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Abstract 

In this paper, we tackle a problem of the estimation of some risk measures for transmuted 

Weibull distribution. In this regard, the maximum likelihood method is used to estimate the risk 

measures.  We also obtain asymptotic confidence intervals based on the asymptotic distributions 

of maximum likelihood estimators of risk measures. Then, we consider a comprehensive Monte 

Carlo simulation study to assess the performances of these estimators at different sample sizes 

and parameter settings. 

Keywords: Risk measures; Transmuted Weibull distribution; Point estimation; Interval 

estimation. 

Dönüştürülmüş Weibull Dağılımı için Risk Ölçülerinin Tahmini 

Öz 

Bu çalışmada dönüştürülmüş Weibull dağılımı için bazı risk ölçülerinin tahmini problemini 

ele aldık. Bu bağlamda risk ölçülerini tahmin edebilmek için en çok olabilirlik yöntemi kullanıldı. 

Ayrıca risk ölçülerinin en çok olabilirlik tahmin edicilerinin asimptotik dağılımlarına dayalı 

yaklaşık güven aralıkları elde ettik. Sonrasında, bu tahmin edicilerin farklı örnek hacimleri ve 

parametre değerlerinde performanslarını değerlendirmek için geniş bir Monte Carlo benzetim 

çalışması tasarladık. 



Tanış (2021)  ADYU J SCI, 11(2), 362-369 
 

 363 
 

Anahtar Kelimeler: Risk ölçüleri; Dönüştürülmüş Weibull dağılımı; Nokta tahmini; Aralık 

tahmini. 

1. Introduction 

Transmuted Weibull distribution is suggested by [1] via quadratic transmutation map 

(QRTM). The QRTM is proposed by [2], and it is summarized by 

𝐹(𝑥) = 𝐺(𝑥)'1 + 𝜆+1 − 𝐺(𝑥)-.,               (1) 

where	𝜆 ∈ [−1,1],	𝐺(𝑥) refers the cumulative distribution function (CDF) of baseline 

distribution, and 𝐹(𝑥) denotes the CDF referring transmuted distribution which newly generated 

by the QTRM. Consider the baseline distribution Weibull distribution with CDF  𝐺(𝑥; 𝛼, 𝛽) =

1 − 𝑒𝑥𝑝 9−:!
"
;
#
< and the probability density function (PDF) 𝑔(𝑥; 𝛼, 𝛽) =

#
"
:!
"
;
#$%

𝑒𝑥𝑝 9− :!
"
;
#
<	then, the PDF and CDF of transmuted Weibull distribution are 

𝐹(𝑥; 𝛼, 𝛽, 𝜆) = >1 − 𝑒𝑥𝑝 9− :!
"
;
#
<? >1 + 𝜆 𝑒𝑥𝑝 9−:!

"
;
#
<?,           (2) 

and 

𝑓(𝑥; 𝛼, 𝛽, 𝜆) = #
"
:!
"
;
#$%

𝑒𝑥𝑝 9−:!
"
;
#
< >1 − 𝜆 + 2𝜆 𝑒𝑥𝑝 9− :!

"
;
#
<?,             (3) 

respectively, where 𝛽 > 0 is a scale parameter, 𝛼 > 0 shape parameter and 𝜆 ∈ [−1,1] [1]. In this 

study, the transmuted Weibull distribution is briefly denoted by 	𝑇𝑊(𝛼, 𝛽, 𝜆). The 𝑇𝑊(𝛼, 𝛽, 𝜆) 

distribution has a potential to model the data sets in many fields such as, agriculture, biology, 

economics, actuarial sciences. Aryal and Tsokos [1] described some characteristic properties such 

as moments, variance, quantile function, reliability function, hazard function, order statistics of 

𝑇𝑊(𝛼, 𝛽, 𝜆) distribution. They emphasized that the hazard function can be increasing, decreasing 

or constant for 𝑇𝑊(𝛼, 𝛽, 𝜆) distribution in [1]. In this case, it can be said that due to the flexible 

of the hazard function, the 𝑇𝑊(𝛼, 𝛽, 𝜆) distribution has the potential to model many datasets 

having different hazard functions. Khan et al. [3] examined some statistical properties such as 

geometric mean, harmonic mean, entropies, mean deviation, L-moments of 𝑇𝑊(𝛼, 𝛽, 𝜆) 

distribution. They also provided the log-transmuted Weibull regression model and its applications 

in [3]. For more details about 𝑇𝑊(𝛼, 𝛽, 𝜆) distribution please see [1, 3]. 

