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ABSTRACT 

Artificial Atom Algorithm is an optimization technique that developed inspired by nature. This algorithm used for 
both continues problems and discrete problems in previous studies. In this study, an arrangement that would 
increase the success of this algorithm was envisaged. For this purpose, the ionic bond function of Artificial Atom 
Algorithm has been improved benefiting an algorithmic step of Shuffled Frog Leaping Algorithm. As a result of 
the updates, the search space was narrowed for the ionic bond operator. Thus, the state of getting away from the 
solution in each iteration was prevented. The success of Improved Artificial Atom Algorithm was tested with 
benchmark functions. Experimental results for the proposed method were interpreted comparatively. 

Keywords: Artificial atom algorithm, Improved artificial atom algorithm, Shuffled frog leaping algorithm, 
Optimization, Benchmark problems. 

 

ADAPTİF KURBAĞA SIÇRAMA ALGORİTMASININ OPERATÖRÜ 
İLE GELİŞTİRİLMİŞ YAPAY ATOM ALGORİTMASI 

ÖZET 

Yapay Atom Algoritması, doğadan ilham alınarak geliştirilmiş bir optimizasyon tekniğidir. Bu algoritma önceki 
çalışmalarda hem sürekli problemler hem de ayrık problemler için kullanılmıştır. Bu çalışmada bu algoritmanın 
başarısını artıracak bir düzenleme öngörülmüştür. Bu amaçla, Yapay Atom Algoritmasının iyonik bağ işlevi, 
Adaptif Kurbağa Sıçrama Algoritmasının algoritmik bir adımından yararlanılarak geliştirilmiştir. Güncellemeler 
sonucunda iyonik bağ operatörü için arama alanı daraltılmıştır. Böylece her iterasyonda çözümden uzaklaşma 
durumu önlenmiştir. Geliştirilmiş Yapay Atom Algoritmasının başarısı, kıyaslama fonksiyonları ile test edilmiştir. 
Önerilen yöntem için deneysel sonuçlar karşılaştırmalı olarak yorumlanmıştır. 

Anahtar Kelimeler: Yapay atom algoritması, Geliştirilmiş yapay atom algoritması, Adaptif kurbağa sıçrama 
algoritması, Optimizasyon, Kıyaslama problemleri. 

1. Introduction 

Optimization can be defined as objective function making minimum or maximum for specific 
problems. Optimization problems investigate parameter values that provide the minimum or maximum 
values for objective function. Various optimization algorithms are used to solve these problems. These 
algorithms are divided into two groups in terms of the used methods. These are deterministic and 
heuristic optimization algorithms [1]. Some of the heuristic optimization algorithms are Genetic 
Algorithm (GA), Particle Swarm Optimization (PSO), Sapling Growing up Algorithm, Bee Colony 
Optimization (BCO), Ant Colony Algorithm (ACO), Differential Evolution Algorithm (DE), 
Parliamentary Optimization Algorithm, Uniform Big Bang - Chaotic Big Crunch Optimization, 
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Artificial Chemical Reaction Algorithm, Cricket Algorithm, Bat Algorithm, Harmony Search (HS), 
Shuffled Frog Leaping Algorithm and Artificial Atom Algorithm (A3) [2-15]. 

GA is the most well-known heuristic method that aims to increase the fitness values of 
chromosomes by using basic operators such as selection, crossover, mutation [16]. PSO is an algorithm 
developed by modeling the feature of mimicking the behavior of the leader of fish and bird flocks. 
According to the algorithm, the position value of the one with the best fitness value is used to update 
the values of the others [17]. Saplings Growing up Algorithm consists of saplings planting, matching, 
branching and grafting operators. By planting saplings, it is ensured that a uniformly distributed solution 
set is formed. With matching, genetic information is exchanged between saplings [4]. Branching and 
grafting operators have been combined and named as mix-develop since they cause too much divergence 
from the solution [18]. BCO is an intuitive method that models the processes of searching the 
environment for a substance called nectar, which bees need to find in order to make honey in their hives, 
and informing the bees in the hive when they find it. If the neighbor is better than the memory, the new 
one overwrites the old search region [5]. It is thought that the change in the amount of a substance called 
pheromone secreted by ants when they use a road helps to guide the ants coming from behind and to 
choose the shortest path. ACO was developed by modeling this situation. The functioning of the 
algorithm depends on the amount of pheromone. The pheromone amount of the candidate with the best 
fitness function is updated [6]. DE is a population-based algorithm similar to the genetic algorithm. DE 
is more efficient for continuous data. Algorithm operators (crossover, mutation) are applied to each 
chromosome in the population one by one [19]. The Parliamentary Optimization method is designed by 
modeling systems in which there is an assembly and parties competing with each other, and the parties 
have candidates competing with each other within their own groups. Accordingly, the unification 
process at the end of the in-group and out-group race determines the result of the selection [20]. The Big 
Bang-Big Crunch Algorithm is based on the Big Bang theory and is inspired by the events thought to 
have occurred when the universe was formed. The algorithm mimics the bursting and shrinking 
processes by random distribution and random aggregation of solutions. The center of mass of the 
particles coming together is calculated. The algorithm is continued with new bursts and contractions. 
The algorithm terminates when the center of mass no longer changes [21]. Uniform Big Bang - Chaotic 
Big Crunch Optimization is designed to improve the performance of Big Bang - Big Crunch 
Optimization and it proposes efficient methods to overcome premature convergence [9]. Artificial 
Chemical Reaction Algorithm was developed by modeling chemical reactions. First, the molecules that 
will react are determined. These molecules undergo certain reactions. Accordingly, a chemical stability 
test is performed. As a result of this test, molecules with good values are preserved, while those with 
bad values are discarded [10]. The cricket algorithm was created by modeling the ability of crickets to 
predict the temperature of the air by flapping their wings. The loudness of the crickets gives the value 
of the fitness function of the optimization problem. Air temperature, speed and frequency of sound are 
used to update the positions of the crickets. If the fitness value is better at the new location, this value is 
taken to the population [11]. The Bat Algorithm is an optimization algorithm inspired by the behavior 
of bats to determine the direction and distance of an object by making use of the echolocation of the 
sound [12]. The HS algorithm is a music-based optimization method that aims to find the best result by 
using random selection, harmony memory consideration and pitch adjustment operators [13]. 

