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Abstract 

The main purpose of this study is to investigate surface with a constant slope ruling with 

respect to osculating plane by using Frenet Frame according to casual characters in Minkowski 

space. In accordance with this purpose, surface with constant slope ruling with respect to 

osculating plane in Minkowski Space is defined and many features of this surface are investigated. 

In addition, examples of the given characterizations are obtained and the geometrical structures 

of these examples are be examined and visualized.  

Keywords: Ruled surface; Surface with constant slope; Minkowski space. 

Oskülatör Düzleme Göre Dayanak Eğrisi Sabit Eğimli Null Olmayan Yüzeyler 

Öz 

Bu çalışmanın amacı, Minkowski uzayında Frenet çatısını kullanarak oskülatör düzleme 

göre dayanak eğrisi sabit eğimli yüzeyleri incelemektir. Bu amaç doğrultusunda, Minkowski 

uzayında Frenet çatısını kullanarak oskülatör düzleme göre dayanak eğrisi sabit eğimli yüzeylerin 
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tanımları elde edilmiştir ve bu yüzeylerin birçok özelliği ayrı ayrı ele alınmıştır. Elde edilen 

yüzeylerin örnekleri incelenerek görselleri elde edilmiştir. 

Anahtar Kelimeler: Regle yüzeyler; Sabit eğimli yüzeyler; Minkowski uzayı.  

1. Introduction 

Curves and surfaces are geometric structures that are frequently encountered in daily life. 

The most known curve helix which is an important curve has a lot of applications. In the 3-

dimensional Euclidean space, if the angle between a fixed direction and each tangent is constant, 

such a curve is called a helix curve. The path that a bean follows as it grows around the stick 

follows, the sequence of molecules in the structure of the DNA, the carbon nanotubes, the 

progression of the screw, the path that the flying creatures are heading towards the point source 

or the prey and the way the ants walk on a tree from point A to point B are all examples of helix 

curves. 

Ruled surface in 3-dimensional Minkowski space is a special surface which is formed by 

moving a line given in 3-dimensional Minkowski space along a given curve. The line is the 

generating line of the ruled surface and the given curve is the base curve of the surface. The ruled 

surface is one of the most important topic of differential geometry.  

Minkowski space is more interesting than the Euclidean space because curves and surfaces 

have different casual characters such as timelike, spacelike or null (lightlike). In the literature, 

studies involving the subject of curves and surfaces in Minkowski space are very common [1-4]. 

Therefore, ruled surfaces in Minkowski space can be classified according to the Lorentzian 

character of their ruling and surface normal. 

Firstly, K. Malecek and others defined a surface with a constant slope with respect to the 

given plane in Euclidean Space in [5]. In this study, we give definition of surfaces with a constant 

slope ruling with respect to osculating plane by using Frenet frame Minkowski spaces. Many 

features of these surfaces are examined and characterized. In addition, examples of the given 

characterizations are given and the geometrical structures of these examples are visualized using 

the Mathematica program. It is shown that rotational surface and one sheet rotational hyperboloid 

have constant slopes. The conditions are given for being a torsal surface in Minkowski space.  

2. Preliminaries 

A vector 𝒗 tangent to a semi-Riemanian manifold 𝑀 is spacelike if 𝑔(𝑣, 𝑣) > 0 or 𝑣 = 0, 

null if 𝑔(𝑣, 𝑣) = 0 and 𝑣 ≠ 0, timelike if 𝑔(𝑣, 𝑣) < 0. The norm of a tangent vector v is given 
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by |𝑣| = .|𝑔(𝑣, 𝑣)|. A curve in a manifold M is a smooth mapping 𝛼: 𝐼 → 𝑀, where 𝐼 is an open 

interval in the real line 𝑅. A curve 𝛼 in a semi-Riemannian manifold 𝑀 is spacelike if all of its 

velocity vectors 𝛼′(𝑠) are spacelike, null if all of its velocity vector 𝛼′(𝑠) are null, timelike if all 

of its velocity vectors 𝛼′(𝑠) are timelike. 

In this study we give the Frenet frames and formulas in the Minkowski space 𝐸₁³ with 

metric 𝑔 = −𝑑𝑥₁² + 𝑑𝑥₂² + 𝑑𝑥₃². 

A curve 𝛼(𝑠) in 𝐸₁³ has different causal characters. We consider that 𝛼(𝑠) is spacelike or 

timelike separately and construct their Frenet frame {𝑡, 𝑛, 𝑏}. 

