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ABSTRACT

In this study, frames including both the shear and the wide support effect were examined analytically,
numerically and experimentally. Stiffness method was used for analytical solution and finite element method
was used for numerical solution. Explicit expressions for the stiffness matrix that includes both the shear effect
and the wide support effect are presented. A model frame was tested experimentally, and a maximum deflection
result was obtained. The same frame was modeled and solved with the finite element method and with the
proposed method. The results of three methods were compared. The proposed method was verified successfully.
The proposed method, which includes both the shear and wide support effects, produced results that were shown
to be closer to the experimental results and the results than were the results of the other models that were
investigated.
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KAYMA VE GENIS MESNET ETKISINDEKI CUBUKLARIN
GELISTIRILMIS RIJITLIK MATRISLERiI ICIN ANALITIK VE
DENEYSEL BiR YAKLASIM

OZET

Bu ¢aligmada, ayn1 anda hem kayma ve hem genis mesnet etkisindeki cerceveler analitik, niimerik ve deneysel
olarak incelenmistir. Analitik ¢6zlim i¢in matris deplasman yontemi, sayisal ¢oziim i¢in sonlu elemanlar yontemi
kullanilmistir. Hem kayma etkisi hem de genis mesnet etkisini igeren rijitlik matrisi i¢in agik denklemler ortaya
konmustur. Bunun i¢in bir model ger¢eve deneysel olarak test edildi ve maksimum ¢okme degeri elde edildi.
Ayni gergeve sonlu elemanlar yontemi ile modellenerek ve ayrica dnerilen yontem ile de ¢oziildii. Ug yontemin
sonuglar1 karsilastirildi. Onerilen yontem basariyla dogrulandi. Hem kayma hem de genis destek etkilerini ieren
Onerilen yontem sonuglarinin, deneysel sonuglara ve sonlu elemanlar yontemi sonuglarina daha yakin oldugu
gorillmiistiir.

Anahtar Kelimeler: Kayma etkisi, genis destek etkisi, rijit u¢ bolge, rijitlik matrisi, sonlu elemanlar
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1. Introduction

Many studies analyze frames with the matrix method [1-12]. After the use of computers
become common, matrix methods became more popular. The addition of the shear effect to the matrix
method is also very common and is well established [7,12]. Despite its large effect, the wide support
effect is generally neglected. In the solution of bar elements, the bar length is considered to be the
length between nodes. This length does not represent the bar length exactly in frames. The intersection
of the column and the beam is different from both the column and the beam. This part is called the
wide support or the rigid end zone. In frames, the bar length does not start from the node points. A bar
length started from the node points causes inaccuracy in the results. Increasing the bar height increases
the common component, and this causes unacceptable errors in the results.

In the stiffness method main problem is to obtain stiffness matrix. After the construction of the
stiffness matrix the problem is solved systematically. In previous studies only one effect is handled in
the stiffness matrix. In this study, the stiffness matrix including both the shear and wide support effects
was developed and explicit formulations for stiffness members are given. By using this formulation, it
is possible to obtain stiffness matrix for normal solution, shear effect, wide support effect and their
combinations (bare solution, only shear effect, only wide support effect and both shear and wide
support effects). The results obtained from proposed method were also verified experimentally. For
this purpose, a frame was solved for with the proposed method. For experimental verification, the
same frame was tested, and the maximum deflection value was obtained. A finite element method
(FEM) model for this frame was created. The results of three methods are compared. Two different
frames were solved for with the proposed methods, and the results are compared with the FEM results.
The results of the proposed method were consistent with the FEM results. In the case of the cantilever
beam, where only the shear effect is present, the proposed method also has been proven theoretically.
In the frame example, the results of the proposed method and FEM results and experimental results
were consistent.

2. Theoretical

2.1. Shear effect in uniform members

The stiffness matrix in local coordinates for plane frame members can be expressed as follows:
D ¢, -D C(,

l

C A4 -C B

k=) ) -¢, D - M

c, B C, 4

where A;, A; and B are stiffness members and are defined as

EI EI EI
Ai:aiT, Aj:ajT’ B:bUT (2)

The other stiffness matrix members are defined as follows:

A +B c :Aj+B D:Ci+cj.

. 3
' L / L L @)
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For uniform cross-section members without shear effect, the stiffness coefficients are a=a=4
and bij=2 [5,7].