Optimization algorithms aim to find the global optimum, not to find the local optimal solution.  
The heuristic methods make this by improving the obtained solutions iteratively. In most heuristic 
methods, while improving candidate solutions, part of the candidate solution set is randomly refreshed 
or new elements are included in the set [22]. However, rather than production a completely new value, 
searching a solution using old solutions can yield more effective results. 

In this article, it was aimed to achieve more successful results for optimization problems by 
making improvements on the ionic bond operator of A3. Therefore, A3 was improved by utilizing one 
of the new frog generation operators of Shuffled Frog Leaping Algorithm. The success of the proposed 
algorithm was evaluated in comparison with benchmark problems. 
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The contributions of this study to science: 

- The A3 algorithm, which has an important place among meta-heuristic algorithms, was 
developed by utilizing the new frog generation operator of the Shuffled Frog Leaping Algorithm. Thus, 
the random search space used by the ionic bond operator is narrowed down at each step. In this way, the 
performance of the A3 algorithm has been improved. 

- With the improvement made on A3, the rate of reaching of the algorithm the global optimum 
result with lower iteration numbers in the optimization problems has been increased. 

- The algorithm has been applied to 11 benchmark test functions. In most of the test functions, 
the global optimum result has been reached or quite approached optimum result. 

- The algorithm has been compared with the meta-heuristic methods that are widely used in the 
literature and the studies carried out in recent years. The results reveal the superiority of the Improved 
A3 method over other methods for benchmark functions. 

In Section 2, firstly, the general features of meta-heuristic algorithms are mentioned. Then, it is 
given the information about Shuffled Frog Leaping Algorithm and A3. Section 3 describes the changes 
made to improve A3. In Section 4, the benchmark problems which are utilized to prove the success of 
the proposed method are given. In addition, parameter settings for the algorithms and application results 
in comparative are also given with tables and figures. In Section 5, the studies are summarized and the 
results are interpreted.   

2. Meta-heuristic Algorithms  

Heuristic algorithms are methods which do not guarantee to always put forth the same and 
optimum result. These algorithms have been developed to keep the run-time and accuracy rate in 
balance. Meta-heuristic algorithms choose and use methods that are considered to be more advantageous 
between different heuristic algorithms. Meta-heuristic algorithms have been developed by inspired from 
nature and environment, such as animal species, atoms and chemical reactions, sports branches, 
behaviors or movements by modeling [22-23].  

2.1. Shuffled Frog Leaping Algorithm 

Eusuff and Lansey [14] design Shuffled Frog Leaping Algorithm as a combination of Memetic 
Algorithm and Particle Swarm Optimization. It is a meta-heuristic algorithm, inspired by the 
evolutionary development of a frog which has researched for food and jumped in a swamp. The basic 
logic of the algorithm is based to make improvements on a population consisting of frogs. This 
population is divided into sections called memeplex which represents different frog species. Frogs 
improve affected by frogs in their own memeplex. When the number of memetic evolutions reaches a 
certain value, data is exchanged between different memeplexes and new memeplexes are created. In this 
way, the algorithm tries to reach local and global optimal solutions. The algorithm terminates by 
applying a certain number of local search and mixing operations [24]. 