If	𝛼 is spacelike, we take the arclength parameter 𝑠 or α such that 𝑔(𝛼′(𝑠), 𝛼′(𝑠)) = 1. 𝑡(𝑠) 

is the velocity or unit tangent vector field of 𝛼(𝑠). If 𝛼′′(𝑠) ≠ 0, then 𝛼′′(𝑠) is perpendicular to 

𝑡(𝑠), so we take 𝑛(𝑠) = 𝜆𝛼′′(𝑠), 𝜆	 ∈ 𝑅 and 𝜆 > 0. Depending on the causal character of 𝛼′′(𝑠) 

we have the different cases. 

If 𝑔(𝛼′′(𝑠), 𝛼′′(𝑠)) > 0, the principal normal vector field 𝑛(𝑠) is then the normalized 

vector field 𝛼′′(𝑠). The binormal vector field 𝑏(𝑠) is the unique timelike unit vector field 

perpendicular to the spacelike plane {𝑡(𝑠), 𝑛(𝑠)} at every point 𝛼(𝑠) of 𝛼, such that {𝑡, 𝑛, 𝑏} has 

the same orientation as 𝐸₁³. The Frenet formulas are, in matrix notation, 

J
𝑡!(𝑠)
𝑛!(𝑠)
𝑏!(𝑠)

K = J
0 𝜅(𝑠) 0

−𝜅(𝑠) 0 𝜏(𝑠)
0 𝜏(𝑠) 0

K	J
𝑡(𝑠)
𝑛(𝑠)
𝑏(𝑠)

K  

If 𝑔(𝛼′′(𝑠), 𝛼′′(𝑠)) < 0, the principal normal vector field 𝑛(𝑠) is then the normalized 

timelike vector field 𝛼′′(𝑠). The binormal vector field 𝑏(𝑠) is the unique spacelike unit vector 

field perpendicular to the timelike plane {𝑡(𝑠), 𝑛(𝑠)} at every point 𝛼(𝑠) of a, such that {𝑡, 𝑛, 𝑏} 

has the same orientation as 𝐸₁³. The Frenet formulas are, in matrix notation, 

J
𝑡!(𝑠)
𝑛!(𝑠)
𝑏!(𝑠)

K = J
0 𝜅(𝑠) 0

𝜅(𝑠) 0 𝜏(𝑠)
0 𝜏(𝑠) 0

K	J
𝑡(𝑠)
𝑛(𝑠)
𝑏(𝑠)

K  

If 𝑔(𝛼′′(𝑠), 𝛼′′(𝑠) = 0, to rule out straight lines and points of inflexion on a, we shall 

suppose that 𝛼′′(𝑠) ≠ 0. The principal normal vector field 𝑛(𝑠)	is then the vector field 𝛼′′(𝑠). The 

binormal vector field 𝑏(𝑠) is the unique null vector field perpendicular to 𝑡(𝑠) at every point 𝛼(𝑠) 

of 𝛼, such that 𝑔(𝑛, 𝑏) = 1. The Frenet formulas are, in matrix notation, 
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J
𝑡!(𝑠)
𝑛!(𝑠)
𝑏!(𝑠)

K = J
0 𝜅(𝑠) 0
0 𝜏(𝑠) 0

−𝜅(𝑠) 0 −𝜏(𝑠)
K	J
𝑡(𝑠)
𝑛(𝑠)
𝑏(𝑠)

K,  

where the curvature 𝜅 can only take two values; 0 , when a is a straight line, or 1 in all other cases. 

If 𝛼(𝑠) is a straight line, then 𝛼′′(𝑠) = 0 = 𝑡′(𝑠) which means that 𝜅 = 0. If	𝛼(𝑠) is not a straight 

line, then there exists an interval 𝐼 on which 𝛼′′(𝑠) ≠ 0 [6]. 

Let 𝑥 and 𝑦 be future pointing (or past pointing) timelike vectors in 𝑅₁³. Then there is a 

unique real number 𝜃 > 0 such that  < 𝑥, 𝑦 >= −‖𝑥‖‖𝑦‖𝑐𝑜𝑠	ℎ𝜃. 

Let 𝑥	and 𝑦 be spacelike vectors in 𝑅₁³ that span a timelike vector subspace. Then there is 

a unique real number 𝜃 > 0 such that < 𝑥, 𝑦 >= ‖𝑥‖‖𝑦‖𝑐𝑜𝑠	ℎ𝜃. 

Let 𝑥	and 𝑦 be spacelike vectors in 𝑅₁³ that span a spacelike vector subspace. Then there 

is a unique real number 𝜃 > 0 such that < 𝑥, 𝑦 >= ‖𝑥‖‖𝑦‖𝑐𝑜𝑠𝜃. 