The shear effect is neglected in most mechanical problems because of its small value.
Generally, the decision to neglect the shear effect is made according to the length / height ratio (L/h)
of the members. Shear effect increases with increases in the height and decreases in the L/h ratio. The
shear effect should be considered if the L/h ratio is less than 10 [7,13].

9 '— AIL . " ‘AiL2 "__ Cjil‘2 . "__ CiL3 vCiL 9’4 -
> DY) 4 2E1T Y 3EI AG || d,=0
+ —
(a) (b) (c)

Figure 1. Consideration of the shear effect [7].

To include the shear effect in the stiffness members, moment A; and vertical force C; are applied
to the beam in Fig. 1. The coefficients of the moments that cause unit rotation in node i produce the A;
and Bj stiffness coefficients. 84 ' and 04 " represent the absolute value of rotation, and da' and da"
represent the absolute value of displacement caused by the A; moment and the C; vertical force applied
to node i and 04 and da represent rotation and deflection at point A respectively. Considering unit
rotation at node i,

0,-0,"=1 @)
from which
AL CI’
Ak -1 (5)
EI  2EI
Considering zero rotation,
_dAl+dAl':0 (6)
from which
-4L CL CL
— 4+ (—+k'—)=0. (7)

2EI 3E] AG

From the equilibrium between nodes i and j, C; can be calculated as
4, + B,
i L :

(8)
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By solving equations 5 and 7,

El
A4, =4—2, 9
Al ©)

B, = 2%/1” (10)

are obtained. Because of symmetricity, Ai=A;. The correction factors for the shear effect in the
stiffness matrix are

A =2, =0.75¢+0.25 (11)
A; =1.5¢-0.5 (12)
where
1 1 1 (13)
S = = =
(14 12k'El 2k'(1+p)
1+ 24k I iz 1! +T
) (%)

For a rectangular shape, k' is the shape factor (and is equal to 1.2) and p is the Poisson ratio.
Consequently, we obtain

1
&= —2.76 . (14)
1+

L,
(;)

By using the A; and A; coefficients, the shear effect is included in the stiffness matrix [7].

1,10 -
1,00 -
0,90 -
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Figure 2. A, A and € values as a function of the L/h ratio for p=0.3 and k'=1.2[7
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The values of the correction factors A;, A; and € as a function of the L/h ratio for u=0.3 and
k'=1.2 are plotted in Fig. 2. As can be seen in Fig. 2, the values of A, A; and € approach 1 as the L/h
ratio increases to 10.

2.2. Wide Support Condition

The wide support effect has a greater effect than the shear effect in most conditions. On the
contrary, however, in most studies the shear effect is considered while the wide support effect is
neglected. In classical beam theory when a frame member is solved in one dimension, such as is done
for a bar element, the member length is selected between two nodes. In fact, the intersection of the
column and beam is different from the column and the beam. This segment cannot be considered in
the beam or the column length. To consider the intersection of the column and the beam as part of the
column or as part of the beam introduces a large error into the solution. The size of this common
segment grows as the member height increases, and this increases the error in the result. This segment
that must be treated differently from the beam and the column is called the wide support or the rigid
end zone. For a wide support, the stiffness matrix and the fixed end forces change and have to be
regenerated. Tezcan solved this problem with rigid rotation of this part[7].

Figure 3. Wide support in a frame.

As seen in Fig. 3, first, the common segment in the beam-column is assumed to be totally rigid.
By adding additional deformation caused by rigid rotation of this block, the stiffness members for the
wide support condition are calculated. e; and e, represent the half-length of nodes i and j, respectively.
The {d'} deformation on the nodes of the free beam length (i'-j') can be written with the help of the {d}
deformation on nodes of theoretical length [7],

@y =[rlid}. (15)

By means of rigid rotation of the column-beam intersection segment, the deformation relations
between the real length and the theoretical length of the beam can be derived.
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Figure 4. Deformation relation in wide support members[7].