The algorithmic operation of the Shuffled Frog Leaping Algorithm is as follows: 

1. A random research space, which is consisted of candidate solutions, each of which is called as 
a frog, is created. 

2. The objective function values are calculated for each frog. 
3. The research space is ranked from the best solution to the worst solution.  
4. The research space is divided into sections called memeplexes. 
5. Starting from the best, the frogs are selected as many as the number of memeplexes and they 

are distributed to each memeplex. This process is repeated for all frogs.  
6. Then, the local search operation is performed in each memeplex.  
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a) The local search process aims to improve the worst element in each memeplex. For this 
purpose, the worst frog is removed from the memeplex. 

b) Instead, a new one is included into the memeplex according to the following formula.  
 

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 +  ( 𝑥𝑥𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑙𝑙𝑛𝑛𝑙𝑙𝑙𝑙 − 𝑥𝑥𝑛𝑛𝑜𝑜𝑤𝑤𝑙𝑙𝑙𝑙)* rand          (1) 
 

c) If the new frog is no better than the old, the following formula is applied.   
 

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 +  ( 𝑥𝑥𝑔𝑔𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜𝑙𝑙𝑛𝑛𝑙𝑙𝑙𝑙 − 𝑥𝑥𝑛𝑛𝑜𝑜𝑤𝑤𝑙𝑙𝑙𝑙)* rand                                              (2) 
 

d) If the new frog is no better than the old, the new frog is randomly produced.  
7. After the local search, repeat from Step 3 until the termination condition is met [14]. 

The flow diagram of Shuffled Frog Leaping Algorithm is given in Fig. 1.  

Start

Population size (p)
Memeplexes (m)

Number of iterations (i)

Generate population of frog 
randomly

Evaluate the fitness of 
population

Sort the population in 
descending order

Partition the population in m 
memeplexes 

Determine the worst, the local 
best and the global best of X

Apply the Equation 1

Is new frog is 
better than worst 

frog

Apply the Equation 2
No

Is new frog is 
better than worst 

frog

NoGenerate the new 
frog randomly

Replace the worst 
frog

Shuffle the 
memeplexes

Is convergence 
criteria is satisfied

Yes

Determine the best 
solution

Finish

No

Yes Yes

 
 

Fig. 1. The flow diagram of Shuffled Frog Leaping Algorithm 

2.2. Artificial Atom Algorithm 

Artificial Atom Algorithm (A3) which is inspired by chemical reactions, is a meta-heuristic 
method. This algorithm carries out operations on electrons, atoms and an atom set. The algorithm uses 
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two algorithmic operators. A3 aims to maintain and replicate best solutions with the covalent bond 
operator. It tries to achieve the global optimal value with the ionic bond operator. For this purpose, first 
covalent bond then ionic bond is applied to the randomly generated atom set within its boundaries. 
Obtained new atoms are evaluated using the objective function. In addition, electrons are evaluated in 
terms of their effect on the objective function. Subsequently, electrons and atoms are ordered in 
themselves. This process continues with the number of iterations [15]. A3 provides computational time 
advantage, especially for benchmark problems [25]. The flow diagram of A3 is given in Fig. 2.  

 

Start

Generate atom set randomly

Compute the effect value of 
electrons

Sort both electrons and atoms

i ≤ number of 
iterations

Apply covalent bond operator

Evaluate the objective function 

Compute objective function 
and effect values of electrons 

i=i+1

Number of electrons (n)
Number of atoms (m)

Ionic rate (α )
Covalent rate (β )

Number of iterations (i)

Yes

Apply ionic bond operator

Sort both electrons and atoms

Finish

No

 
Fig. 2. The flow diagram of Artificial Atom Algorithm (A3) 

3. Improved Artificial Atom Algorithm 

The success of A3 on benchmark problems and discrete problems has been shown in previous 
studies [15, 26-30]. It has known that A3 has achieved quite fast results especially in benchmark 
problems [25]. It seems to have been influenced by replication principle of the covalent bond operator 
of A3 on this case. According to this principle, the better ones are replicated in the atom set. While the 
ionic bond operator regenerates a portion of the atom set with random elements, even if it is positive to 
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achieve the global best, but it prevents the search space to narrow. Therefore, in this article, the idea of 
improving the A3 is proposed. It has been found appropriate to make this improvement on the ionic bond 
operator of A3. For this improvement, it was inspired by an algorithmic step of Shuffled Frog Leaping 
Algorithm. 

The ionic bond function generates random numbers within boundaries of the attributes for the 
ionic area of the atom set. This operator is shown in Algorithm 1 [15].  

 

Shuffled Frog Leaping Algorithm also generates random numbers in the frog generation stage. 
However, it benefits from the best and worst results (frogs) when generating random numbers. For this, 
it uses following formula [24].  

