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ABSTRACT 

 

Camel Traveling Behavior Algorithm (CA) is a fairly new algorithm developed in 2016 by 

Mohammed Khalid Ibrahim and Ramzy Salim Ali. Scientists have put forward a few publications on 

CA. CA was applied to continuous optimization problems and engineering problems in the literature. 

It has been shown that CA has comparable performance with Particle Swarm Optimization (PSO) and 

Genetic Algorithm (GA). Besides, a modified camel algorithm (MCA) has been implemented in the 

field of engineering and was showed that it has competitive performance with Cuckoo Search (CS), 

PSO, and CA. In this work, an application of MCA has been done in the traveling salesman problem. 

A set of classical datasets which have cities scale ranged from 51 to 150 was used in the application. 

The results show that the MCA is superior to Simulated Annealing (SA), Tabu Search (TS), GA, and 

CA  for 60% of all datasets. Also, it was given that a detailed analysis presents the number of best, 

worst, average solutions, standard deviation, and the average CPU time concerning meta-heuristics. 

The metrics stress that MCA demonstrates a performance rate over 50% in finding optimal solutions. 

Finally, MCA solves the discrete problem in reasonable times in comparison to other algorithms for 

all datasets. 

 

Keywords: Modified Camel Algorithm, Meta-heuristic Algorithms, Traveling Salesman Problem  

 

1. INTRODUCTION 

 

Combinatorial optimization is a popular research area in the last decades. Besides, solving 

combinatorial problems with meta-heuristic approaches and comparing them in popular problems are 

also interesting research of field [1-3]. Meta-heuristics are nature-inspired algorithms that simulate 

natural phenomena and put forth solutions to mathematical problems. In general, meta-heuristics are 

investigated in classical and modern meta-heuristics [4, 5]. Classical meta-heuristics are simulated 

annealing (SA), tabu search (TS), genetic algorithm (GA), particle swarm optimization (PSO), and ant 

colony optimization (ACO). Artificial Bee Colony algorithm (ABC), Black Hole algorithm (BH), 

Sine-Cosine algorithm (SCA), Lion Optimization algorithm (LOA), Water-Wave optimization 

(WWA), Artificial Atom algorithm (A
3
), and Physarum-Energy optimization algorithm (PEO) are 

popular examples of modern meta-heuristics [6-12].  
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Modern meta-heuristics generally start with an initial population and evolving this population with the 

algorithm mechanism in every iteration. Algorithms mostly have two features in their structures: 

intensification and diversification. Diversification means that the algorithm searches new areas and 

has the chance of finding many solutions in the solution space. On the other hand, intensification helps 

the algorithm to focus on optimal solutions and escape from local solutions. To converge optimality 

efficiently, meta-heuristics may hybridize with other algorithms or be improved with new 

mechanisms. Nature-inspired meta-heuristics have been often implemented in business administration, 

industrial engineering, computer engineering, technology, and other fields of science [13-15]. 

 

Camel algorithm mimics the traveling behavior of camels in the desert under several factors. The 

algorithm explores solution space at a certain level of endurance, supply, and temperature. Even if CA 

has several parameters, it is a simple and assertive approach to many optimization problems [16-18]. 

MCA is an approach that was proposed for engineering applications in previous research. It was 

successfully applied to the anti-jamming smart antenna optimization and the optimization of the 

proportional-integral-derivative (PID) controller parameters. It is concluded that MCA is a good 

candidate for online optimization systems [17]. 

 

In this study, the MCA is applied to solve the traveling salesman problem (TSP). The traveling 

salesman problem is a popular test problem for evaluating the efficiency and effectiveness of the 

optimization algorithms. The discrete problem aims to find an optimal tour, visiting each city exactly 

once and returning to the starting city where the total length of the tour is optimized [19]. 

 

The rest of the paper is organized as follows: In Sect. 2, the traveling salesman problem is widely 

discussed. The MCA is given in Sect. 3. In Sect. 4, the experimental results of the performance 

analysis of the MCA are described, and finally, Sect. 5 contains a conclusion and future expectations 

of this work. 

  

2. TRAVELING SALESMAN PROBLEM 

 

The traveling salesman problem (TSP) is a widely studied and well-known benchmark problem in the 

field of engineering and optimization. Many scientists have been working on that problem to solve it 

optimally in reasonable times [20]. To solve the problem, many approaches have been applied to solve 

TSP and its variants. A traveling salesman problem is a problem in which a salesman travels all the 

cities exactly once and returns to the initial city in optimal distance. The salesman can complete its 

tour in optimal distance, optimal time, optimal budget, and other objectives. TSP is generally 

investigated in symmetric and asymmetric types in many studies [21-24]. In symmetric type (s-TSP), 

the cost of an edge  jiij dd   is valid for all points. Otherwise, if  jiij dd   for at least one, 

then the TSP becomes asymmetric TSP (a-TSP). The TSP is also classified as the number of tours or 

salesmen. Double TSP (d-TSP) and multiple TSP (m-TSP) are the well-known types of traveling 

salesman problems. Besides, many researchers are still working on the generalizations of TSP, which 

are the traveling purchaser problem and the vehicle routing problem. 

