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Abstract: Bending deformation of composite plates is consistent 
investigation by means of varying boundary conditions and 
laminations. In this study bending analysis of laminated 
composites which has clamped boundaries at bilateral edges 
while the other opposites are free are investigated by a new 
analytical solution methodology based on third order shear 
deformation theory. The aim of this study is to present the 
analytical methodology for an unsolved boundary condition result 
in a gap in the literature. Double Fourier series are used to solve 
highly coupled linear partial differential equations for the 
clamped boundary conditions prescribed on the edges. The 
complementary boundary constraints are introduced through 
discontinuities at the boundaries which are generated by the 
selected boundary conditions, resulting in the derivation of the 
complementary solution. The numerical results of the new model 
is compared by the counterparts obtained by finite element 
analyses. 

  
Karşılıklı Kenarları Ankastre Çapraz Dizilimli Kalın Kompozit Plakların 

Eğilme Analizi  
 

Anahtar Kelimeler 
Analitik çözüm, 
Çapraz dizilimli 
plaklar, 
Fourier analizi, 
Yüksek mertebeli 
kayma 
deformasyon 
teorisi 

Özet: Kompozit plakların farklı sınır şartları ve dizilimler etkisi 
altında eğilme deformasyonu süregelen bir araştırma konusudur. 
Bu çalışmada, karşılıklı iki kenarı ankastre diğer kenarları serbest 
sınır şartlarına sahip lamine kompozitlerin eğilme deformasyonu 
üçüncü mertebeden kayma deformasyon teorisine dayanan bir 
analitik çözüm yöntemi ile incelenmiştir.  Bu çalışmanın amacı 
halen literatürde bir boşluk oluşturan çözülmemiş sınır şartları 
için analitik bir çözüm metodu sunmaktır. Karşılıklı kenarlar için 
tariflenen ankastre sınır şartı için yüksek mertebeli kısmi 
diferansiyel denklem çözümlerinde çift Fourier serileri 
kullanılmıştır. Tanımlanmış sınır şartları etkisiyle çözümde oluşan 
süreksizlikler sınırlarda tanımlanmış katsayılar ile çözüme dahil 
edilmiştir. Yeni modelin sonuçları sonlu elemanlar yöntemi 
analizleri ile elde edilen muadilleri ile karşılaştırılmıştır.   
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1. Introduction 
Composite materials have been 
introduced as the futuristic solutions of 
the revolutionary designs for various 
industries. However due to their complex 
deformation behavior, they constrain 
designers with the problems of 
understanding the various interactions 
among different deformations such as 
warping which is the bending-stretching 
coupling due to asymmetry of 
lamination, inter-laminar or transverse 
shear stress due to mismatch of material 
properties among layers and in-plane 
orthotrophy. Satisfying the specific 
boundary conditions is another problem 
in the static analysis because 
discontinuities in the structure may 
show incorrect results at the junction 
points which affect the overall solution 
procedure. Even though the design 
flexibility inherent in composite 
laminates caused them to be more 
preferable, any changes in the 
combination of structural/material 
concepts, stacking sequence, ply 
orientation, etc. result in significant 
differences in the stiffness of the 
structure. It is crucially important to 
know that every change in design 
variables require a different solution 
procedure and affect the performance of 
composite laminates in various 
combinations. It is also important to have 
appropriate techniques associated with 
good structural models to analyze the 
effects of design sensitivities efficiently 
and accurately [1].  
 
The transverse stress and strain 
components are ignored in classical plate 
or shell theories which makes them 
highly inadequate for the analysis of 
moderately thick and thick plates. Higher 
order theories which do not need the 
shear correction factor are highly 
advantageous especially in predicting the 
response for thick structures [2-4]. 
Higher order theories enable designers 
to achieve an increased accuracy and 

reliability of deformations and stresses 
for thick structures [1, 5].   
 