Let 𝑥 be a spacelike vector and 𝑦 be a timelike vector in 𝑅₁³.	Then there is a unique real 

number 𝜃 > 0 such that < 𝑥, 𝑦 >= ‖𝑥‖𝑦𝑠𝑖𝑛ℎ𝜃. [7]. 

Surface of rotation or surface of revolution are formed from circles centered on one of the 

axes with variable radii and the ruled surfaces are formed from lines along some fixed curve, but 

in variable direction. A surface is called surface of rotation, if it is obtained by rotation of a regular 

curve	𝑡 → (𝑟(𝑡), ℎ(𝑡)) around the 2-axis, in other words if it admits parameterization form as 

following 

𝑓(𝑡, 𝜙) = (𝑟(𝑡)𝑐𝑜𝑠𝜙, 𝑟(𝑡)𝑠𝑖𝑛𝜙, ℎ(𝑡)). 

Let 𝛼 = 𝛼(𝑠) be a curve in Minkowski space and 𝑋 = 𝑋(𝑠) be vector field along 𝛼, we 

have the parametrization for the ruled surface 𝑀 in	𝑅₁³ 

𝜑(𝑠, 𝑣) = 𝛼(𝑠) + 𝑣. 𝑋(𝑠),	

where the curve 𝛼 = 𝛼(𝑠) is called based curve and	𝑋 = 𝑋(𝑠)	is called a director curve of the 

ruled surface [8]. 

If the angle between 𝑋(𝑠) and (spacelike or timelike) osculating ( rectifying, normal ) plane 

is constant, then the surface 𝜑(𝑠, 𝑣) is called a constant slope surface with respect to (spacelike 

or timelike) osculating ( rectifying, normal ) planes to the curve 𝛼 [9]. 

3. Non-null Surfaces with Constant Slope Ruling with respect to Osculating Plane 
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Non-null surface with a constant slope ruling with respect to given plane is a term used of 

surfaces whose generating lines have the same 𝝈 deviation from the plane. 𝝈 is called the slope 

with respect to the plane. The ruled surface is defined by  

𝜑(𝑠, 𝑣) = 𝛼(𝑠) + 𝑣. 𝑋(𝑠), 

where 𝛼(𝑠) is a base curve and 𝑋(𝑠) is a direction vector. Surface with a constant slope ruling 

with respect to given plane in Minkowski space is a surface whose generating lines have the same 

σ slope with respect to the given plane by direction vectors.  The casual character of the direction 

vectors are changed according to character of the curve 𝛼 given following cases. 

Case 3.1. If 𝛼(𝑠) is a spacelike base curve with the principal spacelike normal vector field 

𝑛(𝑠), then the generating line of the surface is given as follows	

𝑋(𝑠) = 𝜎𝑒₁ + 𝑐𝑜𝑠	𝑤(𝑠)𝑡(𝑠) + 𝑠𝑖𝑛	𝑤(𝑠)𝑛(𝑠), 

and the surface with a constant slope ruling is parameterized by  

𝜙(𝑠, 𝑣) = 𝛼(𝑠) + 𝑣(𝜎𝑒₁ + 𝑐𝑜𝑠	𝑤(𝑠)𝑡(𝑠) + 𝑠𝑖𝑛	𝑤(𝑠)𝑛(𝑠)). 

Case 3.2. If the curve 𝛼(𝑠) is spacelike and its normal vector field 𝑛(𝑠) is timelike, then 

the generating line of the surface is given by 

𝑋̂(𝑠) = 𝑐𝑜𝑠ℎ	𝑤(𝑠)𝑡(𝑠) + 𝑠𝑖𝑛ℎ	𝑤(𝑠)𝑛(𝑠) + 𝜎(−𝑒₃),	

and the surface with a constant slope ruling is parameterized by 

𝜙̂(𝑠, 𝑣) = 𝛼(𝑠) + 𝑣(𝑐𝑜𝑠ℎ	𝑤(𝑠)𝑡(𝑠) + 𝑠𝑖𝑛ℎ	𝑤(𝑠)𝑛(𝑠) + 𝜎(−𝑒₃)). 

Case 3.3. If the 𝛼(𝑠) is timelike base curve with 𝑛(𝑠)	spacelike, then the generating line of 

the surface is given as follows 

𝑋_(𝑠) = 𝑠𝑖𝑛ℎ	𝑤(𝑠)𝑡(𝑠) + 𝑐𝑜𝑠ℎ	𝑤(𝑠)𝑛(𝑠) + 𝜎𝑒₃, 

and the surface with a constant slope ruling is parameterized by 

𝜙_(𝑠, 𝑣) = 𝛼(𝑠) + 𝑣(𝑠𝑖𝑛ℎ	𝑤(𝑠)𝑡(𝑠) + 𝑐𝑜𝑠ℎ	𝑤(𝑠)𝑛(𝑠) + 𝜎𝑒₃).	