 

The traveling salesman problem (TSP) is an NP-hard problem, so finding an optimal solution to the 

problem in a reasonable time with linear programming requires exponential time. If a large size of 

data is used, the number of solutions becomes n!  When n gets large, it will be impossible to find all of 

the solutions in a polynomial time. Thus, many exact, heuristic, and meta-heuristic methods are used 
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to solve the TSP problem [25, 26]. Especially, classical and modern meta-heuristics are the highly 

potential solution algorithms for the TSP problem.  

 

To define TSP in a short form, the problem can be described as: N is the set of n cities, E is the set of 

the edges, and  ijij dD 
 
is the distance matrix between city i and city j.  121 ,,...,, nPij 

 
is 

the permutation of the constructed tours. 1 represents the first city; n represents the nth city of all the 

permutations. Then, the model of the problem is briefly given in Eq. 1. 
 

  1

1

1
1 ,,. n

n

i
ii ddMin 




           (1) 

 

The Euclidean distance is applied to calculate the distance between cities using Eq. 2. 

 

   22
jijiji yyxxd ,                       (2) 

           

3. MODIFIED CAMEL ALGORITHM 

 

The camel algorithm (CA) is one of the exciting meta-heuristic algorithms in the literature. It is based 

on the camel traveling behavior in the desert under strict conditions. In the MCA, the camels (camel 

caravan) are searching for the best positions and looking randomly for the food supply [17]. 

Therefore, they try to survive and live for a long time in the desert. In the camel algorithm, each camel 

has its initial supply (S) at the beginning, and then both temperature (T) and journey duration affect 

camel endurance (E).  The temperature T of a camel varies randomly between Tmin and Tmax using Eq. 

3. 

 

  minminmax
,

* TRandTTT
iteri

d         (3) 

 

However, the temperature is the primary factor that affects the camel endurance; the endurance is 

redefined in the modified camel algorithm using Eq. 4 [17].  

 

                                                                        

 (4) 

                    

      
            

In the MCA, there are two options for producing new solutions or updating the new locations. When 

the camel visibility v is less than a specific probability, the first alternative occurs using Eq. 5. 

 

 

      (5) 

 

On the other hand, when the camel visibility v is larger than a specific probability, the second 

alternative is realized using Eq. 6. 
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In the light of Eq. 3-6, the pseudo-code of the MCA with oasis condition is shown in Fig. 1 [17]. 

 

 

Figure 1. Pseudo-code of the MCA. 

 

The neighborhood operators are used to obtain the new solutions from the current solution. A 

neighborhood operator or the combination of operators may generate new solutions [27, 28]. In this 

study, four basic neighborhood operators are chosen randomly and applied once in each iteration. The 

selected operators for the optimization process are swap, insert, reverse, and swap_reverse. As 

previous papers indicate, the use of a single structure can be divergent and cannot search optimal 

regions of the search space [28, 29]. Thus, instead of using a single structure, it would hopefully give 

better results when multiple combinations are used. Then, the neighborhood selection is defined by 

the minimum of four operators using Eq. 7.  

 

        xreverseswapxreversexinsertxswapxNH _,,,min)(                                    (7) 

 

However, the MCA converges at a later stage by using multiple combinations. It will be needed more 

iteration and computation time to find near-optimal solutions [27-29]. On the other hand, the use of 

the four investigated structures would give better solutions: swapping, insertion, reversing, and 

swapping of reversed subsequences than others at 1000-2000 iterations. 

 

 

Algorithm: Modified CA 

Begin 

Step 1: Initialization: Set the min. and max. temperature Tmin and Tmax; set the camel caravan size and the 

dimensions; set the visibility threshold; Initialize the camel caravan using the Eq. (6). 

Step 2: Subject the locations to a certain fitness function; determine the current best location; randomly assign a 

visibility (v) for each camel. 

