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Abstract 

This work is devoted to obtaining new optical solutions to the Kundu-Eckhaus (KE) 

equation which is believed to play a crucial part in the area of nonlinear optics. Two different 

methods, the exp(−𝜑 (ε)) method with the exponential rational function approach have been 

utilized. Both methods are efficient in finding the analytical solutions of many nonlinear partial 

differential equations and fractional differential equations. Results obtained in this research are 

dissimilar to the ones in the literature and the solutions are controlled by relocating them back to 

the primary equation. Finally, it can be stated that optical solutions have a promising future. 

Keywords: Nonlinear equation; Symbolic computation; Optical solutions. 

Kundu-Eckhaus Denkleminin İki Farklı Yöntemle Optik Çözümleri 

Öz 

Bu çalışmada, lineer olmayan optik alanında önemli bir yere sahip olan Kundu-Eckhaus 

(KE) denkleminin optik çözümlerinin elde edilmesine yer verilmiştir. exp(−𝜑 (ε)) yöntemi ve 

üstel rasyonel fonksiyon yöntemi ilgili denkleme uygulanmıştır. Bahsedilen her iki yöntem de 

lineer olmayan kısmi diferensiyel denklemler ve kesir mertebeden diferensiyel denklemlerin tam 

çözümlerinin elde edilmesinde oldukça etkili olduğu bilinen yöntemlerdir. Bu çalışmada elde 
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edilen sonuçlar, literatürde daha önce var olanlardan farklıdır. Elde edilen çözümler, Maple 

yardımıyla yerine konularak kontrol edilmiştir. Sonuç olarak, optik çözümlerin literatürde önemli 

bir geleceğinin olduğunu belirtmeliyiz. 

Anahtar Kelimeler: Lineer olmayan denklem; Sembolik hesaplama; Optik çözümler.  

1. Introduction 

A lot of real-world problems in the vast areas of engineering and science are modeled by 

nonlinear evolution equations (NLEEs). Looking for the exact solutions of NLEEs is quite crucial 

for one to understand the phenomena described by the NLEEs. The analytical expressions of 

NLEEs were researched using various powerful techniques. Some of these methods are Auto-

Backlund transformations[1], modified simple equation method [2], transformed rational function 

method [3], trial method [4], the sine-Gordon expansion method [5], the (G’/G)- expansion 

method [6], (G’/G,1/G)-expansion method [7], auxiliary equation method [8, 9], exp-function 

method [10], F-expansion method [11], sine-cosine method [12], ansatz method [13], sub 

equation method [14], exponential rational function method [15],  Lie group analysis [16], Hirota 

bilinear method [17], Backlund transformation method [18], Wronskian technique [19], 

homogeneous balance method [20], inverse scattering method [21], and so on [22]. Regarding the 

domain of research in photonics sciences, optical solitons is considered among the most rapidly 

emerging fields. Recently, this technique is widely used by scientists [23, 24, 25].  

The exp(−𝜑 (ε)) method is a new and useful method that gives many solutions to NLEEs. 

The supremacy of the suggested technique toward the (G’/G)-expansion scheme requires to give 

fresh travelling wave solutions while using arbitrary additional parameters [26, 27]. The other 

technique utilized in the paper, the exponential function method, is a straight method.  

The style implemented in this article can be described as follows: In the Part of Materials 

and Methods, the primary stages of methods are introduced. In Section III, the implementation of 

the techniques to the Kundu-Eckhaus is given. Finally, the conclusion of the paper is provided.  

2. Materials and Methods 

A general NLEE of the formula will be taken into consideration:  

𝑃(𝑢, 𝑢!,𝑢# , 𝑢!! , 𝑢!# , 𝑢## , . . . ) = 0,                                                                                     (1) 

The polynomial and derivates of 𝑢	 = 	𝑢(𝑥, 𝑡) are represented by 𝑃, where the nonlinear 

terms and the highest order derivatives are comprised. In a suitable manner of the following 

travelling wave transformation  
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𝜉 = 𝑥 − 𝑐𝑡, 𝑢(𝑥, 𝑡) = 𝑈(𝜉),                                                                                                         

where c represents the velocity of the wave, Eqn. (1) is reduced thereby forming an ordinary 

differential equation (ODE) in the form 

  𝑄(𝑈, 𝑈′, 𝑈′′, 𝑈′′′, . . . ) = 0.                                                                                                          (2)  

It is noted that, in Eqn. (2) the differentiation of 𝑈 with respect to ξ is represented by prime. 

