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Abstract: Bending deformation of composite plates is consistent
investigation by means of varying boundary conditions and
laminations. In this study bending analysis of laminated
composites which has clamped boundaries at bilateral edges
while the other opposites are free are investigated by a new
analytical solution methodology based on third order shear
deformation theory. The aim of this study is to present the
analytical methodology for an unsolved boundary condition result
in a gap in the literature. Double Fourier series are used to solve
highly coupled linear partial differential equations for the
clamped boundary conditions prescribed on the edges. The
complementary boundary constraints are introduced through
discontinuities at the boundaries which are generated by the
selected boundary conditions, resulting in the derivation of the
complementary solution. The numerical results of the new model
is compared by the counterparts obtained by finite element
analyses.

Karsilikli Kenarlar: Ankastre Capraz Dizilimli Kalin Kompozit Plaklarin

Egilme Analizi

Anahtar Kelimeler (zet: Kompozit plaklarin farkll sinir gartlar ve dizilimler etkisi

Analitik ¢6ziim,
Capraz dizilimli
plaklar,

Fourier analizi,
Yiiksek mertebeli
kayma
deformasyon
teorisi

altinda egilme deformasyonu siiregelen bir arastirma konusudur.
Bu calismada, karsilikli iki kenar1 ankastre diger kenarlari serbest
sinir sartlarina sahip lamine kompozitlerin egilme deformasyonu
liclincli mertebeden kayma deformasyon teorisine dayanan bir
analitik ¢oziim yontemi ile incelenmistir. Bu calismanin amaci
halen literatiirde bir bosluk olusturan ¢oziilmemis sinir sartlari
icin analitik bir ¢6ziim metodu sunmaktir. Karsilikli kenarlar i¢in
tariflenen ankastre smir sarti icin yiiksek mertebeli kismi
diferansiyel denklem ¢oziimlerinde ¢ift Fourier serileri
kullanilmistir. Tamimlanmis sinir sartlar etkisiyle ¢6ziimde olusan
stireksizlikler siirlarda tanimlanmis Katsayilar ile ¢6ziime dahil
edilmistir. Yeni modelin sonuglari sonlu elemanlar yontemi
analizleri ile elde edilen muadilleri ile karsilastirilmistir.
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1. Introduction

Composite  materials have  been
introduced as the futuristic solutions of
the revolutionary designs for various
industries. However due to their complex
deformation behavior, they constrain
designers with the problems of
understanding the various interactions
among different deformations such as
warping which is the bending-stretching
coupling due to asymmetry of
lamination, inter-laminar or transverse
shear stress due to mismatch of material
properties among layers and in-plane
orthotrophy. Satisfying the specific
boundary conditions is another problem
in the static analysis because
discontinuities in the structure may
show incorrect results at the junction
points which affect the overall solution
procedure. Even though the design
flexibility =~ inherent in  composite
laminates caused them to be more
preferable, any changes in the
combination  of  structural/material
concepts, stacking sequence, ply
orientation, etc. result in significant
differences in the stiffness of the
structure. It is crucially important to
know that every change in design
variables require a different solution
procedure and affect the performance of
composite laminates in various
combinations. It is also important to have
appropriate techniques associated with
good structural models to analyze the
effects of design sensitivities efficiently
and accurately [1].

The transverse stress and strain
components are ignored in classical plate
or shell theories which makes them
highly inadequate for the analysis of
moderately thick and thick plates. Higher
order theories which do not need the
shear correction factor are highly
advantageous especially in predicting the
response for thick structures [2-4].
Higher order theories enable designers
to achieve an increased accuracy and

reliability of deformations and stresses
for thick structures [1, 5].

There has been a consistent study in
developing new and more accurate
higher order theories. Many different
functions can be suggested for the
deformation of the structure such as
exponential, polynomial, logarithmic,
hyberbolic, paraboloic and so on. Alipour
[6] made an analytical approach to
bending analysis for both angle-ply and
cross-ply laminated composites under
arbitrary loads and elastic foundations.
Raghu etal. [7] used the theory of
nonlocal continuum mechanics and
Reddy’s third order shear deformation
theory to provide an analytical approach
for laminated plates considering surface
stress on deflections. Refined theories
such as zigzag layer wise theory, DQM
(differential quadrature method) and
finite strip method are also used by
various authors. Sarangan and Singh [8]
suggested a higher-order closed-form
solution by analyzing  algebraic,
exponential, hyperbolic, logarithmic and
trigonometric theories for sandwich
plates. They also developed an improved
zigzag theory [9] for laminated
composites and sandwich plates with
interlaminal shear stress continuities.