 

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 +  ( 𝑥𝑥𝑙𝑙𝑛𝑛𝑙𝑙𝑙𝑙 − 𝑥𝑥𝑛𝑛𝑜𝑜𝑤𝑤𝑙𝑙𝑙𝑙)* rand                                                                      (3) 

 

Therefore, the advantages of these two heuristic algorithms were evaluated and the ionic bond 
operator of A3 was improved.  Thus, the ionic bond function was modified as follows (Algorithm 2): 

 

With the update, it is aimed to narrow the search space with the ionic bond function over time. 
Otherwise, with the ionic bond function, candidate solutions that causative to remove from optimal 
results are included from the wide search space in the atom set. This progress helps A3 achieve optimum 
more quickly.  

Algorithm 1: Ionic Bond Operator 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (𝐴𝐴, 𝑚𝑚, 𝐼𝐼, β) 
      𝑗𝑗←1, … ,𝑚𝑚  // 𝑚𝑚 : Number of atoms 
            𝐼𝐼← β𝐼𝐼 + 1, … ,𝐼𝐼  // β : Covalent rate  
                                        // 𝐼𝐼 : Number of electrons                                  
                  𝐴𝐴𝑗𝑗[𝐼𝐼]←𝐿𝐿𝑖𝑖 + η ∗ (𝑈𝑈𝑖𝑖 − 𝐿𝐿𝑖𝑖)   
// 𝐴𝐴𝑗𝑗[𝐼𝐼]∈ 𝐴𝐴𝐴𝐴𝐼𝐼𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴 
// η :  A randomly generated number between 0 and 1 
// 𝑈𝑈𝑖𝑖 : The upper limit for 𝐼𝐼   
// 𝐿𝐿𝑖𝑖 : The lower limit for 𝐼𝐼  

Algorithm 2: Improved Ionic Bond Operator 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (𝐴𝐴, 𝑚𝑚, 𝐼𝐼, β) 
      𝑗𝑗←1, … ,𝑚𝑚  // 𝑚𝑚 : Number of atoms 
            𝐼𝐼← β𝐼𝐼 + 1, … ,𝐼𝐼  // β : Covalent rate  
                                        // 𝐼𝐼 : Number of electrons                                  
                  𝐴𝐴𝐴𝐴𝑚𝑚𝑡𝑡←|𝐴𝐴𝑗𝑗�𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜_𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑜𝑜_𝑙𝑙𝑛𝑛𝑙𝑙𝑙𝑙� − 𝐴𝐴𝑗𝑗[𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜_𝑛𝑛𝑜𝑜𝑤𝑤𝑙𝑙𝑙𝑙]| ∗ (𝐿𝐿𝑖𝑖 + η ∗ (𝑈𝑈𝑖𝑖 − 𝐿𝐿𝑖𝑖))   

     𝑋𝑋 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴(𝐴𝐴𝐴𝐴𝑚𝑚𝑡𝑡, 𝐿𝐿𝑖𝑖 ,𝑈𝑈𝑖𝑖) 
     𝐼𝐼𝑖𝑖(𝑋𝑋 == 𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴) 

                          𝐴𝐴𝑗𝑗[𝐼𝐼] =  𝐴𝐴𝐴𝐴𝑚𝑚𝑡𝑡 
                  𝐴𝐴𝐼𝐼𝐼𝐼 
// 𝐴𝐴𝑗𝑗[𝐼𝐼]∈ 𝐴𝐴𝐴𝐴𝐼𝐼𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴 
// η :  A randomly generated number between 0 and 1 
// 𝑈𝑈𝑖𝑖 : The upper limit for 𝐼𝐼   
// 𝐿𝐿𝑖𝑖 : The lower limit for 𝐼𝐼  
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4. Experimental Results 

As a result of the improvement in A3, it was tested using benchmark functions to see how the 
performance changed. For this purpose, six benchmark problems have been identified. The functional 
definitions of these problems and the bounds of the parameters are given in Table 1 [31].  

 

Table 1. Used benchmark functions in the application 

Functions Definition of Functions Bounds 

Sphere 𝑖𝑖(𝑥𝑥) = �𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

 −5.12 ≤ 𝑥𝑥𝑖𝑖 ≤ 5.12 

Rotated Hyper-Ellipsoid 𝑖𝑖(𝑥𝑥) = ��𝑥𝑥𝑗𝑗2
𝑖𝑖

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 −100 ≤ 𝑥𝑥𝑖𝑖 ≤ 100 

Parallel Hyper-Ellipsoid 𝑖𝑖(𝑥𝑥) = �𝐼𝐼𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

 −5.12 ≤ 𝑥𝑥𝑖𝑖 ≤ 5.12 

Rastrigin  
(Rotated Rastrigin) 𝑖𝑖(𝑥𝑥) = 10𝐼𝐼 + �[𝑥𝑥𝑖𝑖2 − 10cos(2𝜋𝜋𝑥𝑥𝑖𝑖)]

𝑛𝑛

𝑖𝑖=1

 −5.12 ≤ 𝑥𝑥𝑖𝑖 ≤ 5.12 

Griewank 𝑖𝑖(𝑥𝑥) =
1

4000
�𝑥𝑥𝑖𝑖2 −� cos �

𝑥𝑥𝑖𝑖
√𝐼𝐼
� + 1

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

 −600 ≤ 𝑥𝑥𝑖𝑖 ≤ 600 

Quartic 𝑖𝑖(𝑥𝑥) = �𝐼𝐼𝑥𝑥𝑖𝑖4 + 𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚[0,1)
𝑛𝑛

𝑖𝑖=1

 −1.28 ≤ 𝑥𝑥𝑖𝑖 ≤ 1.28 

 

In the solution of these benchmark problems for A3 and Improved A3, the determined parameter 
settings are presented in Table 2. The same parameter values have been used for A3 and Improved A3. 