There has been a consistent study in 
developing new and more accurate 
higher order theories. Many different 
functions can be suggested for the 
deformation of the structure such as 
exponential, polynomial, logarithmic, 
hyberbolic, paraboloic and so on. Alipour 
[6] made an analytical approach to 
bending analysis for both angle-ply and 
cross-ply laminated composites under 
arbitrary loads and elastic foundations. 
Raghu et.al. [7] used the theory of 
nonlocal continuum mechanics and 
Reddy’s third order shear deformation 
theory to provide an analytical approach 
for laminated plates considering surface 
stress on deflections. Refined theories 
such as zigzag layer wise theory, DQM 
(differential quadrature method) and 
finite strip method are also used by 
various authors. Sarangan and Singh [8] 
suggested a higher-order closed-form 
solution by analyzing algebraic, 
exponential, hyperbolic, logarithmic and 
trigonometric theories for sandwich 
plates. They also developed an improved 
zigzag theory [9] for laminated 
composites and sandwich plates with 
interlaminal shear stress continuities. 
 
Kurtaran [10] performed a geometrically 
nonlinear transient analysis of 
moderately thick laminated composite 
shells using DQM. Semi analytical finite 
strip method is developed by Cheung 
[11] and is widely used by other authors 
[12, 13]. This method can handle simple 
boundary conditions such as simply 
supported-simply supported and 
clamped-clamped. However, for more 
complex boundary conditions, different 
approaches need to be utilized. 
 
Due to the nature of analytical solution, 
most of the current and previous works 
have significant number of simplifying 
assumptions. Since the solution to the 
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fully developed 3D equations of elasticity 
is highly complex, most analytical 
solutions can only be applied to simple 
geometric structures [14]. Thus, various 
theories needed to be utilized in order to 
determine the kinematics of deformation 
and stresses alongside the thickness of 
the laminate [15]. Common approaches 
such as Navier or Levy cannot solve the 
complexities in the analytical solution 
caused by the discontinuities in the 
boundaries. A novel discontinuous 
double fourier series approach is one of 
the ways to overcome this phenomenon 
which was presented by Chaudhuri [16, 
17]. 
 
In this study, an analytical solution has 
been proposed for composite laminated 
plates having two clamped edges while 
the others are free. Complementary 
solution functions are introduced to the 
solution methodology to overcome the 
discontinuties result by arbitrary 
boundary conditions. Thus, a 
mathematical model has been developed 
for cross-ply laminated composite plates 
under uniformly distributed load and 
compared with finite element results in 
order to validate its accuracy. The results 
found are in very good agreement with 
the finite element counterparts. After the 
validation, displacements and stresses 
for the laminated plate are presented in 

order to provide benchmark results for 
future work.  
 
2.  Material and Method 
The geometry of a composite plate 
consist of cross-ply layers with uniform 
thicknesses is shown in Figure 1, where a 
and b represent the dimensions through  
( )21 ,ξξ  axis respectively while ( )3ξ is a 
straight line normal to the mid-surface 
defined at the center through the plate 
thickness represented by h. 
 

  
Figure 1. The geometry of a laminated 
composite plate 
 
The displacement field as considered 
cubic terms while satisfying the 
conditions for transverse shear stresses 
(and hence strains) vanishing on the top 
and bottom surfaces of the shell, is given 
by as follows [18]: 
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where u, v, w represents displacements 
of a point at three axis ( )321 ,, ξξξ  , while 
u0,v0,w0  represents displacements of a 
point at the mid-surface ( )03 =ξ . The 

distance of the ply from the mid-surface 
and the thickness of the plate are 
represented by (z) and (h) respectively.  

1φ  and 
2φ  are rotations about  ( )2ξ and  

( )1ξ axes. 
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The equilibrium equations derived using 
the principles of virtual work [18] and 
constitutive equations are given in 
Appendix-A in detail. Finally expanding 
the elasticity tensor (stiffness matrix) 
components into the equilibrium 
equations introduce five highly coupled 
fourth order partial differential 
equations. The set of equations can be 
expressed in the following form: 
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(2) 

 

The definitions of [Kij] elements for the 
general anisotropic case are given in 
Appendix-B and the load term 

mnQ  is 
defined as follows for uniformly 
distributed load: 
 

 
(3) 

 
 
3.  Solution Methodology 
The boundaries for the problem under 
consideration are graphically shown in 
Figure 2, where they can be described as 
clamped at  a,01 =ξ  and free at b,02 =ξ . 
 

  
Figure 2. Boundary conditions of the plate. 