3.1. Rotational non-null surface with a constant slope ruling with respect to 

osculating plane 
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In a surface with a constant slope ruling, if we take the base curve 𝛼 is pseudo circle and 

the director vector is given by constant angle, then we obtain the rotational surface. The circle is 

given by the vector functions in Minkowski space. We have different cases as following: 

Case 3.1.1. The 𝛼(𝑠) is a spacelike circle and its normal vector field 𝑛 is a spacelike vector. 

Then the curve 𝛼(𝑠) is given by  

𝛼(𝑠) = `0, 𝑟𝑐𝑜𝑠 a"#b , 𝑟𝑠𝑖𝑛 a
"
#
bc, 

and its Frenet frame are obtained as follows 

𝑡(𝑠) = `0,−𝑠𝑖𝑛 a"#b , 𝑐𝑜𝑠 a
"
#
bc, 

𝑛(𝑠) = `0,−𝑐𝑜𝑠 a"#b , −𝑠𝑖𝑛 a
"
#
bc, 

𝑏(𝑠) = −𝑒₁ = (−1,0,0).	

The surface with a constant slope ruling 𝜑(𝑠, 𝑣) with respect to osculating plane is obtained 

by  

𝜑(𝑠, 𝑣) = 𝛼(𝑠) + 𝑣. 𝑋(𝑠), 

where 𝑋(𝑠) = 𝜎𝑒$ + 𝑐𝑜𝑠	𝑤(𝑠)𝑡(𝑠) + 𝑠𝑖𝑛	𝑤(𝑠)𝑛(𝑠), with 𝑤(𝑠) is a constant.  

The surface has the parametric representation as follows 

𝑥 = 𝜎𝑣, 

𝑦 = 𝑟𝑐𝑜𝑠 a"
#
b − 𝑣𝑠𝑖𝑛 `𝑤(𝑠) + a"#bc,	

𝑧 = 𝑟𝑠𝑖𝑛 a"
#
b + 𝑣𝑐𝑜𝑠 `𝑤(𝑠) + a"#bc, 

𝑠 ∈ [0,2𝜋𝑟], 𝑣 ∈ 𝑅. The Cartesian representation of the surface 𝜑(𝑠, 𝑣)	is obtained as follows 

𝜎²(𝑦² + 𝑧²) − (𝑥 − 𝜎𝑟𝑠𝑖𝑛	𝑤(𝑠))² = 𝜎²𝑟²𝑐𝑜𝑠²𝑤(𝑠). 
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Figure 1: Example of the surface for 𝜎 = √3, 𝑟 = 2, 𝑢 = [0, 10] 

Case 3.1.2. If the circle 𝛼(𝑠)  is a spacelike and its normal vector field 𝑛(𝑠) is a timelike 

vector then the curve 𝛼(𝑠) is given by 

𝛼(𝑠) = a𝑟𝑐𝑜𝑠ℎ a"
#
b , 𝑟𝑠𝑖𝑛ℎ a"

#
b , 0b, 

and its Frenet - Serret frame vectors are obtained as follows 

𝑡(𝑠) = a𝑠𝑖𝑛ℎ a"
#
b , 𝑐𝑜𝑠ℎ a"

#
b , 0b,	

𝑛(𝑠) = a𝑐𝑜𝑠ℎ a"
#
b , 𝑠𝑖𝑛ℎ a"

#
b , 0b,	

𝑏(𝑠) = −𝑒₃ = (0,0, −1).	

The rotational surface with a constant slope ruling given as follows 

𝜑̂(𝑠, 𝑣) = 𝛼(𝑠) + 𝑣𝑋̂(𝑠), 

with the directional vector 

𝑋̂(𝑠) = 𝑐𝑜𝑠ℎ	𝑤(𝑠)𝑡(𝑠) + 𝑠𝑖𝑛ℎ	𝑤(𝑠)𝑛(𝑠) − 𝜎𝑒₃, 

and 𝑤(𝑠) = 𝑐𝑜𝑛𝑠𝑡. , 𝑔(𝑋, 𝑋) = 1 + 𝜎² > 0, then the vector 𝑋̂ is a spacelike vector. The 

parametric representation of the spacelike surface 𝜑̂(𝑠, 𝑣)	as follows; 

𝜑̂(𝑠, 𝑣) = a𝑟𝑐𝑜𝑠ℎ a"
#
b + 𝑣𝑠𝑖𝑛ℎ `𝑤 + a"#bc , 𝑟𝑠𝑖𝑛ℎ a

"
#
b + 𝑣𝑐𝑜𝑠ℎ `𝑤 + a"#bc , −𝑣𝜎b. 