 

Table 2. Parameter settings of A3 and Improved A3 for benchmark problems 

Parameter Value 

Number of electrons 50 
Number of atoms 10 

Number of iterations 100/1000 
Covalent rate (β) 0.6 
Ionic rate (α) 0.4 

 

In Fig. 3, it is seen changes that occur in the mean values at each iteration with A3 and Improved 
A3 applications for Sphere, Rotated Hyper-Ellipsoid, Parallel Hyper-Ellipsoid, Rastrigin, Griewank and 
Quartic functions.  
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Fig. 3 Application results of A3 and Improved A3 for benchmark problems 

The performance of the A3 and Improved A3 with the operator of the Shuffled Frog Leaping 
Algorithm for the selected six benchmark problems were compared. The best results were obtained by 
running both algorithms 20 times. These comparative results are given in Table 3. In addition, global 
optimum values for these benchmark problems are also shown in Table 3. In addition, the best result 
shows the best result obtained by running the algorithms 20 times. The mean result shows the average 
result obtained by running the algorithms 20 times. Here, it should be taken into account that the number 
of iterations is kept very low in order to show how quickly the proposed method reaches the optimum 
result.  
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Table 3. The experimental results for A3 and Improved A3 applications to benchmark problems 
 

Benchmark 
Problems 

Global 
Min 

Iteration 
Number 

A3 Improved A3 

Mean 
result 

Best 
result 

Run-
time 
(s) 

Mean 

result 
Best 

result 

Run-
time 
(s) 

Sphere  0.0 

100 0.2145 1.788E-
02 0.0100 1.0022E-

34 
2.0171E-

37 0.1389 

1000 0.0022 1.897E-
04 0.0604 0.0 0.0 1.3753 

Rotated 
Hyper-
Ellipsoid 

0.0 

100 642.931 149.672 0.0122 5.4277E-
06 

7.6720E-
08 0.1322 

1000 6.6968 0.0335 0.0852 3.1842E-
82 

2.3666E-
91 1.2256 

Parallel 
Hyper-
Ellipsoid 

0.0 
100 5.1782 0.8609 0.0109 1.0356E-

31 
1.4878E-

34 0.1370 

1000 0.0301 0.0018 0.0623 0.0 0.0 1.3276 

Rastrigin 
(Rotated 
Rastrigin) 

0.0 
100 20.305 14.4373 0.0122 0.0 0.0 0.1350 

1000 0.7855 0.0226 0.0841 0.0 0.0 1.3195 

Griewank 0.0 
100 8.6828 1.8784 0.0160 0.9270 7.0538E-

07 0.1240 

1000 1.5229 0.0193 0.1198 0.0 0.0 1.2114 

Quartic 0.0 

100 3.006E-
04 

8.329E-
09 0.0108 3.2809E-

141 
1.7267E-

147 0.1577 

1000 1.598E-
07 

2.337E-
11 0.0802 0.0 0.0 1.4469 

 

It has been observed that the proposed method achieves optimal results for all selected comparison 
problems, except for the Rotated Hyper-Ellipsoid problem. Furthermore, when A3 and Improved A3 are 
compared, it is seen that Improved A3 is quite advantageous in terms of best results; on the other hand, 
A3 is advantageous in terms of run-time performance. 

The Improved A3 method was compared with Genetic Algorithm (GA), Ant Colony Optimization 
(ACO), Bee Colony Optimization (BCO), Particle Swarm Optimization (PSO), Differential Evolution 
(DE), Harmony Search (HS) methods that are frequently used in the literature. Additionally, it was 
compared to the first version of the Artificial Atom Algorithm (A3). The best results were obtained by 
running all algorithms 20 times.  