Step 3: While (iter < itermax) do 

for i=1: Camel Caravan size 

Compute the temperature T from Eq. (3) 

Compute the endurance E from Eq. (4) 

If v < visibility threshold then 

Update the camel location from Eq. (5) 

Else 

Update the camel location from Eq. (6) 

End If 

If (oasis condition occur) 

Replenish Endurance 

End If 

End for 

Subject the new locations to the fitness function 

If the new best location is better than the older one 

The new best is the global best 

End If 

Assign new visibility for each camel 

Step 4: End While 

Step 5: Output the best solution 

End 
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4. EXPERIMENTAL ANALYSIS 

 

The ten datasets ranged from 51 to 150 cities were selected from the TSPLIB library in the 

implementation. In this section, all the experiments were run on Intel® Core™ i7 3520-M CPU 2.9 

GHz speed with 8 GB RAM by using Matlab. The algorithms which are MCA, CA, GA, TS, and SA 

are compared to demonstrate the performance of the MCA. All the algorithms were run 10 times 

independently for optimal parameters and 1000-2000 iterations for each run. There are many 

parameters for the used meta-heuristics. However, it is mentioned the fundamentals for algorithms. In 

the SA algorithm, initial temperature (T0 =40000), cooling rate (r=0.80), and the iteration limit for 

temperature change (L=10) are sufficient for optimization. In the TS algorithm, the tabu length (L=30) 

is the adequate parameter. In GA, the crossover rate is 0.80, the mutation rate is 0.02 and the 

population size is 100. In CA and MCA, the dimension of space (dim=10), min. and max. temperature   

(Tmin=0, Tmax =100), initial endurance (Init_End=1), visibility threshold (Vis=0.5), dying rate 

(dye_rate=0) are taken as optimal parameters. In CA, initial supply (Init_Supp=1) is available. 
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Table 1. Computational results of algorithms on the medium-scale TSP instances. 

 

TSP 

 

 

Measure SA TS GA CA MCA 

eil51 

(426) 

 

 

 

 

berlin52 

(7542) 

 

 

 

 

st70 

(675) 

 

 

 

 

eil76 

(538) 

 

 

 

 

pr76 

(108159) 

 

Best 

Worst 

Avg 

Std. 

Time 

Number       

Best 

Worst 

Avg 

Std. 

Time 

Number 

Best 

Worst 

Avg 

Std. 

Time 

Number 

Best 

Worst 

Avg 

Std. 

Time 

Number 

Best 

Worst 

Avg 

Std. 

Time 

Number 

 

 

 

478.97 

591.41 

541.57 

36.85 

0.2 

1000 

8591.18 

10329.7 

9415.69 

546.37 

0.25 

1000 

952.37 

1206.55 

1064.81 

92.9 

0.49 

1000 

744.43 

897.59 

805.4 

53.49 

0.27 

1000 

144562 

162619 

155394 

5059.64 

0.24 

1000 

 

488.49 

577.43 

527.14 

26.94 

0.35 

1000 

8466.93 

9825.44 

9452.24 

413.04 

0.33 

1000 

920.14 

1212.84 

1011.57 

81.2 

0.30 

1000 

745.62 

908.12 

789.54 

47.5 

0.32 

1000 

138357 

148753 

142024 

3623.74 

0.33 

1000 

 

 

478.73 

525.4 

499.14 

18.16 

46.63 

1000 

8104.65 

8883.47 

8451.47 

225.23 

48.62 

1000 

930.31 

1057.09 

1001.24 

45.24 

69.81 

1000 

781.92 

886.94 

827.71 

35.87 

81.84 

1000 

128068 

149040 

135946 

5544.75 

65.33 

1000 

 

 

489.7 

569.24 

514.6 

28.77 

18.29 

1000 

8373.08 

10481 

9194.62 

561.6 

18.96 

1000 

892.84 

1120.32 

1021.07 

67.11 

21.38 

1000 

698.83 

815.02 

773.3 

35.85 

21.25 

1000 

147348 

178085 

164720 

9510.72 

22.05 

1000 

 

 

471.43 

495.75 

478.79 

8.18 

15.95 

1000 

8357.37 

9011.83 

8659.57 

213.12 

16.46 

1000 

898.43 

987.66 

953.59 

36.79 

18.78 

1000 

676.74 

787.58 

746.38 

31.62 

19.6 

1000 

146743 

162307 

157814 

4688.28 

19.12 

1000 

 

 

 

 

 

 

Table 1. continued. 

TSP Measure SA TS GA CA MCA 

rat99 

(1211) 

 

 

 

 

kroa100 

(21282) 

 

 

Best 

Worst 

Avg 

Std. 

Time 

Number 

Best 

Worst 

Avg 

Std. 