In the Cartesian coordinate system the equation of the surface is written by 



Yavuz et al. (2020)  ADYU J SCI, 10(1), 240-255 
 

 247 

𝜎²(𝑥² + 𝑦²) + (𝑧 + 𝜎𝑟𝑠𝑖𝑛ℎ	𝑤(𝑠))² = 𝜎²𝑟²𝑐𝑜𝑠ℎ²𝑤(𝑠).	

Case 3.1.3. The rotational surface with a constant slope ruling generated by timelike circle 

𝛼(𝑠) = (𝑟𝑠𝑖𝑛ℎ a"
#
b , 𝑟𝑐𝑜𝑠ℎ a"

#
b , 0) in the timelike plane 

𝜑i(𝑠, 𝑣) = 𝛼(𝑠) + 𝑣𝑋_(𝑠), 

where 

𝑋_(𝑠) = 𝑠𝑖𝑛ℎ	𝑤(𝑠)𝑡(𝑠) + 𝑐𝑜𝑠ℎ	𝑤(𝑠)𝑛(𝑠) + 𝜎𝑒₃, 

(𝑤(𝑠) = 𝑐𝑜𝑛𝑠𝑡. ). After the similar calculations we have the surface as follows 

(𝑧 + 𝜎𝑟𝑐𝑜𝑠ℎ	𝑤(𝑠))² − 𝜎²(𝑦² − 𝑥²) = 𝜎²𝑟²𝑠𝑖𝑛ℎ²𝑤(𝑠). 

Remark 3.1.1. In all cases, each rotational surfaces with the constant slope 𝜎, 𝜎 ∈ (0,∞) 

is a rotational one sheet hyperboloid.	

3.2. Torsal non-null surface with constant slope ruling with respect to osculating plane 

A generatrix of a ruled surface is torsal, if for its each point there is one and the same 

tangent plane on the surface. A surface is developable if and only if it is a torsal ruled surface. In 

this section, we will investigate the conditions necessary for the surface to be a torsal surface. 

Case 3.2.1. Frenet-Serret vectors of the spacelike circle 𝛼(𝑠) can be expressed as follows 

𝑡(𝑠) 	= 	 (0, 𝑐𝑜𝑠𝛽(𝑠), 𝑠𝑖𝑛𝛽(𝑠)),	

𝑛(𝑠) 	= 	 (0, −𝑠𝑖𝑛𝛽(𝑠), 𝑐𝑜𝑠𝛽(𝑠)),	

Derivatives of the vector functions Frenet-Serret trihedron are given by 

𝑡!(𝑠) = 	𝛽!(𝑠). 𝑛(𝑠), 

𝑛′(𝑠) 	= 	−𝛽′(𝑠). 𝑡(𝑠), 

The partial derivatives a%&(",))
%"

b	of the vector functions can be expressed as follows 

												l
𝑑𝜑(𝑠, 𝑣)
𝑑𝑠

m = n1 − 𝑣𝑤!(𝑠)𝑠𝑖𝑛	𝑤(𝑠) − 𝑣𝛽!(𝑠)𝑠𝑖𝑛	𝑤(𝑠)o𝑡(𝑠) 

																											+𝑣𝑐𝑜𝑠	𝑤(𝑠). n𝛽!(𝑠)	+𝑤!(𝑠)o𝑛(𝑠).	
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In the last equation vector function defines the direction vectors of the tangents to the 

parametric curves for the constant 𝑣. 

So 𝑣 = 0, (%&(",))
%"

) = 𝑡(𝑠)	and for 𝑣 = 1, 

(
𝑑𝜑(𝑠, 𝑣)
𝑑𝑠

) = (1 − 𝑤′(𝑠)sin	 𝑤(𝑠) − 𝛽′(𝑠)sin	 𝑤(𝑠))𝑡(𝑠) + (cos	 𝑤(𝑠)𝛽′(𝑠)	 

																													+𝑐𝑜𝑠	𝑤(𝑠)𝑤′(𝑠))𝑛(𝑠). 

These vectors must be linearly dependent, so we obtained 

𝑐𝑜𝑠	𝑤(𝑠) 	= 	0,	

𝑤(𝑠) = 	a+,
-
b , 𝑘𝜀𝑍,	

or 

𝛽′(𝑠) + 𝑤′(𝑠) 	= 	0,	

𝑤(𝑠) = 	−𝛽(𝑠) + 𝑐, 𝑐 = 𝑐𝑜𝑛𝑠𝑡..	

