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Abstract 

In this study, the (3+1)-dimensional Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, 

which is a mathematical model of non-absorption and dispersion in the non-linear medium, which 

sheds light on the sound beam phenomenon, which has a physically important place, is examined. 

In order to find the exact solution of this equation, an effective and reliable method, (𝐺!/𝐺, 1/𝐺)-

expansion method, is used among analytical methods. The purpose of this method is to obtain 

more than one traveling wave solution classes depending on the conditions of the 𝜆 parameter. 

These classes are categorized into hyperbolic, trigonometric, complex trigonometric and rational 

forms. The graphics of the solitary waves represented by these successfully obtained solution 

classes are presented as 2-dimensional, 3-dimensional and contours. This article makes use of 

ready-made package programs for complex arithmetic operations and graphic drawings. 
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(3+1)-Boyutlu Khokhlov–Zabolotskaya–Kuznetsov Denkleminin (𝑮′/𝑮, 𝟏/𝑮)-Açılım 

Metodu Yardımıyla Solitary Dalga Çözümleri 

Öz 

Bu çalışmada, fiziksel olarak önemli bir yere sahip olan ses ışını (sound beam) olayına ışık 

tutan, özellikle lineer olmayan ortamda dağılım ve soğurma olmayan durumların matematiksel 

modeli olan (3+1)-boyutlu Khokhlov–Zabolotskaya–Kuznetsov (KZK) denklemi incelendi. Bu 

denklemin tam çözümünü bulmak için analitik metotlar arasında yer alan etkili ve güvenilir bir 

yöntem olan (𝐺!/𝐺, 1/𝐺)-açılım metodu kullanıldı. Bu metodun seçilme amacı 𝜆 parametresinin 

durumlarına bağlı olarak birden fazla yürüyen dalga çözüm sınıfları elde edilmesidir. Bu sınıflar 

hiperbolik, trigonometrik, kompleks trigonometrik ve rasyonel formda kategorize edilir. Başarılı 

bir şekilde elde edilen bu çözüm sınıflarının temsil ettiği solitary dalgaların grafikleri 2-boyutlu, 

3-boyutlu ve kontur olarak sunuldu. Bu makalede karmaşık aritmetik işlemler ve grafik çizimleri 

için hazır paket programlardan faydalanıldı. 

Anahtar Kelimeler: (𝐺 ′/𝐺, 1/𝐺)-açılım metodu; (3+1)-boyutlu Khokhlov–Zabolotskaya–

Kuznetsov Denklemi; Solitary dalga çözümleri. 

1. Introduction 

The debates about the wave theory that started in the 18th century have been brought to a 

considerable level. The wave theory we are discussing today and discussed in the future can be 

divided into two groups, linear and nonlinear. However, nonlinear wave discussions are more 

valuable because life is not linear. For this reason, the traveling wave solutions of partial 

differential equations shed light on many events in nature, bringing mathematical models to the 

fore. Along with these mathematical models, many researchers have discussed the solution 

methods of these models. Generally, the methods that generate the solutions of nonlinear 

mathematical models are of the oscillating traveling wave type. In applied science, studies about 

perceiving the traveling wave as a signal and processing these signals have become popular today. 

Mathematical models, called NPDEs include quantum mechanics, plasma physics, hydro-

dynamic molecular biology, sheet water wave, nonlinear optics, optical fibers, chemistry, 

biological science, etc. as seen in various fields of nonlinear science.  Investigating NPDEs 

provides a clearer understanding of complex events.  Lately, many new mathematical models 

used by experts all over the world to describe real-life problems of today have attracted attention. 
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In this sense, some methods are trial equation method, modified simple equation method, 

modified extended tanh method, generalized hyperbolic-function method, sub equation method, 

complex method, auxiliary equation method, the homogeneous balance method, the improved 

Bernoulli sub-equation function method and many more methods [1-29]. 

