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Abstract

The main purpose of this paper is to establish connections between various
subclasses of harmonic univalent functions by applying certain convolution operator
involving hypergeometric functions. We investigate such connections with Goodman-

Salagean-Type harmonic univalent functions in the open unit disc U.
Keywords: Univalent function; Uniformly convex; Linear operator; Hadamard product.

Hipergeometrik Fonksiyonu iceren Harmonik Tek Degerlikli Fonksiyonlarin

Altsimiflarinin Bir Uygulamasi
Oz

Bu makalenin amaci, hipergeometrik fonksiyonlari iceren belirli konvolusyon operatoriinii

uygulayarak harmonik univalent fonksiyonlarin gesitli altsiniflari arasinda baglantilar kurmaktir.

* Corresponding Author DOI: 10.37094/adyu;jsci.680530 L@;
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Bu tiir baglantilar agik birim disk U da Goodman-Salagean tipli harmonik univalent fonksiyonlar1

ile aragtirilmstir.

Anahtar Kelimeler: Univalent fonksiyon; Diizgiin konveks; Lineer operatdr; Hadamard

carpimi.
1. Introduction
Let A denote the class of analytic functions of the form:
f(z)=z+iakzk,(ak >0,keN), D
k=2

which is univalent in the open unit disc U={z € C :|z|< 1}. Hohlov [1] introduced the convolution
operator H(a, b;c): A — A defined by
H(a,b;c)f(z) = zF(a,b; c; z) * f(2),

where F(a, b; c; z) is a well-known Gaussian hypergeometric function and defined by

- (@i (D),

F(a,b;c;z) = 2 ©c(Dr z",

where a, b, c are complex numbers such that c = 0,—1,—-2, ... .

A hypergeometric function F(a, b; c; z) is analytic in U and plays an important role in
Geometric Function Theory. See the studies by Branges [2], Ahuja [3], Carleson and Shaffer [4],
Owa and Srivastava [5], Miller and Mocanu [6], Ruscheweyh and Singh [7], Srivastava and
Manocha [8], and Swaminathan [9].

For a function f € A given by Eqn. (1) and g € A defined by

g(z)=z+ 2 b.z*,
k=2

we define the Hadamard product of f and g by
(f x9)(2) =z+2akbkzk , z€U. ()
k=2
Let E be the family of all harmonic functions f= h + g, where

h(z)=z+ZAkz" , g(z)=ZBkzk , |B11<1,z€U 3)
k=2 k=1
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are in the class A. For complex parameters aq, by, ¢1, @y, by, ¢ (¢1,¢c5 # 0,—1,—2, ...), we define

the functions @; = zF(ay, by; ¢1;z) and @, = zF (ay, by; c3; 2) .

Corresponding to these functions, we consider the following convolution operator

a,;, by, c
.QE.Q( b 1):E—)E,
a,, by, ¢
defined by
a;, by, ¢ — _
Q( )fzf*(q§1+<1§2)=h*q)1+g*q)2
a,, by, ¢

for any function f = h + g in E. Letting

(5 VP = HE + T,

a;, by, ¢
we have
e @i,
HO=2% 2 e
o @1 (Bt
6lz) = ,Z s (Dy K2 ®

We observe that

» 1 Sz
o “1)f(z)=f(z)=f(z)*<1fz+1f>,

a,, 1, a, z
is the identity mapping.

This convolution operator {2 were defined and studied by the author in [10]. Denote by Sg

the subclass of E that are univalent and sense-preserving in U.

Note that 1f _;1{2 € Sg whenever f€ Sg. We also let the subclass Sp of Sg
—1b1

Se={f=h+ge€ Sg:g'(0) =B, =0}.
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The classes Sp and Sg were first studied in [11]. Also, we let K2, S 2’0 and C2 denote the

subclasses of Sg of harmonic functions which are, respectively, convex, starlike and close-to-

convex in U. For definitions and properties of these classes, one may refer to ([11,12 ]) or [13].