All the terms in Eqn. (2) will be integrated.  

 
2.1.The exp(−φ(ξ)) method 

 
Conforming to this technique [27], the desired solution for the reduced equation is formed 

by a polynomial in exp(−𝜑 (ξ)) as   

U(ξ) = ∑ 𝑎$7exp7−𝜑(𝜉);;ⁿ%
&'( ,						                                                                                                                                                                                                

where 𝑎$, (𝑎) ≠ 0) are constants which will be found afterwards and 𝜑 (ξ) is the solution of the 

following ODE below 

𝜑*(𝜉) = 	𝑒𝑥𝑝7−𝜑(𝜉); + 𝜇	𝑒𝑥𝑝7𝜑(𝜉); + 	𝜆.	                                                                                                         (3) 

The supplementary equation Eqn. (3) possesses distinct solutions below: 

Case 1: When λ2 − 4𝜇 > 0 and 𝜇 ≠ 0, the hyperbolic function solutions,  

𝜑+(𝜉) = lnE
,-.!,/012&3(5"

!#$%
! (678)),.

:0 F.                                                                     (4) 

Case 2: When λ2 − 4𝜇 < 0 and 𝜇 ≠ 0, trigonometric function solutions,  

𝜑:(𝜉) = lnE
-/0,.!12&35$%#"

!
! (678)),.

:0 F.                                                                         (5)  

Case 3: When λ2 − 4𝜇> 0, 𝜇 ≠ 0 and 𝜆 ≠ 0, hyperbolic function solutions, 

	𝜑;(𝜉) = −ln G .
<=>3?.(678)@7>A&3?.(678)@,+H.                                                                    (6)                                           

Case 4: When λ2 − 4𝜇= 0, 𝜇 ≠ 0 and 𝜆 ≠ 0, rational function solutions,  

	𝜑/(𝜉) = ln I− :(.7(678)7:)
.!(678)

J.                                                                                           (7) 
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Case 5: When λ2 − 4𝜇= 0, 𝜇 = 0 and 𝜆 = 0, 

𝜑B(𝜉) = 	ln(𝜉	 + 	𝐶).																			                                                                                                 (8) 

2.2. The exponential rational function method 

In agreement with this technique, Eqn. (2)’s solitary wave solution is assumed as [21, 22]: 

U(ξ) = ∑ 2&
(+7CDE	(G)'

H
&'( ,								                                                                                             (9) 

where  𝑎$(𝑎I ≠ 0) are constants which will be determined afterwards. It can be noted that 

congruently N is a balancing number. Here the same logic steps in and, on subrogating Eqn. (9) 

in Eqn. (2), then gathering all the terms in the similar order of exp(iξ), (i = 0,1,2, ...), the left-hand 

side of Eqn. (2) is converted into a new polynomial in exp(iξ). Later on, one can equate every 

coefficient of the obtained polynomial to zero in order to solve the system. Consequently, the 

solutions of the system can be calculated using the assistance of the Maple that gives the desired 

solitary wave solutions of Eqn. (1). 

3. Results and Discussion 

3.1. Mathematical analysis 

Kundu-Eckhaus (KE) equation, founded by Kundu [28] and Eckhaus [29], is chosen to 

implement how the methods work. This equation supplies a different model for the solitons 

transmission along optical fibers. This equation, within the nonlinear Schrödinger class, is a 

fundamental model which is modelling optical soliton promulgation in Kerr media. The 

magnitude of the incident light field to generate ultrashort (femtosecond) optical pulses in optic 

fiber communications systems must be adjusted [30].  