We consider the following Zabolotskaya and Khokhlov (ZK) equation [30], 

(𝑢" + 𝑢𝑢#)# + 𝑛𝑢$$ +𝑚𝑢%% = 0.                  (1) 

This equation was first proposed by Zabolotskaya and Khokhlov in 1969 [31]. The physical 

interpretation of this equation shows the propagation of the sound beam in a non-linear medium 

with no dispersion or absorption [32]. This nonlinear medium in particular is not strong. This non-

linear medium in particular is not strong. With the term added to Eq. (1), the following (3+1)-

dimensional KZK equation is obtained [32]: 

𝑢#" + (𝑢#)& + 𝑢𝑢## + 𝑟𝑢### + 𝑛𝑢$$ +𝑚𝑢%% = 0,                        (2) 

where r, n and m are constant and 𝑟 ≠ 0. In addition, in Eqn. (2), which is the mathematical model 

of the sound beam phenomenon, the function that represents acoustic pressure and sought is 

𝑢(𝑥, 𝑦, 𝑧, 𝑡). Here t represents time and (𝑥, 𝑦, 𝑧) ∈ 𝑅' [33]. This equation was first proposed by 

Kuznetsov with the help of Eqn. (1) in 1971 [34]. The term adsorption is defined as thermo-

viscous. A higher-order NPDEs have been defined by adding this term. Traveling wave solutions 

were investigated for Eqn. (2) by Akçagil and Aydemir in 2016 with the help of the tanh–coth 

method [32]. On the other hand, new exact solutions were reached by Ray with the help of 

Kudryashov methods for the time fractional KZK equation [35]. In 2019, analytical solutions of 

the (3+1) dimensional time fractional KZK equation were produced with the help of modified 

Riemann-Liouville derivative and (G′/G)-expansion method by Zhang et al. [36]. In addition, the 

effect of diffraction in these solutions was investigated. In 2021, traveling wave solutions were 

produced in trigonometric function and dark optical soliton solution format by applying the 

modified exp (−Ω(ξ))-expansion function method for Eqn. (2) by Demiray and Kastal [37]. The 

main theme of this study is to obtain the traveling wave solutions of Eqn. (2) with the help of the 

(𝐺!/𝐺, 1/𝐺)- expansion method [38].  

The most important reason for using this method is to produce different types of traveling 

wave solutions from the literature for the (3+1)-dimensional KZK equation. One of the most 

important advantages of this method is that it produces traveling wave solutions in three different 

forms. In this study, information about the methodology of the method discussed in Section 2 is 

given. In the Section 3, the application of the method to the Eqn. (2) and finally in the Section 4, 

important results are given. 
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2. Method 

2.1. (𝑮!/𝑮, 𝟏/𝑮)-expansion method 

In this section, we present analysis of the (𝐺!/𝐺, 1/𝐺)-expansion method [38].  

𝑍(𝑢, 𝑢# , 𝑢$ , 𝑢%, 𝑢" , 𝑢## , 𝑢"" , . . . ) = 0.                                                 (3) 

If 𝑢 = 𝑈(𝜉) = 𝑢(𝑥, 𝑦, 𝑧, 𝑡),    𝜉 = 𝑥 + 𝑦 + 𝑧 − 𝑐𝑡 classical wave transformation is applied in 

Eqn. (3) while 𝑐 is a constant, Eqn. (3) is converted into a nODE and this can be written as: 

𝑊(𝑈,𝑈𝑈′, 𝑈″, . . . ) = 0.                (4) 

Reduced complexity by integrating Eqn. (4). 𝐺(𝜉) function is a quadratic function ODE solution, 

𝐺″(𝜉) + 𝜆𝐺(𝜉) = 𝜇.                            (5) 

Also to ensure operational aesthetics as ("

(
= 𝜙 = 𝜙(𝜉)and 𝜓 = 𝜓(𝜉) = )

((+)
. Here, the 

derivatives of the defined functions can be written 

𝜙′ = −𝜙& + 𝜇𝜓 − 𝜆, 𝜓′ = −𝜙𝜓.              (6) 

By considering the equations given by Eqn. (6), we can present the behavior of the solution 

function Eqn. (5) with respect to the 𝜆 state. 

i) If  𝜆 < 0 

𝐺(𝜉) = 𝑐) 𝑠𝑖𝑛ℎ(√−𝜆𝜉) + 𝑐& 𝑐𝑜𝑠ℎ(√−𝜆𝜉) +
-
.
,                        (7) 

where 𝑐&and 𝑐) are real numbers. Considering Eqn. (7); 