For 0<a<1,meN and ne N, ={0,1,...} let

f'(2)

ZI

NE(oc)={fEE: Re Zoc,Z:rei@EU},

D™f(2)
D f(2)

Geg(a) = {f €E: Re {(1 +pei”) —peiy} >a,YERzE U},

where z' = %(z =re®), f'(2) = ;—Hf(reie).

Define TNg(a) = Ng(a) NT and TGg(a) = Gg(a) NT, where T consists of the

functions f = h + g in Sg so that h and g are of the form

h@=P§ymk, g@=2mw. (5)
k=2 k=1
The classes Ng(a) and Gg(a) were initially introduced and studied, respectively, in [14,
15]. A function in Gg () is called Goodman-Salagean-type harmonic univalent function in U.

In this paper, we will frequently use the notations

ap=a(t 9,

a,, by, cy

(|a1|)k—1(|b1|)k—1 E _ (|az|)k—1(|bz|)k—1
) e e (PN VAT €' PP

Dy_1 =

and a well-known formula

F(a b'c_l)_l“(c—a—b)l“(c) Re(c—a—-b)>0
T T M(e—a)(c—b)’ '

In this paper the main object is to establish some important connections between the classes

K, Si°, €2, Ng(@) and Gg(a) by applying the convolution operator.

2. Connections with Goodman-Salagean-type Harmonic Univalent Functions
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In order to establish connections between harmonic convex functions, we need following

results in Lemma 1 [11], Lemma 2 [15] and Lemma 4 [10].

Lemma 1.If f = h + g € K where h and g are given by Eqn. (3) with B; = 0, then

+1
|An| Sn ) |Bn| S
2 2

Lemma 2. Let f = h + g be given by Eqn. (3). If

(00

Z[[(l +p)k™ — k" (a + p)llag| + [(1+ p)k™ — (=1)™ k™ (@ + p)]|by ]
k=2

<l-a, (6)

then f is sense-preserving, Goodman-Salagean-type harmonic univalent functions in U and f €

Ge(a).

Remark 3. In [15], it is also shown that f = h + g given by Eqn. (5) is in the family
TGg(a), if and only if the coefficient condition (6) holds. Moreover, if f € TGg(a), then

1—«a
Al < ,
Al < e k@ 1 )

k=2,

1—a
Byl < , k=1
Pl = T e - o e @t )
Lemma 4. If a,b,c > 0, then
. . . _ (©)n s
) Fla@a+nb+nc+nl) = Crr— F(a,b;c; 1) ,

forn=20,1,2,3,..., ifc>a+b+n.

. [e9) (@k=1(D)k-1 ab :
= k - 1 = . . .
(@ Li=a e = D 0, ey ~ emampm F @b, if e>a+ b+

© 42 @g-1(D)k-1 _ (@)2(b)> ab .
(iif) Xp=a(k — 1) ©r-1(Dp—1 [(c—a—b—z)z + c—a—b—l] F(a,b;c;1)

ifc>a+b+2.

. o0 a3 @g—1(B)g—1 _ (a)3(b)3 3(a)2(b), ab .
() Zie=o(k = 1) 5 =5, = [(c—a—b—3)3 t emamb-2), T c—a—b—l] F(a,b;c;1),

ifc>a+ b +3.

Theorem 5. Let a;, b; € C\{0},c; € R and ¢; > |a;| + |b;| + 2 for i = 1, 2. If for some
p(0 <p<1and a(0 < a < 1), when m = 1,n = 0 the inequality
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Q1F(lasl, 1byl; €15 1) + RiF (lazl, |2l €25 1) < 4(1 — ),
is satisfied, then Q(K2) c Gg(a), where

(la1D2(b1l)2
(c1—lagl=1b1]-2),

laiby|
(c1=laql=Ib1]-1)

—3B3+2p—-0a)

Q=0+p) +2(1-a)

(lazD2(b2l)2
(cz=lazl=1bz]|-2),

laz byl
(cz2-lazl-Iby|-1) °

Ri=0+p) +(1+2p+a)