 
The following boundary conditions can 
be defined according to prescribed 
restrictions; 

021321 ===== φφuuu  
for a,01 =ξ  (4a) 

062262 ===== MMQNN  
for b,02 =ξ  (4b) 

 
Prescribed boundary conditions cannot 
be handled neither by Navier’s nor by 
Levy’s conventional analytical 
approaches. Thus it is needed to 

establish a solution methodology dealing 
with the additional complexities arise by 
way of satisfying boundary conditions. 
The particular solution to the boundary-
value problem is assumed as follows with 
the amplitudes of Umn, Vmn and Wmn at 

321 ,, ξξξ  axes and Xmn,Ymn for  
1φ  and 

2φ   
rotations about 2ξ and 1ξ  axes 
respectively. 
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a<< 10 ξ ; b<< 20 ξ  
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where; 

( ) ),sin()cos(, 21211 βξαξξξ =ℜ  (6a) 

( ) ),cos()sin(, 21212 βξαξξξ =ℜ  (6b) 

( ) ),sin()sin(, 21213 βξαξξξ =ℜ  (6c) 

a
mπα = , 

b
nπβ =  (6d) 

 
The next step is substituting assumed 
particular solutions into equilibrium 
equations. The procedure for 
differentiation of these functions has 
been presented by Chaudhuri [18] who 
introduced the boundary coefficients to 
serve as complementary solution to the 
problem under investigation. The partial 
derivatives which cannot be achieved by 

term wise differentiation are presented 
in Eqs (7-9), the remaining partial 
derivatives can be obtained by term wise 
differentiation. The unknown boundary 
Fourier coefficients appear in Eqs. (7-9) 
are defined in Eqs. (11).  
 
Expanding assumed Fourier series 
results in a system of equations 
consisting of the unknown boundary 
Fourier coefficients presented in Eq. 
(11). Therefore remaining equations 
which are needed to determine these 
unknown terms are supplied by the 
boundary conditions. The geometric 
boundary conditions relating to 

21321 ,,,, φφuuu   for the edges ( )a,01 =ξ  , 
and the natural boundary conditions 
relating to 

22626 ,,,, QMMNN   at the 
edges ( )b,02 =ξ   provide the set of 
solution equations. 
 
4. Numerical Results and Discussions 
Numerical results are presented for 
symmetric and antisymmetric cross-ply 
square (a=b) plates which are subjected 
to uniformly distributed load. The 
material characteristics are defined as 
linearly changing, purposing to 
demonstrate the effects of material 
properties, for the numerical results. The 
assumed material properties are 
presented in the Table 1. 
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Table 1. Assumed material properties for 
the numerical results. 
Mat. 
No. 

E1 

(GPa) 
E 1 

/ 
E 2 

G 12 

/ E 2 
G 13 

/ E 2 
G 23 / 

E 2 
ν

12
 

I 100 25 0.5 0.5 0.2 0.15 

II 250 25 0.5 0.5 0.2 0.40 

III 100 10 1 1 0.35 0.15 

IV 250 10 1 1 0.35 0.40 

 
Here E1  and E2  are the in-plane 
Young's moduli in 1ξ   and 2ξ   
coordinate axis respectively, while G12  
denotes in-plane shear modulus. G13  
and G23  are transverse shear moduli in 
the ( )31 ξξ −   and  ( )32 ξξ −  planes, 
respectively, while ν12 is major 
Poisson's ratio on the ( )21 ξξ −  plane.  
 
In the calculations, the following 
normalized quantities are defined in 
which 'a & b' is the edge length of the 
panel, and q0  denotes the transverse 
load. The normalized quantities are 
computed for all the numerical results 
presented in all figures. 
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It is needed to define the number of 
terms to be included in the equations 
for this solution methodology. 
Therefore, Figure 3 displays the 
convergence of normalized central 
transverse displacement (u3*) and 
moment (M1*) of a thick (a/h=10) plate 
which has symmetrical cross-ply 
lamination of [0o,90o,90o,0o] under 
uniformly distributed load.  
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Figure 3. Convergence control of the 
solution methodology. 
 
The normalized displacement (u3*) 
and moment (M1*) values exhibit a fast 
convergence where 20 terms are 
included in the expansion of double 
Fourier series. Consequently, number 
of terms are defined as n=m=20 for 
numerical results. 
 