Recently, many actuaries and insurance practitioners have focused on the measurement of 

financial risk. The risk measures manifest themselves in many different types of insurance 

problems including the determination of capital, and the estimation of possible maximum losses 

[4].   Therefore, we focus on the estimation of risk measures for 𝑇𝑊(𝛼, 𝛽, 𝜆) distribution. 
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The main purpose of this paper to tackle the problem of point and interval estimation of 

risk measures for the 𝑇𝑊(𝛼, 𝛽, 𝜆) distribution. We estimate the risk measures such as value at 

risk (VaR), tail value at risk (TVaR), tail variance (TV), and tail variance Premium (TVP) for the 

𝑇𝑊(𝛼, 𝛽, 𝜆) distribution. The rest of this study is organized as follows: In Section 2, we describe 

the risk measures for the 𝑇𝑊(𝛼, 𝛽, 𝜆) distribution. Then, the maximum likelihood estimators 

(MLEs) of these risk measures and asymptotic confidence intervals based on MLEs are derived 

in Section 3. In Section 4, an extensive Monte Carlo simulation study designed to evaluate the 

performances of these estimators according to mean squares errors (MSEs) and bias. 

2. Risk Measures 

2.1. VaR measure 

The VaR is one of the popular risk measures, and it quantifies maximum loss for 

investments. It is also known quantile risk measure. The VaR is generally used by firms and 

regulators in the financial sector in order to determine the amount of assests required to cover 

potential losses. The VaR of a random variable 𝑋  is the qth quantile of its cdf, denoted by VaRq, 

and it is defined by  𝑉𝑎𝑅& = 𝑄(𝑞) [5-7]. 

Let 𝑋 be a random variable from 𝑇𝑊(𝛼, 𝛽, 𝜆)distribution. The VaR is defined as follows: 

𝑉𝑎𝑅& = 𝛽 L− 𝑙𝑜𝑔 O1 − '(%$)(%(')!$,'&
-' PQ

"
#
,             (4) 

where 𝑞 ∈ (0,1). 

  2.2. TVaR measure 

TVaR, also known as tail conditional expectation is important risk measure. It measures 

the expected value of the loss given that an event outside a given probability level has occurred 

[6, 8, 9]. The TVaR of 𝑇𝑊(𝛼, 𝛽, 𝜆) distribution is  

𝑇𝑉𝑎𝑅& =
1

1 − 𝑞
R 𝑥𝑓
%

./0$

(𝑥)	𝑑𝑥 

                       = %
%$&

𝛤 :1 + %
#
, :./0$

"
;
/
;,                                                                                    (5) 

where 𝛤(. , 𝑥) is incomplete gamma function, and 𝑉𝑎𝑅& is given in Eqn. (4). 
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 2.3. TV measure 

The TV is important risk measure suggested by [10]. The TV of 𝑇𝑊(𝛼, 𝛽, 𝜆) distribution 

is given by 

𝑇𝑉& 	𝑋 = 𝐸(	𝑋-	|	𝑋 > 𝑥&) − {𝑇𝑉𝑎𝑅&}- 

=
1

1 − 𝑞
R 𝑥-𝑓
%

./0$

(𝑥)	𝑑𝑥 − {𝑇𝑉𝑎𝑅&}- 

= "!

%$&
𝛤 :1 + -

#
, :./0$

"
;
/
;−{𝑇𝑉𝑎𝑅&}-	,	                                                                          (6) 

   where 𝑇𝑉𝑎𝑅& is given in Eqn. (5). 

  2.4. TVP measure 

The TVP is one of the significant measures of risk which play a crucial role in insurance 

sciences [9]. The TVP of 𝑇𝑊(𝛼, 𝛽, 𝜆)distribution is 

𝑇𝑉𝑃& = 𝑇𝑉𝑎𝑅& + 𝜃𝑇𝑉& ,                (7) 

where 0 < 𝜃 < 1,   𝑇𝑉𝑎𝑅& and 𝑇𝑉& are defined in Eqn. (5) and Eqn. (6), respectively. 

3. Estimation of Risk Measures 

3.1. Maximum Likelihood Estimation of risk measures 

In order to obtain the MLEs of examined risk measures, we first derive MLEs of 𝛼, 𝛽 and 

𝜆.  

Let 𝑋%, 𝑋-, . . . , 𝑋1 be a random sample from 𝑇𝑊(𝛼, 𝛽, 𝜆) distribution. Then log-likelihood 

function is given by [1, 2] 

ℓ(𝛹) = 𝑛 𝑙𝑜𝑔 :#
"
; − ∑ :!%

"
;1

23%
#
+ ∑ 𝑙𝑜𝑔 :!%

"
;1

23%
#$%

+ ∑ 𝑙𝑜𝑔
1∑5%$'(-' 6!78$&%'9

#
:

23%          (8) 

where 𝛹 = (𝛼, 𝛽, 𝜆).  The MLE of 𝛹 is given by 

�̀� = 𝑎𝑟𝑔𝑚𝑎𝑥
;

{ℓ(𝛹)}                (9) 

By using Eqns. (4)-(7) and invariant property of MLE, we can compute the MLEs of mentioned 

risk measures of VaR, TVaR, TV, and TVP by 
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𝑉c𝑎𝑅& = 𝛽d e− 𝑙𝑜𝑔 f1 −
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"
#(

,           (10) 

𝑇c𝑉𝑎𝑅& =
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#@
, :.
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j,            (11) 

𝑇c𝑉& =
"<!