[T] = transformation matrix for displacement

e1= support half length at node i

e;= support half length at node j

From Fig. 4, the relation between d and d' can be written as

d'=d +ed,

d,'=d, (16)
d'=d, —ed,

d,'=d,

In matrix form,

d,’
d,'
{a}= (17)

d,'
d,’

[%)

(19)

_ez

S O o =
S O =

dl
d2

{d}= J (18)
d,
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1 ¢ 0 07(d
01 0 0 ||d,

{a}= (20)
0 0 1 —elld,
0 0 0 1 d

N

When the transformation matrix [T] and the stiffness matrix [k '] as a function of the free length

of the beam are known, the stiffness matrix as a function of the theoretical nodes [k] can be calculated
as follows:

[e]=[r] [k 7] 21

Because the common deformations of the system are on nodes i and j, the stiffness matrix used
to find the system stiffness matrix is [k]. The stiffness matrix [k'] of the free length between i' and j'
can be written as follows:

D ¢ -D C
c' 4' -C' B

k)=

22
-D = C[v D' _ Cj' ( )
¢' B -C' 4
where Ly is the free length of the member or the beam and
EI EI EI
A'=a,—~, A'=a,— , B'=b,— (23)
L, "L L,
and
A'+B' A,'+B' c'+C'
Ci T , ; — J , D': J (24)
L, Ly L,
From equation (21), the stiffness matrix transformed to theoretical nodes is
D' e, D'+C,;' -D' e,D'+C;'
] C,'ve,D' e 'D'+2¢,C;'+4,'  —¢'D-C,' B+eC,'+e,C, '+ee,D' s
| =D —e,D'-C,' D' —e,D'-C;’ )

' ' ' ' ' ' ' ' ' 2y
C,'te,D" B'+eC;'te,C, +ee,D' —e,D'-C, A,'+2e,C,'+e,” D

The [k] stiffness matrix then becomes
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12E1 6EI(2e, + L) 12EI 6EI(2e, + L)
L I o I
6EI(2e, + L) 4EI(3e,’3e,L + I*) _6EI(2¢, +L) 2EI(6e.e, +3(e, +e,)L +L*)
[k]= L r L r
12E1 6EI(2e, + L) 12E1 6EI(2e, + L)
L L L S
6EI(2e, + L) 2El(6ee, +3(e, +e,)L+L")  6EI(2e, +L) 4EI(3e,” +3e,L + L")
L I - I

Rigid rotation of the common segment affects the fixed end forces in the wide support
condition. The relation between the forces is seen in Fig. 5 and is derived as

P =D
D,'=p,—ep,
DPy'=D;s

Py'= Pyt e,p;
P =p

P, = D,'tep,
Py =ps'

Py =Dy'—€,D;

{f}

and

p}

Figure 5. Force relations for the wide support condition[7].

@7

(28)

The fixed end forces and the node forces on the free length i'-j' nodes are transformed to
theoretical length i-j nodes by using the following equations [7]:

= [117{f)
=[r]" ).
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2.3. Shear effect on wide support conditions

In the previous sections, the shear effect and the wide support effect are investigated
individually. When the height of the member increases, both the wide support and the shear effects
increase. Therefore, both effects must be considered simultancously. A stiffness matrix needs to be
developed to consider both effects.

The stiffness members for the shear effect in uniform cross-section members are

A4 =4ﬂ/1i

L

EI
Aj :471‘/.

(31)
B,.j :2%2@.
A +B A]-+B Ci+Cj

C‘: : ) = - ) =
! L / L L

Taking both the shear and wide support effects of equation (31) into account, the free length Lo
is used to obtain the stiffness matrix. Therefore, the stiffness members are obtained as follows:

Ai'=42/1i
0
. EI
4, :4—/1j
0
. EI (32)
B, :2—%
0
A'+B' A.'+B' c'+C;'
Ci': z+ ,CA': J an ID': i J
LO ’ 0 0

The stiffness matrix [k'] for the free length is given in equation (22), and the transformation

matrix [T] for displacement in the wide support condition is given in equation (19). The stiffness
matrix for theoretical nodes [k] is given in equation (21) and is [k]=[T]" [k'] [T]. The products of the
right-hand side are re-written as follows:

D' C,'+ve,D' -D' C,'ve,D'
] C'te D' A'+2¢C/'+e’D'  —C/'-eD' B'+e,C,'+e,C, 'tee,D' “
| -D ~C,'-e,D' D' ~C,'-e,D' 33)

' ' ' ' ' ' ! ' ' ' 2y
C,'+te,D' B'+eC,'te,C,'tee, D" —C,;'-e,D A,'+2e,C,'+e,” D

This stiffness matrix includes both the shear and wide support effects for uniform cross-section
members. The stiffness members are generally shown by kj, where i and j represent the row and the
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column number, respectively. The stiffness members for both the shear and wide support effects are
given in Table 1.