4.1. Validation of the Present 
Solution 
Finite element analyses are performed 
by a commercially available FEA 
software ANSYS for the validation of 
the presented solution methodology. 
Composite plate with symmetrical 
cross-ply lamination of [0o,90o,90o,0o] 
under uniformly distributed load is 
modeled as presented in Figure 4. 

 
Figure 4. Layer definitions for the Shell 91 
element. 
 
The present study is mainly focused on 
the effects of shear deformations 
which are more efficient in the thick 
and moderately thick regime. 
Therefore, Shell-91 element is used 
which is developed for modeling thick 

sandwich structures and layered 
applications of structural shells.  
 
Shell-91 element type with 8 nodes 
and six degree of freedom is suitable 
for nonlinear layered structural shell 
analyses with sandwich option. 
Because the chosen element type is 
considered for comparison purposes 
on meso-scale level, each ply is 
modeled and analyzed having one 
element per ply as presented in the 
Figure 5. 
 

 
 
Figure 5. The element description for the 
FEA model. 
 
Table 2. Comparison of the central 
deflections obtained from present theory 
with their FEA counterparts. 

 

a/h 

Central Deflection (u3) [mm] 

Present 
Theory FEA 

4 0.001473 0.001715 
5 0.002173 0.002385 

10 0.008902 0.008787 
20 0.051112 0.049696 
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The numerical results of FEA and 
presented theory for laminated 
composite plate which has 
symmetrical cross-ply lamination of 
[0o,90o,90o,0o] and MAT-I material 
properties are presented in Table 2 for 
comparison purposes. 
 
The numerical results of the presented 
theory are in concordance with FEA 
counterparts and indicate that it is 
adequately sensitive on thickness 
changes of laminated plies. 
 
4.2. Numerical Results and 
Discussions 
Numerical results are obtained to 
present the effects of material 
properties, lamination symmetry and 
ply thickness. Therefore material 
properties are linearly changed as 
described in Table.1 for both 
symmetric and anti-symmetric 
lamination. The variable of ply 
thickness ratio (a/h) is assumed to be 
in thick (a/h<10) and moderately thick 
(10 ≤ a/h ≤ 20) regime in the 
calculations aiming to demonstrate its 
effect. Numerical results are presented 
as normalized central deflections and 
moments in Table 3 and Table 4 
respectively. 
 
It is observed that the deformation 
behavior of the laminated composite 
plate in predefined boundary 
conditions is primarily affected by the 
in-plane and transverse shear 
modulus. The plates with MAT-I & 
MAT-II are slightly sensitive than 
those with MAT-III & MAT-IV on 
deflection. Similarly the effect of shear 
modulus is more efficient for the 
plates with MAT-I & MAT-II properties 
in central moment measures for 
symmetric and anti-symmetric 
lamination. 
 
Normalized stresses as another design 
parameter are investigated through 

thickness, material and lamination 
changes. The effect of thickness (a/h) 
to the normalized stress measure at 
the center of the symmetrically 
[0o,90o,90o,0o] laminated plate of 
MAT-III is presented in Figure 6. 
 
Central normalized stress deviation in  
axis for a thick (a/h=10) and 
symmetrically [0o,90o,90o,0o]  
laminated composite plate with four 
different material properties is 
presented in Graph 3. The effect of 
lamination to the normalized stress 
measure at the center of the 
symmetrically [0o,90o,90o,0o] , [0o,90o, 
0o] and anti-symmetrically [0o,90o] 
laminated plate with (a/h=10) and  
MAT-III properties is presented in 
Figure 7. 
 

 
 
Figure 6. The effect of plate thickness to 
the normalized stress changes for 
symmetrically [0o,90o,90o,0o]  laminated 
plate with MAT-III. 
 
 

 
 
Figure 7. The effect of material properties 
to the central normalized stress deviation 
in ( )2ξ  axis for a thick (a/h=10) and 
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symmetrically [0o,90o,90o,0o]  laminated 
composite. 

 
 
Figure 8. The effect of plate lamination to 
the normalized stress changes. 
 