Kurtaran [10] performed a geometrically
nonlinear transient  analysis of
moderately thick laminated composite
shells using DQM. Semi analytical finite
strip method is developed by Cheung
[11] and is widely used by other authors
[12, 13]. This method can handle simple
boundary conditions such as simply
supported-simply supported and
clamped-clamped. However, for more
complex boundary conditions, different
approaches need to be utilized.

Due to the nature of analytical solution,
most of the current and previous works
have significant number of simplifying
assumptions. Since the solution to the
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fully developed 3D equations of elasticity
is highly complex, most analytical
solutions can only be applied to simple
geometric structures [14]. Thus, various
theories needed to be utilized in order to
determine the kinematics of deformation
and stresses alongside the thickness of
the laminate [15]. Common approaches
such as Navier or Levy cannot solve the
complexities in the analytical solution
caused by the discontinuities in the
boundaries. A novel discontinuous
double fourier series approach is one of
the ways to overcome this phenomenon
which was presented by Chaudhuri [16,
17].

In this study, an analytical solution has
been proposed for composite laminated
plates having two clamped edges while
the others are free. Complementary
solution functions are introduced to the
solution methodology to overcome the
discontinuties result by arbitrary
boundary conditions. Thus, a
mathematical model has been developed
for cross-ply laminated composite plates
under uniformly distributed load and
compared with finite element results in
order to validate its accuracy. The results
found are in very good agreement with
the finite element counterparts. After the
validation, displacements and stresses
for the laminated plate are presented in

u, :u(éagz’gs):uo(éyé)

3n®
u, =V(§1’§z:§3) =Vo(§1a§z)

A 4 23(¢1+g\goj (1a)

124,68 —;;zz{@ +ZV;J

U = W(fl’égz’égs) = Wo(éué:z)

where u, v, w represents displacements
of a point at three axis (£,¢,,&,) , while

uo,vo,wo represents displacements of a
point at the mid-surface (&, =0). The

order to provide benchmark results for
future work.

2. Material and Method

The geometry of a composite plate
consist of cross-ply layers with uniform
thicknesses is shown in Figure 1, where a
and b represent the dimensions through
(&.¢,) axis respectively while(g,)is a

straight line normal to the mid-surface
defined at the center through the plate
thickness represented by h.

1C3

-~ a = g

T =

mid-surface 77/

/ 1 ply
o 7, s thickness

Figure 1. The geometry of a laminated

composite plate

The displacement field as considered
cubic terms while satisfying the
conditions for transverse shear stresses
(and hence strains) vanishing on the top
and bottom surfaces of the shell, is given
by as follows [18]:

(1b)

(1c)
distance of the ply from the mid-surface
and the thickness of the plate are
represented by (z) and (h) respectively.
¢ and g are rotations about (¢,)and

(&, )axes.
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The equilibrium equations derived using
the principles of virtual work [18] and
constitutive equations are given in
Appendix-A in detail. Finally expanding
the elasticity tensor (stiffness matrix)

components into the equilibrium
equations introduce five highly coupled
fourth  order  partial differential

equations. The set of equations can be
expressed in the following form:

The definitions of [Kj] elements for the
general anisotropic case are given in
Appendix-B and the load term Q_

defined as follows for uniformly
distributed load:
16q
mn = 3
Q z°mn (3)

3. Solution Methodology

The boundaries for the problem under
consideration are graphically shown in
Figure 2, where they can be described as
clamped at & =0,a and freeat &, =0,b.

FREE EDGE

Kll K12 K13 K14 K15 ul O
K21 KZZ K23 K24 K25 uZ 0

Ka Ko Ki Ky Ky U =<Qp, (2)
K41 K42 K43 K44 K45 ¢1 0
K51 K52 K53 K54 KSS ¢2 0

i
+h/2

(Top surface

-hi2 8]

(Bottom surface)

CLAMPED EDGE ||

CLAMPED EDGE

6

(restricted for all DC

result in reaction

FREE EDGE

Gy

forces / moments)

)

(no restriction for all DOF result in
no reaction forces / moments)

Figure 2. Boundary conditions of the plate.