Parameter settings of the Improved A3 and other compared algorithms are given in Table 4. The 
maximum number of iterations for all methods is determined as 1000. In addition, for all algorithms, it 
is defined the number of population and decision variable as 10. 
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Table 4. The parameter settings for compared algorithms 

Algorithm Parameter Value 

BCO 
Trial limit (𝐿𝐿) 60 

Acceleration coefficient  upper bound (𝐼𝐼) 1 

DE 

Lower bound of scaling factor (𝛽𝛽𝑚𝑚𝑖𝑖𝑛𝑛) 0.2 

Upper bound of scaling factor (𝛽𝛽𝑚𝑚𝑙𝑙𝑚𝑚) 0.8 

Crossover probability (𝑃𝑃𝑙𝑙) 0.2 

GA 

Crossover probability (𝑃𝑃𝑙𝑙) 0.7 

Extra range factor for crossover (𝛾𝛾)  0.4 

Mutation probability (𝑃𝑃𝑚𝑚) 0.3 

Mutation rate (𝑚𝑚𝑡𝑡) 0.1 

HS 

Harmony memory consideration rate (𝐻𝐻𝐻𝐻𝐻𝐻𝐼𝐼) 0.9 

Pitch adjustment rate (𝑃𝑃𝐴𝐴𝐼𝐼) 0.1 

Fret width (bandwidth) (𝐹𝐹𝐹𝐹) 0.02*(𝑉𝑉𝑚𝑚𝑙𝑙𝑚𝑚−𝑉𝑉𝑚𝑚𝑖𝑖𝑛𝑛) 

Fret width damp ratio (𝐹𝐹𝐹𝐹𝑜𝑜𝑙𝑙𝑚𝑚𝑑𝑑) 0.995 

PSO 

Inertia weight (𝐹𝐹) 1 

Inertia weight damping ratio (𝐹𝐹𝑜𝑜𝑙𝑙𝑚𝑚𝑑𝑑) 0.99 

Personal learning coefficient (𝐼𝐼1) 1.5 

Global learning coefficient (𝐼𝐼2) 2.0 

ACO 
Intensification factor (selection pressure) (𝑞𝑞) 0.5 

Deviation-distance ratio (ζ - zeta) 1 

A3 
Covalent rate (β) 0.6 

Ionic rate (α) 0.4 

Improved A3 Covalent rate (β) 0.6 

Ionic rate (α) 0.4 

 

As seen in Table 5, benchmark problems were used to compare the Improved A3 with BCO, DE, 
GA, HS, PSO, ACO and A3. In addition, in Table 5, the Improved A3 and the other meta-heuristic 
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methods were presented comparatively in terms of mean cost, best cost and average run-time when the 
algorithm ran 20 times. 

 

Table 5. The comparative results of various heuristic methods with the Improved A3 

Algorithm 

Max 
Iter=1000 

Population=10 

Variable=10 

Sphere 
Rotated 
Hyper- 

Ellipsoid 

Parallel 
Hyper-

Ellipsoid 

Rastrigin 
(Rotated 

R.) 
Griewank Quartic 

BCO 

Mean Cost 0.1005 185.214 0.3882 39.5201 1.3720 0.0785 

Best Cost 5.921e-02 90.6409 2.417e-01 25.626 1.1154 4.176e-02 

Run Time (s) 0.5206 0.5193 0.4997 0.5166 0.5084 0.4933 

DE 

Mean Cost 2.759e-07 6.247e-04 9.530e-04 1.3393 0.0183 0.0071 

Best Cost 7.232e-22 2.725e-16 4.450e-31 9.977e-01 1.370e-03 3.181e-03 

Run Time (s) 0.2661 0.2735 0.2763 0.2756 0.2600 0.2857 

GA 

Mean Cost 6.409e-05 0.2205 7.230e-04 0.0247 0.1105 0.0122 

Best Cost 5.305e-05 2.050e-2 8.699e-05 1.667e-02 8.944e-02 3.675e-03 

Run Time (s) 0.4736 0.5076 0.4544 0.5006 0.4952 0.5083 

HS 

Mean Cost 1.375e-07 2.781e-04 6.371e-07 0.0755 0.0604 0.0189 

Best Cost 9.563e-08 1.326e-04 4.871e-07 1.553e-05 4.689e-02 6.411e-03 

Run Time (s) 0.4779 0.4724 0.4794 0.4656 0.4884 0.4614 

PSO 

Mean Cost 3.488e-09 9.892e-07 1.809e-09 16.2178 0.1318 0.0084 

Best Cost 2.313e-14 3.924e-13 2.844e-11 7.9597 2.701e-02 2.327e-03 

Run Time (s) 0.2925 0.2919 0.2762 0.2926 0.2749 0.2557 

ACO 

Mean Cost 1.735e-43 3.281e-40 1.194e-41 16.3966 0.2978 0.0078 

Best Cost 4.194e-44 7.173e-41 2.300e-44 6.0006 5.974e-02 2.385e-03 

Run Time (s) 0.4687 0.4051 0.3943 0.4207 0.4199 0.4827 

A3 

Mean Cost 4.570e-04 0.3677 0.0028 0.0655 0.9393 3.763e-10 

Best Cost 1.429e-04 1.5361e-
04 

1.2899e-
03 1.870e-03 7.532e-03 1.427e-12 

Run Time (s) 0.0131 0.0130 0.0130 0.0154 0.0193 0.0132 
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Improved 
A3 