Table 1. Stiffness members for both the shear and wide support effects

AEI(A, + A, +4)) 2EI(LQA, +A,)2e, + (A4, + A, + 1))
kll — 3 v J klz — y . v J
L L
_ 4EI(A, + A, + A;) P = 2EI(2e, (A, + A, + A,)+ L(4; +24,))
13 L3 14 L3
4EI((e, + (LA, +e (A +A4) e A ) 2EILQA +4;)+2e(L + 4 + 1))
n = 3 237 3
L L

2EI(2e,LA; + L(e, + L)A,; +e,(2e,(4, + A, + A,) + L(4; +24,)))
kyy =— - E i _ _
_AEI(A + A+ )

2EI(2e, (A4, + A, + A4,)+ L(4, +24)))

33 T L3 34 L3
_ 2E[(2€2 (ﬂ’, + 2’;‘; + 2’_1‘ )+ L(/I,, + 22/) 4EI(€2 (Lﬂl] +e, (/11 + ﬂy )+ (62 + L)2 ﬂj
43 = JE 44 = IE
koi=ki2 | ksi=ki3 | ka=kos | kai=ki4 | kar=Kko4

3. Experimental

To verify the results provided by the proposed method and by FEM and to observe the exact
behavior of the models, experimental test was carried out. An experimental model frame was produced
from S220 steel. Specimens were produced from used material, and the modulus of elasticity was
determined. The modulus of elasticity (E) for model 1 was calculated, with the help of the tensile test,
to be 202,016.99 MPa. The Poisson ratio was taken as 0.3.

The experimental model was fabricated to give measurable results and to have a wide support
effect (Fig. 6). A dial gauge was used to observe movement and rotation on the support. The loads
were selected as the maximum of the elastic limit and the buckling load. The tests were repeated 10
times for model 1 and the averages of the results were used.

P=400kef
_,/., .\A\ Y _
\ \
; B 9.7 cm
\ .,' -
99.5 cm Tt
—S hy
€2
y
i
i
A !
e
9.8 cm h; TR
| E ; | 795 cm Ay
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Figure 6. Model 1 with concentrated loading (left), e; and e, on a wide support (middle) and the mesh
system in the FEM model (right).

4. Finite Element Modeling

In this study, a 2-D, eight-node element PLANES&2, which provides more accurate results and
can tolerate irregular shapes, is used. The PLANES2 geometry and stress output are shown in Figs. 7
and 8.

L
©)
K KLO
? @
oF axial) @
L’- | " '
X o radial} Tri Option
J
@
Figure 7. PLANES2 geometry (2-D, eight-node structural solid)[14].
L o] ¥
P
Y M
{or axial)
t—' o radialy M J

Figure 8. PLANES2 stress output[14].

PLANES2 is a higher-order version of the 2-D, four-node element PLANE42. The eight-node
elements have compatible displacement shapes and are well suited to model curved boundaries. The
eight-node element is defined by eight nodes having two degrees of freedom at each node: translations
in the nodal x and y directions. The element may be used as a plane element or as an axisymmetric
element. The element has plasticity, creep, swelling, stress stiffening, large deflection and large strain
capabilities [14].

5. Results
5.1. Analytical method verification

A simple beam is solved by proposed method and accuracy of method is checked.
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Q=10t/m
E=100.000 kg/m2 y
A B h v=0.2
X
L=5m
Figure 9. Uniform cantilever member
Table 2. Comparison of proposed method and FEM solution.
K Deflection at B (mm)
& FEM-BAR | BAR-BAR+S | FEM-BAR+S
g
i et B A=Y BAR BARYS | (%) (%) %)
1 0.5 5 10 -755.09 -750 -757.12 0.67 0.95 0.27
2 5 5 -97.10 -93.75 -97.30 3.45 3.79 0.2
3 2 5 2,5 -13.51 -11.72 -13.49 13.26 15.1 0.16
4 5 1,7 -4.67 -3.47 -4.66 25.75 34.29 0.29
2
Deflection at B, for example 2 in Table 2, is y5 = :—; , with shear effect deflection is yp =
2 2
‘g—; + k%. And it is calculated as yg = 93,75 + 3,549 = 97,299 mm. The proposed method gives

nearly same result of bar solution as ygz = 93,75 4+ 3,55 = 97,30 mm. So that proposed method is
verified. Bar solution and FEM solution give nearly same result if shear effect is considered in bar
solution. Even in example 4 where L/h is very small as 1.7, BAR solution give good result if shear
effect is considered.