The following boundary conditions can
be defined according to prescribed
restrictions;

u, =u, :U3:¢1:¢2:0

for £ =0,a (42)
N, =Ng=Q, =M, =M, = b
for £, =0,b (#)

Prescribed boundary conditions cannot
be handled neither by Navier’s nor by
Levy’s conventional analytical

approaches. Thus it is needed to

establish a solution methodology dealing
with the additional complexities arise by
way of satisfying boundary conditions.
The particular solution to the boundary-
value problem is assumed as follows with
the amplitudes of Umn, Vmn and Wmn at
&.,&,, &, axes and Xmn,Ymn for ¢4 and ¢,

rotations about ¢£,and £ axes
respectively.
0 (5,8)= DU, R(4.8)  (5a)

m=0 n=1

911



V.Alankaya / Bending Analysis of Bilaterally Clamped Thick Cross-Ply Composite Plates

0<¢ <a;0<¢,<b

1192 an’R 1192
5 § Zl; 5 § (5b)
0<¢<a; 0<&,<b
152 W SR 1152
us(&,8,) ZZ (&.£,) (50
0<& <a; 0<&,<b
1 1152 X ‘R 1152
¢ (&.5,) ZZ (&.¢,) 5)
0<¢é <ar0<¢é,<b
2 1152 YmnR 1192
4,(8.¢,) ZZ (&.8,) s
0<¢<a;0<¢&,<b
where;
R,(&,&,)=cos(a&))sin(BE,),  (6)
R, (£,&,)=sin(aé,)cos(BE,), (6b)
R, (&,.8,)=sin(a&)sin(BE,),  (6¢)
mz, o_N7
a="Cr f=o (6d)

The next step is substituting assumed
particular solutions into equilibrium
equations. The procedure for
differentiation of these functions has
been presented by Chaudhuri [18] who
introduced the boundary coefficients to
serve as complementary solution to the
problem under investigation. The partial
derivatives which cannot be achieved by

term wise differentiation are presented
in Eqgs (7-9), the remaining partial
derivatives can be obtained by term wise
differentiation. The unknown boundary
Fourier coefficients appear in Eqgs. (7-9)
are defined in Egs. (11).

Expanding assumed Fourier series
results in a system of equations
consisting of the unknown boundary
Fourier coefficients presented in Eq.
(11). Therefore remaining equations
which are needed to determine these
unknown terms are supplied by the
boundary conditions. The geometric
boundary  conditions relating to
U, Uy, Uz, 61,6, for the edges (é:l =07a) ’
and the natural boundary conditions
relating to N,,N,,M,,M,,Q, at the

edges (52 = O,b)
solution equations.

provide the set of

4. Numerical Results and Discussions
Numerical results are presented for
symmetric and antisymmetric cross-ply
square (a=b) plates which are subjected
to uniformly distributed load. The
material characteristics are defined as
linearly = changing, purposing to
demonstrate the effects of material
properties, for the numerical results. The
assumed material properties are
presented in the Table 1.
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U zlién sin(ﬂ§2)+ii —azum“ +§nym+6n5m cos(ag,) sin(B<,) (7)
¢1,11 2 n=1 m=0 n=1 an
u o, 18 U0n " h H
=== B B +aoy, +hoo, [SIN(BE,)
¢1,22 2"1:1 xOn ’
Y (8)
_ZZ{ﬂxmn +Cmy, +dm5nJcos(a§1)sin(,B§2)
m=0 n=1 mn
1 o0 _ ; o0 o0 _ _ )
sy =5 3 8 SiN(ad, )+ 3 7 (AW, + 7,8, +w, T, Jsin(as,) cos(pz, ) (9)
m=1 m=1 n=1
in which; _[(01),  n=odd,
(yn Wn){(l,O), n = even. (10)
- = 4% :
an,bn = [, (2.6,) ~ Uy (0,6, )Isin(52,)dé, (11a)
0
_ 4 a
G, A =— [0 (41,5) ~uy (£,0)] cos(xd; )&, (11b)
0
- = 4% :
em, F = [[U (61,0) ~ U (6, O)sin(as )¢, (110)
0
Table 1. Assumed material properties for
the numerical results.
E1 *
o g L b 0EE U = QO'En*/gat)u,  (14a)
1 100 25 05 05 02 0.15 M; =(10°/q,a*) M, (14b)
I 250 25 05 05 02 040 o; =10(h*/q,b*) o, (14c)
m 100 10 1 1 035 015 o, =10(h* /q,b?) o, (14d)
Iv 250 10 1 1 035 0.40

Here E;
Young's

and E: are the in-plane
moduli in & and ¢,

coordinate axis respectively, while G2
denotes in-plane shear modulus. Gi3
and G:3 are transverse shear moduli in

the (5-¢) and  (g-¢,) planes

respectively, while vi2 is major
Poisson's ratio on the (£ - &, ) plane.