Proof. Let f = h + g € K2 where h and g are of the form Eqn. (3) with B; = 0. We need
to show that 2(f) = H + G € Gg(a), where H and G defined by Eqn. (4) are analytic functions

in U. In view of Lemma 2, we need to prove that P; < 1 — a where

Py =Yl + p)k™ — k™ (a + p)]

(a)r—1(b1)k—1 |
(c)r-1(Dg—1

+ Xk=2[ (1 + p)k™=(=1D)™ k™ (a + p)]

(a2)k-1(b2)k-1 |
(2)k-1(Dg-1

In view of Lemma 1 and Lemma 4, it follows that
1 (0]
P <5 (e DA+ k™ = k"(@ + p)IDy
k=2

+1m k = D[(1 + p)k™ — (=1)™ k" E
ZkZZ< A+ K™ = (="K (@ + p)] By

N =

DI +p)k = 1) = (3 +2p = ) = D) +2(1 — DD
k=

2
+

N =

DI+ p)le = 177 + (14 2p + @)k = D] By
k=2
1 1
= §Q1F(|a1|, |b1l;¢q51) + §R1F(|a2|, b2l c2;1) — (1 —a) .
Hence P; < 1 — «a follows from the given condition.

In order to determine connection between TNg(f) and Gg(a), we need the following

results in Lemma 6 [14] and Lemma 8 [3] .
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Lemma 6. Let f = h + g where h and g are given by Eqn. (5) with B; = 0, and suppose
that 0 < 8 < 1. Then

fETN(B) & ) klAl+ ) kIBil <1-5.
k=2 k=2

Remark 7. If f € TNg(B), then

1-5
k )

1-8

k=1
k ’ -

|4 | < k=2, [B| <

Lemma 8. Leta, b € C\{0},a # 1,b # 1,c € (0,1) U (1, ) and ¢ > max{0, |a| + |b| —
1}. Then

O LDy (1D (c—lal = [b]) . (-1
kZlk ©arr Q@i =D -1 PR = G m =D

Theorem 9. Leta;, b; € C\{0},a; # 1,b; # 1,¢; € R and ¢; > max{0, |a;| + |b;| — 1} for
i=12 Ifforsome f(0<Pf<Danda(0<a<l),whenm=1n=0andm=2,n=0

and m = 2,n = 1 the inequality

1-a)(Z-8)

F(la{l,|b{|;c1;1) + Ry F(lay|, |ba|;c5;1) <
Q2F(lail, [by]; 13 1) + RoF(lazl, [bal; ¢35 1) a=p

B @D (1)
((a+p)) [(|a1|—1)(|b1|—1) (Iazl—l)(lbzl—l)]

is satisfied, then 2(TNg(B)) < Gg(a), where

(c1 — laq| = 1b1])
(lay| = D(by| = 1)

Q=00+p)—(a+p)

(cz — laz| = |by|)
(laz| = Dby = 1)

R, =1 +p)+(a+p)

Proof. Let f = h + g € TN (B) where h and g are given by Eqn. (5). In view of Lemma

2, it is enough to show that P, <1 — a and

(a1)k-1(b1)k-1

e ey ¥

P, = ) [+ k™ = k"(a + p)]
k=2
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(a2)k-1(b2)k-1
(D1 Dy I

D [(+ k™ = (D)™ K" (@ + p)]
k=1

Using Remark 7 and Lemma 8 if m = 1,n = 0. Then

[(1+p)—(azp) Dk_1+;[(1+p)+(azp)]Ek_1>

st(l—ﬁ)<

k=2

(a+p)(c—1) (@+p)(c; =1

"t = Db =D (el = DAk =1

Q2F(layl, |byl; ¢35 1) + RyF(layl, |byl; ¢35 1)
=a-m|_q

<(1-a
by the given hypothesis.