Remark 3.2.1. The surface 𝜑(𝑠, 𝑣) is developable if and only if 𝑑𝑒𝑡(𝑡, 𝑋, 𝑋!) = 0.	 So, we 

calculate this equation as follows; 

𝑑𝑒𝑡(𝑡, 𝑋, 𝑋!)) = x
1 0 0
0 cos𝑤(𝑠) sin𝑤(𝑠)
0 1 − 𝑤! sin𝑤 − 𝛽! sin𝑤 cos𝑤(𝛽! +𝑤!)

x, 

𝑐𝑜𝑠	𝑤(𝑠)(𝛽′(𝑠) + 𝑤′(𝑠)) = 0. 

Case 3.2.2. If the circle 𝛼(𝑠) is spacelike curve and its normal vector 𝑛(𝑠)	is timelike, then 

the curve's Frenet-Serret vectors are 

𝑡(𝑠) 	= 	 (𝑐𝑜𝑠ℎ𝛽(𝑠), 𝑠𝑖𝑛ℎ𝛽(𝑠),0),	

𝑛(𝑠) 	= 	 (𝑠𝑖𝑛ℎ𝛽(𝑠), 𝑐𝑜𝑠ℎ𝛽(𝑠),0).	

Derivatives of the these vectors are	

𝑡′(𝑠) 	= 	𝛽′(𝑠). 𝑛(𝑠),	

𝑛′(𝑠) 	= 	𝛽′(𝑠). 𝑡(𝑠).	
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The partial derivative (%&.(",))
%"

) of the vector functions are, 

								l
𝑑𝜑̂(𝑠, 𝑣)
𝑑𝑠

m = [1 + 𝑣.𝑤!(𝑠). 𝑠𝑖𝑛ℎ	𝑤(𝑠) + 𝑣𝛽!(𝑠)𝑠𝑖𝑛ℎ	𝑤(𝑠)]𝑡(𝑠) 																			

+ 𝑣𝑐𝑜𝑠ℎ	𝑤(𝑠). n𝛽!(𝑠)𝑤!(𝑠)o𝑛(𝑠), 

for	𝑣 = 0, a%&.(",))
%"

b = 𝑡(𝑠), and for	𝑣 = 1, 

(
𝑑𝜑̂(𝑠, 𝑣)
𝑑𝑠

) 	= 	 [1 + 𝑤′(𝑠)𝑠𝑖𝑛ℎ	𝑤(𝑠) + 𝛽′(𝑠)𝑠𝑖𝑛ℎ	𝑤(𝑠)]𝑡(𝑠) + 𝑐𝑜𝑠ℎ	𝑤(𝑠). (𝛽′(𝑠)

+ 𝑤′(𝑠)). 𝑛(𝑠) 

If it is considered that the vector obtained for 𝑣 = 1 and the vector obtained for 𝑣 = 0 are 

linearly dependent the following equation is obtained as follows 

𝑐𝑜𝑠ℎ	𝑤(𝑠). (𝑤′(𝑠) + 𝛽′(𝑠)) = 0. 

Thus 

𝑖)𝑐𝑜𝑠ℎ	𝑤(𝑠) = 0	, 

or	

𝑖𝑖)𝑤′(𝑠) + 𝛽′(𝑠) = 0, 

and 𝑤(𝑠) = −𝛽(𝑠) + 𝑐.	

Case 3.2.3. The rotational surface generated by timelike circle 𝛼(𝑠) curve's Frenet-Serret 

from vectors in timelike plane are 

𝑡(𝑠) 	= 	 (𝑠𝑖𝑛ℎ𝛽(𝑠), 𝑐𝑜𝑠ℎ𝛽(𝑠),0),	

𝑛(𝑠) 	= 	 (𝑐𝑜𝑠𝛽(𝑠), 𝑠𝑖𝑛ℎ𝛽(𝑠),0).	

The partial derivative (%&/(",))
%"

) of the vector functions are 

(
𝑑𝜑i(𝑠, 𝑣)
𝑑𝑠

) 	= 	 [1 + 𝑣.𝑤′(𝑠). 𝑐𝑜𝑠ℎ	𝑤(𝑠) + 𝑣𝛽′(𝑠)𝑐𝑜𝑠ℎ	𝑤(𝑠)]𝑡(𝑠) + 𝑣𝑠𝑖𝑛ℎ	𝑤(𝑠). (𝛽′(𝑠)

+ 𝑤′(𝑠))𝑛(𝑠)	,	

for 𝑣 = 0,	
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(%&/(",))
%"

) = 𝑡(𝑠),	

and for 𝑣 = 1,	

(
𝑑𝜑i(𝑠, 𝑣)
𝑑𝑠

) 	= 	 (1 + 𝑤!(𝑠) cosh𝑤(𝑠) + 𝛽!(𝑠) cosh𝑤(𝑠))𝑡(𝑠) + 𝑠𝑖𝑛ℎ	𝑤(𝑠). (𝛽′(𝑠)

+ 𝑤′(𝑠)). 𝑛(𝑠).	