%$&
𝛤 i1 + -

#@
, :.
</0$
"<
;
#@
j − k𝑇c𝑉𝑎𝑅&l

-,           (12) 

and 

𝑇c𝑉𝑃& = 𝑇c𝑉𝑎𝑅& + 𝜃𝑇c𝑉& ,              (13) 

respectively. 

3.2. Asymptotic confidence interval 

In this subsection, we provide the asymptotic variances and covariances of the MLEs 𝛼m, 𝛽d  

and 𝜆d by entries of the inverse of the observed Fisher information matrix is given by 

𝐼$%+�̀�- =

⎝

⎜⎜
⎛
− A!ℓ(;)

A#!
− A!ℓ(;)

A#A"
− A!ℓ(;)

A#A'

− A!ℓ(;)
A"A#

− A!ℓ(;)
A"!

− A!ℓ(;)
A"A'

− A!ℓ(;)
A'A#

− A!ℓ(;)
A'A"

− A!ℓ(;)
A'! ⎠

⎟⎟
⎞
.  

Now, we can obtain the variance of 𝑉𝑎𝑟+𝑅c- using delta method as 𝑉𝑎𝑟+𝑅c- = 𝛣B𝐼$%+�̀�-𝛣 

where 𝑅 denotes one of the risk measures (VaR, TVaR, TV, TVP), 𝑅cis the MLE of 𝑅 and 𝛣B =

:A0
A#
, A0
A"
, A0
A'
;. By using the MLEs of 𝛼, 𝛽 and 𝜆 𝑉𝑎𝑟+𝑅c-can be estimated. The asymptotic 

100(1 − 𝜂)% confidence interval of risk measures by 

i𝑅c − 𝑧%$)!
y𝑉𝑎𝑟+𝑅c-, 𝑅c − 𝑧%$)!

y𝑉𝑎𝑟+𝑅c-j  

where 𝑧C100 𝜂DE percentile of 𝑁(0,1).   

4. Simulation Study 

In this section, we design a comprehensive Monte Carlo simulation study to assess the 

performances of MLEs, of risk measures according to biases and MSEs. The simulation study is 

performed based on 5000 repetitions. We consider the sample size 25, 50, 100, 200, 500 and two 

parameter settings as follows:(𝛼 = 0.5, 𝛽 = 1.5, 𝜆 = 0.2), (𝛼 = 1, 𝛽 = 2, 𝜆 = 0.5). The results 

of simulation study are presented in Tables 1-2. Table 1 provides average of biases and MSEs of 
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risk measures such as VaR, TVaR, TV, and TVP. Also, Table 2 presents the average of lengths 

and coverage probabilities (CPs) of these risk measures. 

Table 1: Average biases and MSEs of risk measures 
      bias  MSE 

n 𝛼 𝛽 𝜆 Sig.level 𝜃 VaR TVaR TV TVP  VaR TVaR TV TVP 

25 

0.5 1.5 0.2 0.5 0.5 

-0.0629 -0.0096 -0.006 -0.012  0.0883 0.0018 0.0004 0.0026 

50 -0.0406 -0.0043 -0.0035 -0.0061  0.0433 0.0008 0.0001 0.0011 
100 -0.0195 -0.0006 -0.0021 -0.0017  0.0188 0.0003 0.00008 0.0005 

200 -0.0116 0.0005 -0.0019 -0.0004  0.0093 0.0002 0.00007 0.0003 
500 -0.006 0.001 -0.0013 0.0003  0.0037 0.0001 0.00004 0.0001 

25 

0.5 1.5 0.2 0.75 0.5 

-0.0463 -0.0405 0.0485 -0.0162  1.0149 0.0841 0.0505 0.0407 
50 0.0116 0.002 0.0004 0.003  0.4698 0.0368 0.0117 0.0234 

100 0.0089 0.0208 -0.0152 0.0132  0.231 0.0199 0.0047 0.014 
200 0.0218 0.028 -0.0201 0.018  0.119 0.0127 0.0029 0.0093 