The normalized stress deviation in 
( )1ξ   axis depending on the laminated 
plate thicknesses indicates the effect of 
(a/h) ratio as presented in Figure 6. 
The normalized stress distribution is 
apparently affected by ply thickness 
which can be observed for thick and 
moderately thick regime. Not only ply 
thickness but also material properties 
are determined as another factor in 
the stress measure as presented in 
Figure 7. Moreover the changes in 
lamination have similar effect on the 
stress distribution as presented in 
Figure 8 since it results an increasing 
in the ply thicknesses.   
 
5. Conclusions 
Hitherto unavailable analytical 
solution methodology for the 
bilaterally clamped thick laminated 

plates result in a gap in the literature 
is presented.  
 
The discontinuities caused by 
arbitrary boundary conditions are 
introduced by the complementary 
boundary constraints in the analytical 
methodology based on third order 
shear deformation theory. The 
complementary boundary constraints 
are proposed through boundary 
discontinuities for the complementary 
solution.  
 
Because of the lack of contributive 
data in the literature, the numerical 
results are presented to provide 
benchmark comparisons. 
 
The present solution is general enough 
to provide the complete solutions for 
arbitrary combination of boundary 
conditions, unlike the Navier or Levy 
type approach, which can provide only 
particular solution. The comparison of 
the results by FEA solutions that 
shows the predictive capabilities of the 
present methodology can be preferred 
for its adequately sensitivity and 
accuracy. However, to ensure the 
capabilities and accuracy of this new 
solution methodology, further studies 
are necessary on the shells and 
sandwich laminates. 
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Table 3. Normalized central deflections of symmetric and anti-symmetric laminated plates for 
different material properties. 
 

Lamination a/h MAT-I MAT-II MAT-III MAT-IV 
5 21.74 21.51 20.33 19.73 

10 11.13 10.94 14.69 14.14 
20 7.99 7.82 13.19 12.65 
5 21.98 21.69 19.61 19.01 

10 10.98 10.78 14.39 13.85 
20 7.82 7.66 13.04 12.51 
5 27.48 67.64 59.76 131.01 

10 31.07 38.69 33.82 25.02 
20 103.26 23.02 14.45 28.58 

 
Table 4. Normalized central moments of symmetric and anti-symmetric laminated plates for 
different material properties. 
 

Lamination a/h MAT-I MAT-II MAT-III MAT-IV 
5 90.28 90.14 78.63 78.80 

10 109.01 108.44 87.11 86.82 
20 117.72 116.86 89.68 89.22 
5 108.29 107.89 89.07 88.84 

10 123.36 122.42 95.51 94.83 
20 128.58 127.38 97.33 96.49 
5 125.12 99.90 90.35 135.01 

10 152.96 232.03 70.19 99.04 
20 202.28 154.50 90.96 43.14 
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Appendices 

 
Appendix-A. Definition of Equilibrium 
Equations. 
The equilibrium equations derived using 
the principles of virtual work are given as 
follows [19] where q is the distributed 
transverse load, Ni, Mi, Pi (i=1,2,6) denote 
stress resultants, stress couples and 
second stress couples respectively while  
Qi, (i=1,2) represents the transverse shear 
stress resultants which are presented in 
Eqs. (A.6-A.9) by stress components.   
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For the most general anisotropic case, elasticity tensor (stiffness matrix) components [ ])(

,
k
jiC   can 

be determined as follows according to material properties of the kth lamina. 
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The components of stiffness matrix are presented below as a constitutive relation set depending 
on properties of each ply. 
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Here )(

1
kE  and )(

2
kE  are the in-plane Young's moduli in ( )1ξ and ( )2ξ axes for the thk

lamina respectively. )(
12

kG denotes in-plane shear modulus, )(
13

kG  and )(
23

kG  are transverse 

shear moduli in the ( )31 ξξ −  and ( )32 ξξ −  planes, respectively, while )(
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kν  is major 

Poisson's ratio on the ( )21 ξξ −  plane. 
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Appendix-B. Definition of the Elements of [Kij] in Equation (2). 
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in which ,, ijij BA  etc. are the laminate rigidities and are given as follows: 
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Moreover the following definitions are prescribed for cross-ply lamination;  

A16=A26=A45=0, B16=B26=0, 

D16=D26=D45=0, E16=E26=0, 

F16=F26=F45=0, H16=H26=0 

(B.28) 

 
 