Thus, 

𝑖)	𝑠𝑖𝑛ℎ	𝑤(𝑠) = 0 ⇒ 𝑤(𝑠) = 0,	

or 

𝑖𝑖)	𝑤!(𝑠) + 𝛽!(𝑠) = 0, 𝑤(𝑠) = −𝛽(𝑠) + 𝑐. 

4. Generalized Non-null Surface with Constant Slope Ruling with respect to 

Osculating Plane  

Generating lines of the surface are given by points on the curve 𝑋(𝑠) and they have the 

constant slope with respect to the osculating planes to the curve at every point on the curve 𝑋(𝑠). 

The surface will be called generalized surface with constant slope ruling with respect to the 

osculating planes. The definitions of this type surface according to casual characters in 

Minkowski space are described in the following cases. 

Case 4.1. The generalized surface with constant slope ruling with respect to osculating 

plane of the spacelike curve (whose normal vector is spacelike) is given as follows 

𝑀(𝑠, 𝑣) = 𝛼(𝑠) + 𝑣(𝑢(𝑠)).,	

such that 

𝑢(𝑠) = 𝑠𝑖𝑛	𝑤(𝑠)𝑡(𝑠) + 𝑐𝑜𝑠	𝑤(𝑠)𝑛(𝑠) + 𝜎𝑏(𝑠). 

Case 4.2. The generalized surface with constant slope ruling with respect to osculating 

plane with spacelike curve and timelike normal vector is defined as follows 

𝑀0(𝑠, 𝑣) = 𝛼(𝑠) + 𝑣(𝑢̂(𝑠)), 

with following generating line  

𝑢̂(𝑠) = 𝑐𝑜𝑠ℎ	𝑤(𝑠)𝑡(𝑠) + 𝑠𝑖𝑛ℎ	𝑤(𝑠)𝑛(𝑠) + 𝜎𝑏(𝑠). 
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Case 4.3. The generalized surface with constant slope ruling with respect to the osculating 

plane with timelike curve and spacelike normal vector is defined by 

𝑀|(𝑠, 𝑣) = 𝛼(𝑠) + 𝑣(𝑢i(𝑠)), 

where 

𝑢i(𝑠) = 𝑠𝑖𝑛ℎ	𝑤(𝑠)𝑡(𝑠) + 𝑐𝑜𝑠ℎ	𝑤(𝑠)𝑛(𝑠) + 𝜎𝑏(𝑠). 

Example 4.1. Let the curve parameterized by vector function 

𝛼(𝑠) = l8𝑐𝑜𝑠 a"
-
b , 8𝑠𝑖𝑛 a"

-
b ,~6 a"

-
bm. 

The generalized surface with constant slope ruling with respect to the osculating plane for 𝑠 ∈

[0,30]	, 𝑤(𝑠) = ( -"
$1√-

) and 𝜎 = a$
3
b	is shown in following Fig. 2.	

	

Figure 2: Example of the surface for 𝑠 ∈ [0,30]	, 𝑤(𝑠) = ( !"
#$√!

) and 𝜎 = 3#
&
4 

4.1. Developable of generalized non-null surface with constant slope ruling with 

respect to the osculating plane  

In this subsection, we investigate the developable condition for the generalized surface with 

constant slope ruling with respect to the osculating plane with Frenet Frame in Minkowski Space 

and give some relations and special cases about developable condition. 
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Theorem 4.1.1. The generalized surface 𝑀(𝑠, 𝑣) with constant slope ruling of the spacelike 

curve (whose normal vector is spacelike) is developable surface if and only if 

𝜏(𝑐𝑜𝑠²𝑤(𝑠) − 𝜎²) = 𝜎𝑠𝑖𝑛	𝑤(𝑠)(𝜅 − 𝑤′(𝑠)),	

where the functions 𝜅 and 𝜏 are the first and second curvatures of the spacelike base curve, 

respectively. 

Proof. If the surface 𝑀(𝑠, 𝑣) is developable surface, then it satisfies the following equality 

𝑑𝑒𝑡(𝑡, 𝑢(𝑠), 𝑢(𝑠)′) = 0. 

