𝑀2 = 10 and 𝜃2 = 𝜋/4. 

 

 
Figure. 11. Magnetic induction for 𝑀1 = 10 and 𝜃1 = 𝜋/4. 
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Figure. 12. Magnetic induction for 𝑀2 = 10 and 𝜃2 = 𝜋/4. 

 

4. DISCUSSION AND CONCLUSION 

 
The stabilized FEM solution of the MHD equations has been acquired for different Hartman numbers 

and different angles between induced magnetic fields and the 𝑦 −axis in a T-Junction. In Fig. 

1,2,5,6,9 and 10, one can observe the velocity contour of the fluid and in Fig. 3,4,7,8,11 and 12 one 

can observe the contour of the magnetic induction. 

 

We have been considered the angles 𝜃1 = 𝜃2 = 𝜋/2 with 𝑀1 = 𝑀2 = 1 and 100 for Fig. 1. to Fig. 8. 

and we have also been considered the angles 𝜃1 = 𝜃2 = 𝜋/4 with 𝑀1 = 𝑀2 = 10 for Fig. 9. to Fig. 

12. We can see from the figures that the layers occur with changing of the angles. We can observe 

from Fig. 3,4,7,8 the boundary layer in the inlet walls occurs for the magnetic induction when the 

Harmann numbers increases. We can also observe from Fig. 1,2,5,6 the flow approaches the walls for 

the large number of the Hartmann numbers. 

 

One can also say that, the velocity of the first flow is dominant in the inlet and the velocity of the 

second flow is dominant in the outlet of the channels. The induced magnetic field is dominant in the 

all domain for the 𝜃1 = 𝜃2 = 𝜋/2.  

 

As a result, in this work we have focused on the investigation of the MHD flow in different 

geometries numerically using SUPG type stabilized FEM. We have determined the dominant velocity 

and induced magnetic field of the flows according to the different values of Hartmann numbers and 

different angles.   
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