500 0.0172 0.0249 -0.0201 0.014  0.0485 0.0069 0.0018 0.0054 

25 

1 2 0.5 0.4 0.6 

-0.03 -0.0151 -0.0013 -0.016  0.0574 0.0019 0.001 0.0034 

50 -0.0151 -0.0096 0.0022 -0.0082  0.0253 0.0008 0.0004 0.0014 
100 -0.006 -0.006 0.0029 -0.0042  0.0149 0.0004 0.0002 0.0007 

200 -0.0056 -0.0047 0.0027 -0.003  0.0075 0.0002 0.0001 0.0003 
500 -0.0049 -0.0029 0.0014 -0.002  0.0024 0.0001 0.0001 0.0001 

25 

1 2 0.5 0.8 0.6 

0.0448 -0.1257 0.7922 0.3495  0.7267 0.4067 3.8147 0.4188 
50 0.0327 -0.0684 0.501 0.2321  0.2071 0.2191 1.8846 0.2019 

100 0.0095 -0.0226 0.2892 0.1508  0.6506 0.1288 1.0662 0.1183 
200 0.01287 0.0029 0.1564 0.0967  0.0663 0.0841 0.7361 0.083 

500 -0.0022 0.0064 0.0941 0.0628  0.0196 0.0487 0.5343 0.0601 
 
Table 2: Average lengths and CPs of risk measures 

      length  CP 

n 𝛼 𝛽 𝜆 Sig.level 𝜃 VaR TVaR TV TVP  VaR TVaR TV TVP 

25 

0.5 1.5 0.2 0.5 0.5 

1.0773 0.1596 0.075 0.19  0.9138 0.923 0.84 0.9208 
50 0.7571 0.1129 0.0506 0.134  0.9316 0.9364 0.848 0.939 

100 0.5284 0.0804 0.036 0.0958  0.943 0.9428 0.8404 0.9424 
200 0.374 0.0596 0.0278 0.0716  0.9494 0.945 0.8436 0.944 

500 0.2387 0.0405 0.0204 0.0494  0.949 0.9304 0.8322 0.9264 

25 

0.5 1.5 0.2 0.75 0.5 

3.741 1.1613 0.8475 0.8683  0.8836 0.9104 0.8476 0.9192 

50 2.6325 0.8108 0.4831 0.6535  0.9074 0.926 0.865 0.9344 
100 1.8941 0.595 0.3286 0.4978  0.9292 0.9316 0.8786 0.9404 

200 1.3459 0.4449 0.242 0.3815  0.9356 0.9262 0.8838 0.933 
500 0.8693 0.3003 0.1645 0.2651  0.9452 0.9342 0.8932 0.9316 

25 
1 2 0.5 0.4 0.6 

0.7477 0.1629 0.1262 0.2025  0.9172 0.9494 0.8898 0.9352 
50 0.535 0.1113 0.0915 0.1362  0.9358 0.9582 0.9038 0.9454 

100 0.3797 0.0779 0.0687 0.0934  0.9394 0.9498 0.9094 0.9472 
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200 0.2704 0.057 0.053 0.0658  0.9438 0.9458 0.9142 0.953 

500 0.1716 0.0379 0.0374 0.0412  0.9496 0.9172 0.9126 0.9554 

25 

1 2 0.5 0.8 0.6 

1.928 2.7358 8.9104 2.8183  0.898 0.9482 0.9524 0.9646 

50 1.4025 2.0489 6.4002 1.9501  0.9094 0.9544 0.9558 0.9606 
100 1.0116 1.5629 4.8082 1.4423  0.9282 0.9498 0.9314 0.8688 

200 0.7256 1.2158 3.756 1.1273  0.9384 0.9286 0.881 0.7732 
500 0.4699 0.8916 2.8454 0.8698  0.9442 0.8804 0.8248 0.7528 

 
From Tables 1-2, It is seen that as the sample size increases, the MSEs and biases of risk 

measures decrease and approach zero. Also, we observed that the lengths decrease and CPs 

approach 0.95 as expected. In the case of high significance level (it is defined in Eqn. (4) as q), 

the MSEs and biases of the risk measures are larger than in other cases. 

5. Conclusion 

In this study, we provide some risk measures such as VaR, TVaR, TV, and TVP for 

𝑇𝑊(𝛼, 𝛽, 𝜆) distribution. We use the maximum likelihood method to estimate these risk 

measures. Then, we obtain MLEs of examined risk measures using the invariant property of MLE. 

Not only point estimates of risk measures but also interval estimates are discussed. Approximate 

confidence intervals based on the asymptotic distribution of MLE were obtained. Monte Carlo 

simulations are performed to observe the performance of the estimators according to MSE and 

bias. From the results of the simulation study, it is observed that the MLEs of risk measures 

provided the estimation procedures. 
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