Q
R

) 2
A ________________________B-
i H2
- i B=1m
- i Q=10 t/m
: E=100.000kg/m2
i v=0.2
A
777
4—Fr1—>

Figure 10. Frame with uniform members.
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Table 3. Shear effect in frame with different L/h value.

Example | Element dimensions(m) Deflection at B (mm) Difference (%)
FEM- FEM-
H1 | H2 | L1 | L2 | L/h BAR BAR+S FEM BAR BAR+S
1 02|02 |55 ]| 55 (27.5] -79726.1 | -79749.2 | -78678 1.33 1.36
2 05105 (55|55 11 -4563.7 -4571.03 -4451 2.53 2.7
3 1 1 55| 55|55 -471.25 -474.8 -445.08 5.88 6.68
4 1.5 15|55 55 (3.67| -114.63 -116.77 | -105.29 8.87 10.9
5 2 2 55| 55 (275 -39.46 -40.89 -35.031 12.64 16.73

In contrast to examples of Table 2, in frames as seen in table 3 addition of shear effect deviate
BAR results from FEM results. In example 5 differences in between FEM and BAR results is 12.64%
without shear effect in bar solution. But addition of shear effect increase difference to 16.73%.
Therefore, in frames wide support effect should be considered to eliminate this difference.

5.2. Experimental Results

The experimental deflection of point B (EXP) of Model 1, shown in Fig. 6, is given in Table 4
and compared with the deflection of point B obtained with the normal bar solution (BAR), the bar
solution including only the shear effect (BAR+S), the bar solution including only the wide support
effect (BAR+W), the bar solution including both the shear and wide support effects (BAR+S+W) and
the finite element method (FEM) solution.

It can be seen from Table 4 that the experimental result is within 1% of the proposed method
solution (BAR+S+W), which includes both the shear and wide support effects.

Table 4. Experimental result of Model 1 and comparison to FEM and the proposed method

results.
Column no 1 2 3 4 5 6
TEST 1 BAR BAR+S | BARtW | BARTS+W | FEM EXPERIMENT
(E=202016.99MPa) (e=h2) | (e=h2)
?rjg‘;cuon at B 164900 | 165347 | 15.1790 | 152178 15.3290 | 15.3010
Ratio 0| 1078 1.081 | 0.992 0.995 1.002 1.000
experimental result

Table 5. Comparison of bar solution to other results (%).

Column no /|, 12 13 1/4 1/5 1/6
column no

Compared to

BAR. % 0 0.27 7.96 7.72 7.04 7.21

ADYU Miihendislik Bilimleri Dergisi 10 (2019) 32-46



45 Y. AYAZ, A. BUDAK

Table 6. Comparison of experiment results to other results (%).

Column mo /| o, 6/2 6/3 6/4 6/5 6/6
column no

Compared  to

EXPERIMENT, | 7.78 8.06 0.78 0.54 0.18 0
%

As seen in Table 4 and Table 6 for this example; FEM, experimental and the proposed method
(BAR+S+W) results are nearly same. The proposed method gives good result.

Shear has 0.27% effect and wide support effect has 7.96% effect in theoretical solution. Wide
support effect is bigger than shear effect (Table 5).

It is known that to get more accurate result shear effect should be considered. But as seen in
Table 4 and Table 6 shear effect has adverse effect in frames if frame members are solved as bar.
Without shear effect BAR result is 7.78% different than EXPERIMENT result. Adding shear effect
increase difference to 8.06%.

When the results given in the tables are examined, it can be seen that the proposed method
results are closer to the FEM results than are the other methods.

6. Conclusions

Frame models were tested experimentally, and the proposed method, which includes both the
shear and wide support effects, was verified successfully. The wide support was observed to have a
more substantial effect than the shear effect. Addition of shear effect is known to lead a more accurate
solution. In contrast to frames, this result is correct if only one member is handled. Results of FEM
solution and bar solution with shear effect overlapped for one member structures such as cantilever
beam. In frames, the model results are closer to the FEM and experimental results when the shear
effect is neglected. The shear effect caused the model results to deviate from the experimental and
FEM results. The results of the proposed method, in which both the shear and wide support effects are
included, were shown to be closer to the experimental and FEM results than the other methods were.

In practice, the wide support rigid length e was observed to change from h/2 to h/4 in most
problems. Accordingly e can be selected between the h/2 and h/4 intervals.
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