In the calculations, the following
normalized quantities are defined in
which ‘a & b’ is the edge length of the
panel, and go denotes the transverse
load. The normalized quantities are
computed for all the numerical results
presented in all figures.
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It is needed to define the number of
terms to be included in the equations
for this solution methodology.
Therefore, Figure 3 displays the
convergence of normalized central
transverse displacement (u3") and
moment (M1*) of a thick (a/h=10) plate
which has symmetrical cross-ply
lamination of [0°,90°,90°,0°] under
uniformly distributed load.
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My

2 s s - w £

m=n

Figure 3. Convergence control of the
solution methodology.

The normalized displacement (u3")
and moment (M1") values exhibit a fast
convergence where 20 terms are
included in the expansion of double
Fourier series. Consequently, number
of terms are defined as n=m=20 for
numerical results.

4.1. Validation of the Present
Solution

Finite element analyses are performed
by a commercially available FEA
software ANSYS™ for the validation of
the presented solution methodology.
Composite plate with symmetrical
cross-ply lamination of [0°,90°,900°,0°]
under uniformly distributed load is
modeled as presented in Figure 4.

Layer# Maseriald

Thata

S0

o0

Figure 4. Layer definitions for the Shell 91
element.

The present study is mainly focused on
the effects of shear deformations
which are more efficient in the thick
and moderately thick regime.
Therefore, Shell-91 element is used
which is developed for modeling thick

sandwich structures and layered
applications of structural shells.

Shell-91 element type with 8 nodes
and six degree of freedom is suitable
for nonlinear layered structural shell
analyses with sandwich option.
Because the chosen element type is
considered for comparison purposes
on meso-scale level, each ply is
modeled and analyzed having one
element per ply as presented in the
Figure 5.

Figure 5. The element description for the
FEA model.

Table 2. Comparison of the central
deflections obtained from present theory
with their FEA counterparts.

Central Deflection (u3) [mm]
a/h Present FEA
Theory
0.001473 0.001715
5 0.002173 0.002385
10 0.008902 0.008787
20 0.051112 0.049696
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The numerical results of FEA and
presented theory for laminated
composite plate which has
symmetrical cross-ply lamination of
[00,900,900,0°] and MAT-I material
properties are presented in Table 2 for
comparison purposes.

The numerical results of the presented
theory are in concordance with FEA
counterparts and indicate that it is
adequately sensitive on thickness
changes of laminated plies.

4.2, Numerical Results and
Discussions

Numerical results are obtained to
present the effects of material
properties, lamination symmetry and
ply thickness. Therefore material
properties are linearly changed as

described in Table.l for both
symmetric and anti-symmetric
lamination. The variable of ply

thickness ratio (a/h) is assumed to be
in thick (a/h<10) and moderately thick
(10 <a/h <20) regime in the
calculations aiming to demonstrate its
effect. Numerical results are presented
as normalized central deflections and
moments in Table3 and Table4
respectively.

It is observed that the deformation
behavior of the laminated composite
plate in  predefined boundary
conditions is primarily affected by the
in-plane and transverse shear
modulus. The plates with MAT-1 &
MAT-II are slightly sensitive than
those with MAT-III & MAT-IV on
deflection. Similarly the effect of shear
modulus is more efficient for the
plates with MAT-I & MAT-II properties

in central moment measures for
symmetric and anti-symmetric
lamination.

Normalized stresses as another design
parameter are investigated through

915

thickness, material and lamination
changes. The effect of thickness (a/h)
to the normalized stress measure at
the center of the symmetrically
[00,90°,90°,0°] laminated plate of
MAT-III is presented in Figure 6.