𝑖 J
(K(!,#)
J#(

+ 𝑎 J²K(!,#)
J!²

+ 𝑏|𝑞(𝑥, 𝑡)|⁴𝑞(𝑥, 𝑡) + 𝑐 J(|K(!,#)|²)
J!

𝑞(𝑥, 𝑡) = 0.                                              (10) 

Here complex-valued wave profile represents by 𝑞(𝑥, 𝑡). Eqn. (10)’s first term involves the 

temporal evolution of the nonlinear wave, whereas the real-valued constants 𝑐, 𝑏 and 𝑎 denote, 

nonlinear effect, quintic nonlinearity, group velocity dispersion and respectively.  

Analysis of Eqn. (10) gives:  

𝑞(𝑥, 𝑡) = Q𝑣(𝑠)𝑒NO(!,#),                                                                                          (11) 

where 𝑣(𝑠) denotes the form of the pulse and  

𝑠 = 𝑘(𝑥 + 2𝑎𝜅	 #
(

P
),                                                                            
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and the phase component is denoted as shown below. 

𝛷(𝑥, 𝑡) = −𝜅𝑥 + 𝜔((𝑡P)/𝛼) + 𝜃₀,                                                                                                                                                                         

where 𝜔 = wave number of the soliton, 𝜅 = soliton frequency, and θ0 = phase constant.  

Then by subrogating Eqn. (11) in Eqn. (10) and dividing them into imaginary and real 

parts the following equation is obtained.  

2𝑎𝑘²𝑣𝑣′′ + 4𝑐𝑘𝑣²𝑣′ − 𝑎𝑘²(𝑣′)² − 4(𝜔 + 𝑎𝜅²)𝑣² + 4𝑏𝑣⁴ = 0.                                    (12)  

According to homogenous balance principle, balancing 𝑣𝑣′′ with 𝑣⁴ gives 𝑁 = 1.  

3.2. The exp(−φ(ξ)) method 

In accordance with idea of the adopted method gives the solution of Eqn. (12) below. 

𝑣(𝜉) = 𝑎( + 𝑎+𝑒𝑥𝑝(−𝜑(𝜉)).                                                                                          (13) 

The equation system consisting of 𝑎, 𝑏, 𝑐, 𝑘, 𝑎(, 𝑎+, 𝜆, 𝜇, 𝜔, 𝜅	could be found by substituting 

Eqn. (13) into Eqn. (12), gathering the coefficient of every term of exp(−φ (ξ))n and equating all 

coefficients to zero. 

exp(4ξ) : −𝑎𝑘²𝑎+²𝜇² − 4𝑐𝑘𝑎+𝑎(²𝜇 + 4𝑏𝑎(⁴ − 4𝜔𝑎(²	 

                         −4𝑎𝜅²𝑎(² + 2𝑎𝑘²𝑎(𝑎+𝜇𝜆 = 0, 

exp(3ξ) : −8𝜔𝑎(𝑎+ + 16𝑏𝑎(³𝑎+ + 2𝑎𝑘²𝑎(𝑎+𝜆² − 8𝑎𝜅²𝑎(𝑎+ 

                         −4𝑐𝑘𝑎+𝑎(²𝜆 − 8𝑐𝑘𝑎+²𝑎(𝜇 + 4𝑎𝑘²𝑎(𝑎+𝜇 = 0, 

exp(2ξ) : −4𝑐𝑘𝑎+𝑎(² + 6𝑎𝑘²𝑎(𝑎+𝜆 − 4𝑐𝑘𝑎+³𝜇 − 8𝑐𝑘𝑎+²𝑎(𝜆 

                         −4𝑎𝜅²𝑎+² − 4𝜔𝑎+² + 24𝑏𝑎(²𝑎+² + 𝑎𝑎(²𝑎+²𝜆² + 2𝑎𝑘²𝑎+²𝜇 = 0, 

exp(1ξ) : 4𝑎𝑘²𝑎(𝑎+ + 16𝑏𝑎(𝑎+³ − 8𝑐𝑘𝑎+²𝑎( − 4𝑐𝑘𝑎+³𝜆 + 4𝑎𝑘²𝑎+²𝜆 = 0, 

exp(0ξ) : 3𝑎𝑘²𝑎+² − 4𝑐𝑘𝑎+³ + 4𝑏𝑎+⁴ = 0.                                                                                                

Utilisation of software programs gives the solution as follows:  

𝑎( =
Q"!7

)"!#$%

! RST

/U
,					𝑎+ =

ST
/U
,   𝑎 = S!