𝜓& = /.
.#01-#

(𝜙& − 2𝜇𝜓 + 𝜆),  𝜎 = 𝑐)& − 𝑐&&,                (8) 

written in this form. 

ii) If 𝜆 > 0 

𝐺(𝜉) = 𝑐) 𝑠𝑖𝑛(√𝜆𝜉) + 𝑐& 𝑐𝑜𝑠(√𝜆𝜉) +
-
.
,                  (9) 

where 𝑐& and  𝑐) are real numbers. Eqn. (9), there is following equation; 

𝜓& = .
.#0/-#

(𝜙& − 2𝜇𝜓 + 𝜆),  	 𝜎 = 𝑐)& + 𝑐&&,                        (10) 

iii) If  𝜆 = 0 

𝐺(𝜉) = -
&
𝜉& + 𝑐)𝜉 + 𝑐&,                  (11) 

where 𝑐& and  𝑐) are real numbers. Eqn. (11), there is following equation; 
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𝜓& = )
2$#/&-2#

(𝜙& − 2𝜇𝜓).             (12) 

The solution of Eqn. (3) in terms of 𝜓 and 𝜙 polynomials is 

𝑈(𝜉) = ∑ 𝑎3𝜙34
356 +∑ 𝑏3𝜙3/)𝜓4

35) ,            (13) 

where in 𝑏3 (𝑖 = 1, . . . , 𝑛) and 𝑎3 (𝑖 = 0,1, . . . , 𝑛) are constants to calculate. n is a positive integer 

to be calculated according to the balance principle for Eqn. (4). The corresponding derivatives of 

Eqn. (13) are calculated. These derivatives are substituted in Eqn. (4). Next, the polynomial is 

connected to 𝜓 and 𝜙 are formed. Equating the coefficients of the 𝜓 and 𝜙 in the obtained 

polynomial to zero, a system of equations is constructed. The built equation system is solved with 

the help of a computer software program. The values of the calculated constants are written in 

their place in Eqn. (13). Solutions of Eqn. (4) are obtained. Thus, we find the solutions in relation 

to the hyperbolic functions for λ<0, the trigonometric functions for λ>0 and the rational functions 

for λ=0. 

3. Solutions of the (3+1)-dimensional KZK Equation via (𝑮!/𝑮, 𝟏/𝑮)-expansion 

Method  

We consider Eqn. (2). Additionally, let us consider traditional wave transform as below: 

𝑢 = 𝑈(𝜉) = 𝑢(𝑥, 𝑦, 𝑧, 𝑡),    𝜉 = 𝑥 + 𝑦 + 𝑧 − 𝑐𝑡.              (14) 

We write Eqn. (14) into system Eqn. (2) to attain nonlinear ODEs 

(𝑚 + 𝑛 − 𝑐)𝑈 + )
&
𝑈& + 𝑟𝑈′ = 0.                         (15)        

By use of balance principle in Eqn. (15), we get 𝑛 = 1 and in Eqn. (13) the following situation is 

attained: 

𝑈(𝜉) = 𝑎6 + 𝑎) 𝜙[𝜉] + 𝑏) 𝜓[𝜉],            (16)  

where 𝑎6,  𝑎), 𝑏) then the constants to be determined are unknown. If Eqn. (16) is written in Eqn. 

(15) and the coefficients of the Eqn. (2) equal zero, we can set up the following systems of an 

algebraic equation 

(𝜙[𝜉])6	 : 	 − 𝑐𝑎6 +𝑚𝑎6 + 𝑛𝑎6 +
𝑎6&

2
− 𝑟𝜆𝑎) −

𝜆&𝑏)&

2(𝜇& + 𝜆&𝜎)
= 0,	

𝜙[𝜉]	 	  : 	 −𝑐𝑎) +𝑚𝑎) + 𝑛𝑎) + 𝑎6𝑎) = 0,	

(𝜙[𝜉])&	   : 	 −𝑟𝑎) +
𝑎)&

2
−

𝜆𝑏)&

2(𝜇& + 𝜆&𝜎)
= 0,	

𝜓[𝜉]   	   :  	 𝑟𝜇𝑎) − 𝑐𝑏) +𝑚𝑏) + 𝑛𝑏) + 𝑎6𝑏) +
𝜆𝜇𝑏)&

𝜇& + 𝜆&𝜎
= 0,	

𝜙[𝜉]𝜓[𝜉]  : 	 −𝑟𝑏) + 𝑎)𝑏) = 0.                                                    (17) 
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With the software program, we reached the solutions of the system (17) and the following 

situations. 