Central normalized stress deviation in
axis for a thick (a/h=10) and
symmetrically [0°,900,900,0°]
laminated composite plate with four
different material properties is
presented in Graph 3. The effect of
lamination to the normalized stress
measure at the center of the
symmetrically [0°,900,900,0°] , [0°,90¢,
0°] and anti-symmetrically [0°,90°]
laminated plate with (a/h=10) and
MAT-III properties is presented in
Figure 7.

o,

— =

Figure 6. The effect of plate thickness to
the normalized stress changes for
symmetrically [00,900,90°,0°] laminated
plate with MAT-IIL

Figure 7. The effect of material properties
to the central normalized stress deviation
in (é‘z) axis for a thick (a/h=10) and
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symmetrically [00900,900,0°] laminated

composite.

Figure 8. The effect of plate lamination to
the normalized stress changes.

The normalized stress deviation in
(¢,) axis depending on the laminated

plate thicknesses indicates the effect of
(a/h) ratio as presented in Figure 6.
The normalized stress distribution is
apparently affected by ply thickness
which can be observed for thick and
moderately thick regime. Not only ply
thickness but also material properties
are determined as another factor in
the stress measure as presented in
Figure 7. Moreover the changes in
lamination have similar effect on the
stress distribution as presented in
Figure 8 since it results an increasing
in the ply thicknesses.

5. Conclusions

Hitherto unavailable analytical
solution = methodology for the
bilaterally clamped thick laminated

916

plates result in a gap in the literature
is presented.

The  discontinuities caused by
arbitrary boundary conditions are
introduced by the complementary
boundary constraints in the analytical
methodology based on third order
shear deformation theory. The
complementary boundary constraints
are proposed through boundary
discontinuities for the complementary
solution.

Because of the lack of contributive
data in the literature, the numerical
results are presented to provide
benchmark comparisons.

The present solution is general enough
to provide the complete solutions for
arbitrary combination of boundary
conditions, unlike the Navier or Levy
type approach, which can provide only
particular solution. The comparison of
the results by FEA solutions that
shows the predictive capabilities of the
present methodology can be preferred
for its adequately sensitivity and
accuracy. However, to ensure the
capabilities and accuracy of this new
solution methodology, further studies
are necessary on the shells and
sandwich laminates.
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Table 3. Normalized central deflections of symmetric and anti-symmetric laminated plates for
different material properties.

Lamination a/h MAT-I MAT-1I MAT-III MAT-IV
5 21.74 21.51 20.33 19.73
10 11.13 10.94 14.69 14.14
20 7.99 7.82 13.19 12.65
5 21.98 21.69 19.61 19.01
10 10.98 10.78 14.39 13.85
20 7.82 7.66 13.04 12.51
5 27.48 67.64 59.76 131.01
10 31.07 38.69 33.82 25.02
20 103.26 23.02 14.45 28.58

Table 4. Normalized central moments of symmetric and anti-symmetric laminated plates for
different material properties.

Lamination a/h MAT-I MAT-II MAT-III MAT-IV
5 90.28 90.14 78.63 78.80
10 109.01 108.44 87.11 86.82
20 117.72 116.86 89.68 89.22
5 108.29 107.89 89.07 88.84
10 123.36 122.42 95.51 94.83
20 128.58 127.38 97.33 96.49
5 125.12 99.90 90.35 135.01
10 152.96 232.03 70.19 99.04
20 202.28 154.50 90.96 43.14
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Appendix-A. Definition of Equilibrium
Equations.

The equilibrium equations derived using
the principles of virtual work are given as
follows [19] where q is the distributed
transverse load, N;, M;, P; (i=1,2,6) denote
stress resultants, stress couples and
second stress couples respectively while
Qi, (i=1,2) represents the transverse shear
stress resultants which are presented in
Egs. (A.6-A.9) by stress components.

Appendices
Ny N, _ @
0§ 04,
ON, N oN,
—= (A2)
g 06,
@+8QZ+£ N %+N Mo
05 05 og\ Tog " og,
) [ ow, awoJ 4 [aza P, . 0P, ) (A3)
+— | Ng—+N,— |+ = 5 5 =—q
0%, o0& 05, ) 3n*\o&’ os 0505,
M, M _Q1+i2K1_i2 s s 4 A4
o0& 04 h? " 3nlag  og, (a4
oM, oM 4 4 (oP, OP
T QK o = (A5)
06 04, h 3h=\0g 9¢, '

919



V.Alankaya / Bending Analysis of Bilaterally Clamped Thick Cross-Ply Composite Plates

in which;
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For the most general anisotropic case, elasticity tensor (stiffness matrix) components la(kfj can

be determined as follows according to material properties of the kth lamina.