Now, if m = 2,n = 0, then

PZS(1—6)< [(1+p)k—(azp)]0k_1+z[(1+p)k—(a:p)]Ek_1>
k=2 k=1
=(1—ﬁ)<2 [(1+p)(k—1)+<1+p>—(“2p)]nk_1
k=2

£y [(1+p)(k—1)+(1+p)—(“zp)]Ek_1>
k=1

(a+p)(c—1) (@+p)(c; =1

Q2F(layl, |byl; ¢35 1) + RyF(layl, |byl; ¢35 1)
=(1-p)

R N DR ED R
<(1-a
and
B la by lay b |
R o P T R s A o P T R
(c1 = lai|l = 1b1])
et D) G = Dbl - 1)
Ry =(1+p) 19,2 + (1 +p) by

(c; —laz| = |b| = 1) (c; — lag| = |by] = 1)
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_(cazlazl=|ba])

@+ ) G, (-1

Finally, if m = 2,n = 1, then

P<(-p) (Z[(l + Pk = @+ P)IDgos + ) [+ p)e+ (@ + )] Ek_l)
k=2 k=1

=(1-p) (2 [+ p)(k — 1) — (1 — )]s
k=2
D [+ )k =D+ (1 +2p + )] Ek_1>
k=1

=1-5 (QzF(|a1|, [b1l; €15 1) + RyF(lazl, byl e 1) — (1 — a))

<(1-a
and
la; by |
=0+ -t -n T
R, = laz byl
»=04+p) +(1+2p+a).

(cz=laz|=Ibz|-1)

We next find connections of the classes S 2’0, C2 and TP with Gg(a). However, we first

need the following result which may be found in [11, 12] or [16] .

Lemma 10.If f = h+ g € C2( Y T2) where h and g are given by Eqn. (3) with B; =
0, then

2k + D)k + 1 2k —1)(k—1
IAkls( +2(+) ’ IBkIS( 2( )

Theorem 11. Let a;, b; € C\{0},¢c; € R and ¢; > |a;| + |b;| +3 for i = 1, 2. If for some
p(0 <p <1and a(0 < a < 1), when m = 1,n = 0 the inequality

Q3F(lasl, [b1l; ¢151) + R3F(lazl, |bal; 25 1) < 12(1 — ),
is satisfied, then 2(CQ) © Gg(a), 2(S°) c Gg(a), 2(TY) c Gg(a), where

(lagD3 (b1 3 (lagD2(1b11)

=2(1+p) + 9+ 7p—2a)
¢ p (c1 — lag| = |1b1] = 3)3 p (c1 — lag| = |b1| = 2),
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laibyl

+(13+6p = 70) T Do

+6(l—a),

(lazD3(Ib21)3 _ (lazD2 (b2 )2
(cz = laz| = |bz| —3)3 t@+p-20) (cz = laz| = |bz| — 2),

R; =2(1+p)

_ lazb,|
RS s

Proof. Let f =h+g € CE(S*’O, T2) where h and g are of the form Eqn. (3) with
B; = 0. We need to prove that 2(f) = H + G € Gg(a), where H and G defined by Eqn. (4) are

analytic functions in U. In view of Lemma 2, we need to show that P; < 1 — a where

(a1)k-1(b1)k-1
(c)k-1(Dg-1

= > [ +p)k™ = k(@ + p)]
k=2

(a2)k-1(b2)ik-1
(€2)k-1(Dg-1

+ D [+ K™ = (D)™ k" @ + )]
k=2
In view of Lemma 4 and Lemma 10, it follows that
1 (0]
Py <2 ) 2k + 1)k + DI+ p)k = (@ + p)Dy s
k=2

+100 2k —1D)(k—D[Q + p)k + (a + E
6;( (k= DA+ )k + (@ + )] By

li 2+ p)(k —1)° + (9 +7p —2a)(k = )]
6Ll +13+6p-T)k-D+6(1-a) |77

oo

Z 2014 p)(k—1)* + B+ p—2a)(k — D2 + (1 — &) (k — 1] Ex_y

O\Ib—*

1 1
=2 QsF(lail, b1 1) + 2 RsF(|azl, [b2]; c2; 1) — (1 = a).