Mean Cost 8.488e-
295 

2.7445e-
38 

2.178e-
272 0.0 0.0129 0.0 

Best Cost 9.561e-
314 

4.5743e-
47 0.0 0.0 0.0 0.0 

Run Time (s) 0.3128 0.3152 0.3196 0.3747 0.3213 0.3213 

Table 5. Continue 

Table 5. reveals that the Improved A3 is the most successful method, reaching the optimum cost 
for the problems other than Sphere and Rotated Hyper-Ellipsoid, and obtaining the best results compared 
to the other seven meta-heuristic methods. In addition, it is seen that the proposed method reached the 
optimum results for most benchmark problems in reasonable time. Furthermore, it is observed that the 
Improved A3 is only slower than PSO, DE and the first version of A3, in terms of run-time, and faster 
than other methods compared. This small loss in terms of run-time provided a great advantage in terms 
of cost. The results reveal that the Improved A3 is a very useful method for the optimization test 
functions. 

In addition to previous comparisons, Table 6 compares the success of Improved A3 in test 
functions with a recent study in the literature. For this purpose, 7 test functions that are widely used and 
applicable to the Improved A3 method have been determined. Accordingly, the results obtained for the 
Improved A3 and the variants of Krill Held algorithm based on Van der Corput sequence (VcKH), Faure 
sequence (FaKH), and Sobol sequence (ScKH) are given in Table 6 comparatively. For this study, the 
number of parameters was determined as 10 or 30 (10 for Michalewicz, 30 for others), the population 
size was 50, and the maximum number of iterations was 300 [32]. 

 

Table 6. Comparative results of the Improved A3 method with the variants of the Krill Herd 
Algorithm 

Function 

 

KH VcKH FaKH ScKH Improved A3 

Best Mean Best  Mean Best  Mean Best  Mean Best  Mean 

Sphere  1.74E-
02 

2.55E-
02 

1.56E-
02 

2.34E-
02 

1.31E-
02 

2.48E-
02 

1.63E-
02 

2.66E-
02 

4.2448
E-14 

4.1396
E-12 

Rastrigin 5.97E
+00 

1.24E
+01 

3.46E-
04 

7.39E-
04 

3.16E-
06 

2.16E-
05 

3.52E-
04 

9.76E-
04 

0.0 0.0 

Griewank 4.51E-
02 

8.21E-
02 

2.52E-
02 

6.00E-
02 

4.00E-
02 

5.89E-
02 

4.91E-
02 

8.52E-
02 

1.0436
E-14 

1.05E-
02 

Quartic 3.59E-
02 

8.49E-
02 

2.10E-
03 

9.14E-
03 

2.02E-
03 

1.46E-
02 

3.73E-
04 

1.79E-
02 

0.0 0.0 

Rosenbrock 2.12E
+01 

7.49E
+01 

5.30E-
05 

1.53E-
04 

6.07E
+00 

1.19E
+01 

2.61E
+01 

3.07E
+01 

1.97E-
01 

3.05E-
01 

Schwefel -
7.74E
+03 

-
5.48E
+03 

-
1.26E
+04 

-
1.26E
+04 

-
1.26E
+04 

-
1.26E
+04 

-
7.30E
+03 

-
5.21E
+03 

-
8.22E-
01 

-
3.21E-
02 

Michalewicz -
2.41E
+01 

-
2.12E
+01 

-
2.41E
+01 

-
2.02E
+01 

-
2.36E
+01 

-
2.08E
+01 

-
2.40E
+01 

-
2.07E
+01 

-
1.09E
+00 

-
3.04E
+00 
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The results in Table 6 show that the VcKH method achieves better results for the Rosenbrock test 
function. In contrast, Table 6 reveals that the Improved A3 method is the most successful method in 
terms of the best and average results for the other 6 test functions. In addition, the fact that it reaches the 
global optimum value for Rastrigin and Quartic test functions even in a small iteration, such as 300 
iterations, shows the superiority of the Improved A3 method. Furthermore, the Improved A3 method has 
approached the global optimum for Sphere and Griewank test functions compared to other methods. 

In Table 7, the Improved A3 method is presented in comparison with four methods based on the 
Modified Levy Flight Distribution Algorithm (LFD) [33]. The Improved A3 method was tested with the 
same parameter values using 7 test functions preferred in the relevant study in the literature. In this 
study, the number of parameters was determined as 30, the population size was 50, and the maximum 
number of iterations was 1000. The results were compared in terms of best and mean values [33]. 