/U
,					𝜔 = − (/V²,T².²7/T²0)S²

+WU
 .                                              

These obtained values, the algorithm of the method and its auxiliary equations, gives the 

various optical solutions for KE equation:  
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Case 1: λ2 − 4	𝜇 > 0 and 𝜇 ≠ 0, according to Eqn. (4), 

The hyperbolic function solutions: 

𝑞+ (𝑥, 𝑡)	= e
X"!7

*"²#$%
! YST

/U
− :ST0

/U-.²,/012&Z[*"²#$%! \T!7:]TV,
(
( ^_7/U.

  × 𝑒𝑥𝑝 I𝑖(−𝜅𝑥 + 𝜔 #(

P
+ 𝜃₀)	J.                                                                                             

Case 2: λ2 − 4	𝜇 < 0 and 𝜇 ≠ 0, according to Eqn. (5), 

The trigonometric function solutions: 

𝑞: (𝑥, 𝑡) = e
X"!7

*"²#$%
! YST

/U
+ :ST0

/U-/0,.²12&[*$%#"²! \T!7:]TV,
(
( ^_,.

  × 𝑒𝑥𝑝 I𝑖(−𝜅𝑥 + 𝜔
#(

P
+ 𝜃₀)	J.                                                                                                    

Case 3: λ2 − 4 𝜇 > 0,  𝜇 = 0 and λ≠ 0, according to Eqn. (6), 

The hyperbolic function solutions: 
 

𝑞; (𝑥, 𝑡) = g
X"!7

*"²#$%
! YST

/U
+ ST.

/U<=>3(.(T!7:]TV,
(
(78))7/U`N$3(.(T!7:]TV

,(
(78)),/U

 

                × 𝑒𝑥𝑝 I𝑖(−𝜅𝑥 + 𝜔 #(

P
+ 𝜃₀)	J .                                                                                                          

Case 4: When λ2 − 4	𝜇 = 0,	𝜇 ≠ 0 and λ ≠ 0, according to Eqn.(7), 

The rational function solutions: 

𝑞/ (𝑥, 𝑡) = g
X"!7

*"²#$%
! YST

/U
−

.²ST(T!7:]TV,
(
(78)

aU.T!7+WU.]TV,
(
(7aU87+WU

			× 𝑒𝑥𝑝 I𝑖(−𝜅𝑥 + 𝜔 #(

P
+ 𝜃₀)	J .                                                                                                     

Case 5: λ2 − 4	𝜇 = 0,	𝜇 = 0 and λ = 0, according to Eqn.(8), 

𝑞B (𝑥, 𝑡)	=g
ST

/UT!7aU]TV,
(
(7/U8

× 𝑒𝑥𝑝 I𝑖(−𝜅𝑥 + 𝜔 #(

P
+ 𝜃₀)	J .                                                                                                    

3.3 The exponential rational function method  

Optical solutions of the reduced form of KE equation which is Eqn. (12) can be assumed 

as follows: 
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𝑣(𝜉) = 𝑎₀ + ]₁
+7c!d(6)

,                                                                                                      (14)                                                                                                                                                     

a polynomial of exp(iξ) (i = 0,1, ...4) can be obtained. Then by adjusting the powers of the obtained 

polynomial to zero, one can find the equation system below. 