—=®) .
Cu =C%¥cos* 9% —4Cc® cos® 9™ sing™ (A11)
+2(Cl‘§) +2CH )cos2 0 sin? 9 —4cl cos0" sin® 0% +C% sin® o®
() .
Ciz =C¥ cos* 0" + 2(01(6") -C¥ )cos3 0" sing™
+c® +cl —4ct)cos? 0% sin o® (A12)
+2(CY —C ¥ )cos 0% sin® 6% +C Y sin® ¥

— (0 .
Cit =C¥ cos®0® +(C¥ —2C )cos? 6™ sin 6%
. . A13
HCW —2c®)cos 0% sin? 9% +C sin® g% (413)
— () .
Ci =CY¥ cos® o™ — (Cl(j) +2C% )cos2 0% sin @™
: . A14
+C® +2c¥)cos 0% sin? 0% —C ) sin® o (A.14)
=K .
Cis =C¥ cos* o™ + (Cl(lk’ -C¥ —2cW )cos3 0™ sing®
+3(C¥ ~C¥ Jeos? 0¥ sin? 0% +(2CW +CY ~CY Jeoso¥sin’ 0° (4 15y
W sin® oW

=K . .
C =C cos* O® +4CH cos® 0¥ sin 0% +2(CY +2CL Jcos? 0¥ sin? o

+4C¥ cos9® sin® 0% + Cc W sin* g® (A.16)
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Co =C cos® 0™ +(CL +2C )cos? 0% sin 0¥ + (CY +2CL )eos 0% sin? 6%
+C¥sin®o® (A.17)
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-CWsin® g® (A.18)

— (k) .

Ch =C¥ cos* OW +(CE —C¥ +2C% )cos® 0¥ sin 0%
+3(CY¥ ~Cf¥ )eos? 69 sin? 0% +(CL) ~CY —2CY Jeoso¥sin* 69 (4 1y
-C¥sin* oW

921



V.Alankaya / Bending Analysis of Bilaterally Clamped Thick Cross-Ply Composite Plates

—(k) . .
Cu =C¥ cos? 0™ +C¥sin? 0™ +2C¥ sin 6™ cos o™ (A20)
— () . .

Cuw = Czﬁ'g)(cos2 O™ —sin? o® )+ (Cég) -cl )sm 0™ cosg™ (A21)

—(K) .
Cuw =C{ cos® o™ + (Cég’ +Ccl-ci )cos2 0™ sing®

Hc® —c¥ —c)eos 0% sin? 0¥ —C ¥ sin® o (A.22)
GY -l cos? 0 + 0 sin’ 0% ~2C sin o1 cose® )
Cl = C¥ cos® o™ + (Cfg’ -c-cl )cos2 0" sin o™

e —c i Joose® sin? 9%+ sin® o 20
Cs =2(C¥ —C¥)cos® 09 sino® +(CP +CY —2¢¥ - 2% Jeos? 0¥ sin? o a25)

+2(C§§) -c% )cos 0% sin® 0% +C (cos* 6% +sin* 9“‘))

The components of stiffness matrix are presented below as a constitutive relation set depending
on properties of each ply.

(k) (k)
co-_ B co__ B’
(k) , (k) 2 = k)., (k
1-vy'vy l_Vl(Z)Vél)
® _ 00 _ L 0~® _ 00 (A.26)
Cp =Cy =vy Cy’ =v,’Cyy,
k) _ (k) k k
Cse = GlZ ’ Cﬁ) = Gl(sk)’ Cés) = Gz(s)

Here El(k) and Eék) are the in-plane Young's moduli in (fl)and (fz)axes for the k™
lamina respectively. Gl(;) denotes in-plane shear modulus, Gl(elf) and Gg) are transverse
shear moduli in the (51 —53) and (52 — 53) planes, respectively, while Vl(;) is major

Poisson's ratio on the (51 — 5;2 ) plane.
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Appendix-B. Definition of the Elements of [Kj;] in Equation (2).
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in which A, By, etc. are the laminate rigidities and are given as follows:

(A.B,.D,) =Y TE?,—“ (1,2,2)dz

k=17, ,

N % (k)
(Eij'Fij’Hij):ZICij (2°,2%,2%)dz

k=lz,,

Moreover the following definitions are prescribed for cross-ply lamination;
A16=A26=A45=0, B16=B26=0,
D16=D26=D45=0, E16=E26=0,

F16=F26=F45=0, H16=H26=0
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