2024.28 

2214.42 

2142.83 

66.64 

0.30 

1000 

34383.6 

39483.7 

37055.2 

1649.85 

1566.22 

1758.13 

1666.17 

63.25 

0.42 

1000 

35136.1 

43265.7 

38186.5 

3080.13 

1521.5 

1836.3 

1655.32 

81.33 

101.5 

1000 

32865.5 

37832.2 

35417.8 

1446.68 

1993.3 

2399.76 

2222.23 

121.06 

24.94 

1000 

33863.5 

43562.7 

37895.5 

2974.65 

1937.49 

2370.5 

2172.74 

146.47 

21.52 

1000 

29816.7 

35823 

33721.5 

1746.97 
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   Table 2. The #of optimal solutions and average CPU time.  

 

 

 

 

 

 

                                                                   

                                                  

Table 1 shows the experimental results and comparison between MCA, CA, GA, TS, and SA. In this 

table, the results are given as best, worst, average solution, standard deviation, and CPU Time.  

 

 

eil101 

(629) 

 

 

 

 

bier127 

(118282) 

 

 

 

 

kroa150 

(26524) 

 

 

 

Time 

Number 

Best 

Worst 

Avg 

Std. 

Time 

Number 

Best 

Worst 

Avg 

Std. 

Time 

Number 

Best 

Worst 

Avg 

Std. 

Time 

Number 

0.64 

2000 

864.99 

1007.91 

938.98 

46.19 

0.77 

2000 

175583 

201548 

192011 

7596.82 

0.81 

2000 

54469.6 

66400.4 

60349.3 

3571.35 

0.72          

2000 

0.63 

2000 

862.19 

998.82 

921.97 

43.93 

0.66 

2000 

175733 

203137 

187255 

7756.69 

0.78 

2000 

56795.3 

64183.5 

60694.1 

2803.79 

0.85 

2000 

191.92 

2000 

855.68 

970.2 

904.38 

33.63 

196.15 

2000 

170334 

189736 

179673 

5897.25 

262.47 

2000 

59429.8 

66014.5 

62526.7 

1808.7 

349.21 

2000 

51.01 

2000 

870.06 

1043.86 

939.7 

54.01 

50.7 

2000 

186581 

213526 

197687 

9587.58 

57.51 

2000 

53625.4 

65501.6 

58669.9 

3654.78 

64.88 

2000 

43.95 

2000 

843.11 

943.08 

892.74 

31.93 

50.58 

2000 

181965 

200309 

191837 

6177 

50.45 

2000 

54587.5 

63608.6 

58616.2 

2691.54 

57.24 

2000 

Alg. Best Worst Avg. Std. Avg. 

Time 

MCA 

CA 

GA 

TS 

SA 

4 

2 

4 

0 

0 

6 

0 

2 

2 

0 

6 

0 

4 

0 

0 

5 

0 

3 

2 

0 

31.37 

35.10 

141.35 

0.5 

0.47 
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Figure 2. A set of optimal results found by the modified CA (MCA). 



 
 

 
 
 

Demiral. M. F., Journal of Scientific Reports-A, Number 47, 88-98, December 2021. 
 

 
 

96 
 

As inferred from Table 1, it can be observed that the quality of the MCA solutions is better compared 

to CA, GA, TS, and SA for 60% of all datasets. Besides, in Table 2, MCA finds 21 optimal, CA finds 

2 optimal, GA finds 13 optimal, TS finds 4 optimal and SA finds never optimal solutions among 40 

best results. Table 2 summarizes that MCA is superior to CA, GA algorithm, TS, and SA for 53% of 

all optimal solutions. MCA has low standard deviations among other algorithms. A low standard 

deviation specifies that the MCA is a more reliable and certain approach to find the optimal results. 

Lastly, MCA solves the TSP problem in reasonable times in comparison to other algorithms for all 

datasets. 

 

In general, the experimental analysis shows that the MCA is a reliable and certain approach for 

solving the traveling salesman problem. This modified meta-heuristic gives better results and 

reasonable standard deviation as compared to the test meta-heuristics. Figure 2 shows a set of optimal 

results found by the MCA on the benchmark datasets. 

 

5. CONCLUSION 

 

In recent decades, solving discrete problems via modern meta-heuristics is a popular research area. In 

this paper, the MCA is applied to the symmetric TSP instances. To evaluate the performance of MCA, 

it has been tested on ten benchmark test datasets. The experimental results show that the MCA can 

find better solutions compared to the camel algorithm (CA), genetic algorithm (GA), simulated 

annealing (SA), and tabu search (TS) for 60% of all datasets and 53% of all optimal solutions. As 

CPU time is considered, MCA is considerably fast (31.37 secs.) to find optimal solutions. In future 

works, MCA can be compared with other meta-heuristics to evaluate performance analysis in 

scheduling, assignment, timetabling, routing, and many other combinatorial problems. 
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