exp(4ξ) : −4𝑎𝜅²𝑎(² − 4𝜔𝑎(² + 4𝑏𝑎(⁴ = 0 

exp(3ξ) :2𝑎𝑘²𝑎(𝑎+ + 16𝑏𝑎(³𝑎+ − 16𝑎𝜅²𝑎(² − 16𝜔𝑎(² − 8𝜔𝑎(𝑎+ 

                        −8𝑎𝜅²𝑎(𝑎+ − 4𝑐𝑘𝑎+𝑎(² + 16𝑏𝑎(⁴ = 0, 

exp(2ξ) : −24𝑎𝜅²𝑎(𝑎+ − 24𝑎𝜅²𝑎(² + 24𝑏𝑎(²𝑎+² + 48𝑏𝑎(³𝑎+ − 4𝑎𝜅²𝑎+² − 4𝜔𝑎+²	 

                −24𝜔𝑎(² − 24𝜔𝑎(𝑎+ + 24𝑏𝑎(⁴ + 𝑎𝑘²𝑎+² − 8𝑐𝑘𝑎+²𝑎( − 8𝑐𝑘𝑎+𝑎(² = 0, 

exp(1ξ) :−2𝑎𝑘²𝑎(𝑎+ − 4𝑐𝑘𝑎+𝑎(² − 16𝑎𝜅²𝑎(² − 2𝑎𝑘²𝑎+² − 4𝑐𝑘𝑎+³ 

              	−24𝑎𝜅²𝑎(𝑎+ − 8𝑎𝜅²𝑎+² + 48𝑏𝑎(²𝑎+² + 48𝑏𝑎(³𝑎+ 

               +16𝑏𝑎(𝑎+³ − 8𝑐𝑘𝑎+²𝑎( − 16𝜔𝑎(² − 24𝜔𝑎(𝑎+ + 16𝑏𝑎(⁴ − 8𝜔𝑎+² = 0, 

exp(0ξ) : −4𝜔𝑎(² + 4𝑏𝑎(⁴ − 4𝜔𝑎+² + 4𝑏𝑎+⁴ − 4𝑎𝜅²𝑎(² − 8𝜔𝑎(𝑎+ − 4𝑎𝜅²𝑎+² 

                   					+16𝑏𝑎(³𝑎+ + 24𝑏𝑎(²𝑎+² + 16𝑏𝑎(𝑎+³ − 8𝑎𝜅²𝑎(𝑎+ = 0. 

From the solutions of the algebraic equations using Maple, two different cases can be 

verified as follows:  

Case 1: 

 𝑎( = 0,			𝑎+ = − ST
/U
, 𝑎 = S!

/U
,						𝜔 = S²(,/V²7T²)

+WU
                                                                       

Then, on substituting these results into Eqn. (14) in order to obtain the optical solutions of KE 

equation gives  

𝑞W  (𝑥, 𝑡) = g−
ST

/U(+7c!d(T(!7:]V,
(
( )))

𝑒𝑥𝑝 G𝑖 I−𝜅𝑥 + 𝜔 #(

P
+ 𝜃(JH.                                                                            

Case 2:  

𝑎( =
ST
/U
, 𝑎+ = − ST

/U
, 𝑎: =

S!

/U
, 𝜔 = S²(,/V²7T²)

+WU
                   

Then, on substituting these results into Eqn. (14) in order to obtain the optical solutions of KE 

equation gives                                                

𝑞e  (𝑥, 𝑡) =g
ST
/U
− ST

/U(+7c!d(T(!7:]V,
(
( )))

𝑒𝑥𝑝 G𝑖 I−𝜅𝑥 + 𝜔 #(

P
+ 𝜃(JH .                                                                             
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The KE equation was considered successful according to the exp(−φ(ξ)) and the 

exponential rational methods. As an upshot, several wave solutions have been previously 

acquired. Also, one must note that the accuracy of the acquired optical solutions was checked by 

subrogating every solution to KE equation. Since the exp(−φ(ξ)) method gives various types of 

solutions, it can be applied to additional models that will be considered in near future. Since the 

exponential rational function method is direct and effective, it is more simple to implement.  

4. Conclusion 

The results in this paper were dissimilar to the existing ones in the literature, and the 

results/they were checked thanks to Maple by resubstituting the solutions into the Kundu-Eckhaus 

equation. Finally, it could be stated that optical solutions have a promising future. Since both 

methods are applicable for many nonlinear partial differential equations, further applications are 

implementable for future studies.  Also, different types of exact solutions can be founded for the 

dealt equation by using different methods.  
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