Hence P; <1 — a follows from the given condition.
In the next theorem, we establish connections between TGg () and Gg () .

Theorem 12. Let a;, b; € C\{0},c; € R and c¢; > |a;| + |b;| for i = 1,2. If for some

a(0 < a < 1),whenm =1, n = 0 the inequality

F(laql, |bsl; ;1) + F(lazl, 1bzl; c2;1) < 2,
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is satisfied, then Q(TGg(a)) € Gg(a).

Proof. By using Lemma 2 and the definition of P, in Theorem 9, we need to prove that

P2S1—a.

By Remark 3, it follows that

(a1)k-1(b1)k-1
(c)k-1(Dg-1

= > [ +p)k™ — k(@ + p)]
k=2

(a2)k-1(b2)ik-1
(€2)k-1(Dg-1

+ D [+ Pk = (="K (@ + )]
k=1

<(1-a) (i Di_q + i Ek_1>
k=2 k=1

= (1 —a) (F(la1l, Ib1]; ¢1;1) + F(lazl, [b2]; c2; 1) — 1)
<(1-a).
By the given condition, the proof is completed.

In the next results, we establish connections between TGy () and Gg (). By diluting the

restrictions on the complex coefficients of Theorem 12.

Theorem 13. Leta,b; <0,aq,b; > —1,c; > max{0,a,+b;}, a,, b, € C\{0} and
¢y > |ay| + |by], then a sufficient condition for 2(TGg(a)) € Gg(a) is that

F(lail, 1b1l; ¢1;1) = F(lazl, [b2l;¢2;1) 2 0,
foranyp(0<p<1anda(0 <a<1),whenm=1, n=0.

Proof. Let f = h+ g € TGg(a) where h and g are of the form Eqn. (5). Then

@b,
=z (mkmnﬂﬂ'+2

(a2)k-1(b2)k—1
(c2) k=1 (D1

|Bk|Zk .

This function can be rewritten as

|Bk|2k .

mﬂ:+mmeﬁDH@+mqmw+imm4mH

G = (¢ + Dg—z2(Dg—1 -] (c2) k=1 (Dg-1
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In view of Lemma 2, we need to show that P, < 1 where

|a1b1 [(1 +p)k — (a+p)|(a; + Dy_2(by + 1y 14, ]
k

1-—«a (1 + Dy

.\ i [(1 okt (@t p)] @dia (bdics

k=1 l-a (c2)k—1(Dg-1

by~ (ay + 1y_p(by + 1), =
< lay 1|2(a1 Jie—2(by Dk 2|Ak|+zEk—1
G & (c1 + Dp—2(Dp—q ]

_ lasby | X (@)i(by)y N
a, by Z (i) g—1 Al + kZlEk_l

= —F(lay|, |b1[; c; D) + F(laz|, [b2l;c; 1D +1 <1,
by the given condition.

In the next theorem, we present condition on the parameters a4, a,, by, b,, ¢4, ¢, and

obtain a characterization for operator £ which maps TG (a) onto itself.

Theorem 14. Let a;,b; > 0,¢; > a;+b; (i=1,2), p(0<p<1) and a(0<a<1)
whenm = 1,n = 0 then 2(TGg(a)) < TGg(p, @) if and only if

F(laql, |b1l; c1;1) + F(lazl, [bzl; c2;1) < 2.

Proof. Let f = h+ g € TGg(p,®) where h and g are of the form Eqn. (5). We need to
prove that 2(f) = H + G € TGz(p, a), where H and G defined by Eqn. (4) P, < 1, where

(a1)k=1(b1)k-1

=i[(”f’)"‘(“+ﬁ) p

~ 1-«a (c)r—1(Dp—1 ¢
i [(1 + Pk + (@ +P)] | (@it (boems
= 1-a (k1D ©

By using Remark 3, we obtain

Po< ) Dt D i < F(larlIblicys D)+ RoF(lazh Ihols e 1) = 1
k=1 k=0

Hence P, < 1 follows from the given condition.
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