If 𝜆 < 0, 

Case 1.  

𝑎6 = −2𝑖𝑟√𝜆,	 𝑎) = 2𝑟,	 𝑏) = 0, 	 𝜇 = 0, 	 𝑐 = 𝑚 + 𝑛 − 2𝑖𝑟√𝜆,          (18) 
    

where 𝑖 = √−1 ,replacing Eqn. (18) into Eqn. (16), the following complex hyperbolic solution is 

attained 

𝑢)(𝑥, 𝑦, 𝑧, 𝑡) = −2𝑖𝑟√𝜆 +

							
7&892#√/. 2;<ℎ=9#1$1%/">?14/&38√.@A√/.B12$√/. <34ℎ=9#1$1%/">?14/&38√.@A√/.BAC

92$ 2;<ℎ=9#1$1%/">?14/&38√.@A√/.B12# <34ℎ=9#1$1%/">?14/&38√.@A√/.BA
.   (19)

   

  
 

Figure 1: 3D, 2D and contour graphs for 𝑐! = 2, 𝑐" = 1,  𝜆 = −1,  𝑟 = 0.5,  𝑚 = 0.2,  𝑛 = 0.1,  𝑦 =
1,  𝑧 = 1 of Eqn. (19) 

There is √𝜆√−𝜆 in 𝑢 that we have presented as a solution. Since 𝜆 < 0, we have presented  

the solution consists only of the real part. 

Case 2.  

𝑎6 = 𝑖𝑟√𝜆,	 𝑎) = 𝑟,	 𝑏) =
D/8#-#/8#.#0

√.
, 	 𝑐 = 𝑚 + 𝑛 + 𝑖𝑟√𝜆,          (20)  

where 𝑖 = √−1, replacing Eqn. (20) into Eqn. (16), the following hyperbolic solution is attained  

𝑢!(𝑥, 𝑦, 𝑧, 𝑡)
= 𝑖𝑟√𝜆

+
9−(−𝑐"! + 𝑐!!)𝑟!𝜆! − 𝑟!𝜇!

√𝜆 ;𝜇𝜆 + 𝑐" 𝑐𝑜𝑠ℎ >;𝑥 + 𝑦 + 𝑧 − 𝑡?𝑚 + 𝑛 + 𝑖𝑟√𝜆@A√−𝜆B + 𝑐! 𝑠𝑖𝑛ℎ >;𝑥 + 𝑦 + 𝑧 − 𝑡?𝑚 + 𝑛 + 𝑖𝑟√𝜆@A√−𝜆BA
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+
892#√/. 2;<ℎ=9#1$1%/">?14138√.@A√/.B12$√/. <34ℎ=9#1$1%/">?14138√.@A√/.BA

%
&12$ 2;<ℎ=9#1$1%/">?14138√.@A√/.B12# <34ℎ=9#1$1%/">?14138√.@A√/.B

.       (21) 

 

 

    

Figure 2:  3D, 2D and contour graphs for𝑐! = 2, 𝑐" = 1,  𝜆 = −0.1,  𝜇 = −3,  𝑟 = 0.5,  𝑚 = 0.2,  𝑛 =
0.1,  𝑦 = 1,  𝑧 = 1 values of Eqn. (21)  

 

There is √𝜆√−𝜆 in 𝑢 that we have presented as a solution. Since 𝜆 < 0, we have presented  

the solution consists only of the real part. 

If 𝜆 > 0, 

Case 1.  