 

Table 7. Comparative results of the Improved A3 method with the variants of the Modified 
Levy Flight Distribution Algorithm 

Function 

 

Basic LFD LFDNM-S1 LFDNM-S2 LFDNM-S3 Improved A3 

Best Mean Best  Mean Best  Mean Best  Mean Best  Mean 

Sphere  8.0419
E−08 

1.5220
E−07 

1.9756
E−08 

3.6282
E−08 

1.5254
E−09 

1.1919
E−08 

1.7217
E−44 

1.4697
E−42 

1.0325
E-50 

4.3990
E-48 

Schwefel 
2.22 

1.8925
E−04  

3.0625
E−04 

9.9580
E−05 

1.3472
E−04 

2.2527
E−05 

3.7902
E−05 

4.7253
E−29 

2.0705
E−27 

3.3940
E-85 

6.6181
E-84 

Rosenbrock 27.751
7 

27.897
7 

26.565
3 

27.093
9 

23.462
9 

23.661
2 

0.2515 0.4302 0.1852 0.3365 

Step 0.5739 1.1480 0.1592 0.5076 6.8912
E−07 

2.3949
E−06 

5.6266
E−08 

1.7721
E−07 

4.0394
E-05 

7.8422
E-05 

Schwefel 
2.26 

−4.82
4E+03 

−4.396
0E+03 

−8.341
3E+03 

−7.814
8E+03 

−8.900
3E+03 

−7.608
9E+03 

−9.801
3E+03 

−8.217
1E+03 

−7.541
E+03 

−7.541
E+03 

Rastrigin 1.5259
E−05 

2.8745 2.9721
E−06 

0.4463 2.0053
E−06 

0.0665 1.2108
E−11 

2.2578
E−11 

0.0 0.0 

Griewank 1.8918
E−07 

3.7917
E−07 

4.3454
E−08 

1.0317
E−07 

1.4857
E−08 

4.5251
E−08 

4.1078
E−14 

5.8538
E−14 

9.9920
E-16 

2.2204
E-17 

 

Table 7 shows that the Improved A3 method has reached the global optimum value for Rastrigin 
function. In addition, the Improved A3 method obtained better results than the other compared methods 
for Sphere, Schwefel 2.22, Rosenbrock, Rastrigin and Griewank functions in terms of best and mean 
values. Only for Step and Schwefel 2.26 functions, LDF variants seem to get better results than 
Improved A3. Among these, it was seen that the results of LDF variants and Improved A3 for Schwefel 
2.26 function were quite close.  

In addition to these comparisons, in the study of Bingöl and Yıldırım (2021) using the Salp Swarm 
Algorithm, it is seen that although they used the low parameter number (number of parameter was 
determined as 2), they could not obtain better results than the Improved A3 method with 30 parameters 
[34]. 
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5. Conclusions  

A3 is an intuitive algorithm that contributes to the solution of optimization problems [15,25]. With 
the ionic bond function of A3, a part of the atom set is renewed using the large data set in the search 
space. This case may lead to a deviation from the solution. In this article, it is aimed that overcomes this 
problem. For this reason, the ionic bond operator of A3 has been improved by benefiting an operator of 
Shuffled Frog Leaping Algorithm.  

When the ionic bond operator of A3 was improved, it was inspired by the operator, which was 
used to add a new frog into the memeplex in the Shuffled Frog Leaping Algorithm. Thus, the ionic bond 
operator was carried out by narrowing the search space between the best and worst results in atom set. 
Consequently, it was expected to provide a better optimization with Improved A3. 

The proposed method was first tested comparatively on 6 benchmark problems. It was compared 
to the 7 different meta-heuristic algorithm. For all these problems, Improved A3 produced more 
successful results than A3 and the other heuristics. Furthermore, Improved A3 achieved the optimum 
results for these 6 problems except Rotated Hyper-Ellipsoid. In addition, it was seen to be advantageous 
in terms of the number of iterations over A3 and many other meta-heuristic algorithms [25]. The 
improved A3 method is the only algorithm that reaches best result for the most test functions in the 
number of iterations determined among the compared algorithms. In terms of run-time, it is faster than 
all comparable methods except for DE, PSO and the first version of A3. Considering the performance-
runtime balance, Improved A3 is clearly superior to all other methods. In addition to these applications, 
two comparison were made with the variants of the Krill Held Algorithm [32] and Levy Flight 
Distribution Algorithm [33] in recent studies in the literature for 7 selected test functions. In the first of 
these comparison, the Improved A3 method achieved the best results for all test functions except the 
Rosenbrock function. It has also proven to be far superior to all of the Kh, VcKH, FaKH and ScKH 
methods, reaching the global best for the Rastrigin and Quartic methods. In the second of these 
comparison, the Improved A3 method achieved the best results for all test functions except the Step and 
Schwefel 2.22 test functions. In addition, the proposed method has achieved great success by achieving 
the global best result for the Rastrigin function. The comparison results clearly show the superiority of 
the Improved A3 method, both according to the current studies in the literature and according to the 
results obtained with the 7 most known meta-heuristic algorithms. 

With the improvement in A3, the successful position of the algorithm among meta-heuristic 
algorithms is further strengthened. In future studies, it is possible to solve engineering design problems 
or discrete problems using Improved A3 and evaluate whether the algorithm is also successful for these 
problems. 
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