𝑎6 = −2𝑖𝑟√𝜆,	 𝑎) = 2𝑟,	 𝑏) = 0, 	 𝜇 = 0, 	 𝑐 = 𝑚 + 𝑛 − 2𝑖𝑟√𝜆,                        (22)   

where 𝑖 = √−1, replacing Eqn. (22) in Eqn. (16), the following trigonometric solution is attained 

𝑢'(𝑥, 𝑦, 𝑧, 𝑡) = −2𝑖𝑟√𝜆 +

						
&892#√. 2;<=9#1$1%/">?14/&38√.@A√.B/2$√. <34=9#1$1%/">?14/&38√.@A√.BA

2$ 2;<=9#1$1%/">?14/&38√.@A√.B12# <34=9#1$1%/">?14/&38√.@A√.B
.               (23)      
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Figure 3: Real and imaginary parts of 3D, 2D and contour graphs for 𝑐! = 2, 𝑐" = 1,  𝜆 = 0.1,  𝑟 =
0.5,  𝑚 = 1,  𝑛 = 1.2,  𝑦 = 1,  𝑧 = 1 of Eqn. (23)   

If 𝜆 = 0, 

Case 1.  

𝑎6 = 0,	 𝑎) = 2𝑟,	 𝑏) = 0, 	 𝜇 = 0, 	 𝑐 = 𝑚 + 𝑛,                                                   (24)   

replacing Eqn. (24) in Eqn. (16), the following rational solution is attained  

𝑢E(𝑥, 𝑦, 𝑧, 𝑡) =
&2#8

2$12#(/(?14)"1#1$1%)
.                (25)   

      

 

Figure 4: 3D, 2D and contour graphs for𝑐! = 0.5,  𝑐" = 1,  𝜆 = 0,  𝑟 = 2,  𝑚 = 0.2,  𝑛 = 0.1,  𝑦 =
1,  𝑧 = 1 of Eqn. (25) 

Case 2.  

𝑎6 = 0,	 𝑎) = 𝑟, 	 𝜇 = 2##8#/F$#

&2$8#
, 	 𝑐 = 𝑚 + 𝑛,                                                       (26)   

replacing Eqn. (26) in Eqn. (16), the following rational solution is attained  
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𝑢G(𝑥, 𝑦, 𝑧, 𝑡)

=
𝑏)

𝑐) + 𝑐&(−(𝑚 + 𝑛)𝑡 + 𝑥 + 𝑦 + 𝑧) +
(−(𝑚 + 𝑛)𝑡 + 𝑥 + 𝑦 + 𝑧)&(𝑐&&𝑟& − 𝑏)&)

4𝑐)𝑟&
	

	 	 	 +
8H2#1

((()*+)-*.*/*0)12##3#(4$
#5

#2$3#
I

2$12#(/(?14)"1#1$1%)1
((()*+)-*.*/*0)#62##3#(4$

#7
82$3#

.                                    (27)   

      

 

Figure 5: 3D, 2D and contour graphs for 𝑐! = 0.4, 𝑐" = 1, 𝑏" = 0.5,  𝜆 = 0,  𝑟 = 0.5,  𝑚 = −0.2,  𝑛 =
−0.1,  𝑦 = 1,  𝑧 = 1 of Eqn. (27) 

  

Traveling wave solutions play an important role in physically transporting energy from one 

place to another. The traveling wave solutions obtained in this study can offer a different 

perspective to the acoustic theory. The graphs presented in Figs. 1-5 illustrate the wave behaviour 

of traveling wave solutions at any instant, which we can call a standing wave. While drawing 

these graphs, the y and z dimensions are considered fixed.       

4. Conclusion 

In this study, we have proposed hyperbolic, trigonometric, complex trigonometric and 

rational traveling wave solutions with the help of (𝐺!/𝐺, 1/𝐺)-expansion method of Eqn. (2) 

which is the mathematical model of the sound beam in a non-linear medium without physical 

dispersion and absorption. The method is generally categorized into three different classes 

depending on the 𝜆 parameter. The equation was checked with the help of a ready-made package 

program that the traveling wave solutions obtained for each class provided. In the traveling wave 

solutions obtained, solitary wave solutions were obtained by giving arbitrary constants to the 

parameters and the graphics were presented as 3D, 2D, and contour. The solution of the algebraic 

equation system discussed in this study, complex operations and the graphics of these solutions 

were obtained using a ready-made package program. It has been concluded that this method we 

have used is useful and reliably applicable in equations with strong nonlinearity. 
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