It is calculated 𝑑𝑒𝑡(𝑡, 𝑢(𝑠), 𝑢(𝑠)′) for the surface 𝑀(𝑠, 𝑣) 

𝑢(𝑠)′ = (𝑐𝑜𝑠	𝑤(𝑠)(𝑤′(𝑠) − 𝜅))𝑡(𝑠) + (𝑠𝑖𝑛	𝑤(𝑠)(𝜅 − 𝑤′(𝑠)) + 𝜎𝜏)𝑛(𝑠) + (𝜏𝑐𝑜𝑠	𝑤(𝑠)𝑏(𝑠)),	

𝑑𝑒𝑡(𝑡, 𝑢(𝑠), 𝑢(𝑠)!) 	= 	𝜏(𝑐𝑜𝑠-𝑤(𝑠) − 𝜎-) − 𝜎𝑠𝑖𝑛	𝑤(𝑠)n𝜅 − 𝑤!(𝑠)o = 0.	

So developable condition for generalized surface with constant slope ruling with respect to the 

osculating plane 𝑀(𝑠, 𝑣) is given by 

Remark 4.1.1. If 𝑐𝑜𝑠	𝑤(𝑠) = 𝑥$ = 𝑐𝑜𝑛𝑠𝑡. and sin 𝑤(𝑠) = 𝑥₂ = 𝑐𝑜𝑛𝑠𝑡. 

a4
5
b = a 67!

7"!06!
b, 

then the surface 𝑀(𝑠, 𝑣)	is developable if and only if the base curve 𝛼(𝑠) is a helix. 

Theorem 4.1.2. The surface 𝑀�(𝑠, 𝑣) is developable surface if and only if 

𝜏(𝑠𝑖𝑛	ℎ²𝑤(𝑠) − 𝜎²) = 𝜎𝑐𝑜𝑠ℎ	𝑤(𝑠)(𝜅 + 𝑤′(𝑠)).	

Proof.  If the surface 𝑀�(𝑠, 𝑣) is developable, then it satisfies the following equality 

𝑢̂(𝑠)! = n𝑠𝑖𝑛ℎ	𝑤(𝑠)(𝑤!(𝑠) − 𝜅)o𝑡(𝑠) + n𝑐𝑜𝑠ℎ	𝑤(𝑠)n𝜅 − 𝑤!(𝑠)o + 𝜎𝜏o𝑛(𝑠)

+ n𝜏𝑠𝑖𝑛ℎ	𝑤(𝑠)o𝑏(𝑠), 

						𝑑𝑒𝑡(𝑡, 𝑢̂(𝑠), 𝑢̂(𝑠)!) 	= 	𝜏(𝑠𝑖𝑛ℎ-𝑤(𝑠) − 𝜎-) − 𝜎𝑐𝑜𝑠ℎ	𝑤(𝑠)n𝜅 − 𝑤!(𝑠)o = 0.	

So developable condition for the surface 𝑀�	(𝑠, 𝑣)	is obtained as follows 

																		𝜏(𝑠𝑖𝑛ℎ²𝑤(𝑠) − 𝜎²) = 𝜎𝑐𝑜𝑠ℎ	𝑤(𝑠)(𝜅 − 𝑤′(𝑠)). 
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Remark 4.1.2. The surface 𝑀�(𝑠, 𝑣)	is developable surface if and only if the base curve is 

a helix with 

(4
5
) = ( 67"

7!!06!
), 

where 𝑐𝑜𝑠	𝑤(𝑠) = 𝑥$ = 𝑐𝑜𝑛𝑠𝑡. and sin 𝑤(𝑠) = 𝑥₂ = 𝑐𝑜𝑛𝑠𝑡. 

Theorem 4.1.3. The surface 𝑀|(𝑠, 𝑣) is developable surface if and only if 

𝜏(cos ℎ-𝑤(𝑠) + 𝜎-) = 𝜎 sinh𝑤(𝑠) n𝜅 + 𝑤!(𝑠)o. 

Proof. By taking derivative of 𝑢i(𝑠) is obtained as follows 

𝑢i(𝑠)′ = (𝑠𝑖𝑛ℎ	𝑤(𝑠)(𝑤′(𝑠) − 𝜅))𝑡(𝑠) + (𝑐𝑜𝑠ℎ	𝑤(𝑠)(𝜅 − 𝑤′(𝑠)) + 𝜎𝜏)𝑛(𝑠)

+ (𝜏𝑠𝑖𝑛ℎ	𝑤(𝑠))𝑏(𝑠). 

Then 

𝜏(𝑐𝑜𝑠ℎ²𝑤(𝑠) + 𝜎²) − 𝜎𝑠𝑖𝑛ℎ	𝑤(𝑠)(𝜅 + 𝑤′(𝑠)) = 0. 

Thus, the condition that ensures the surface can be developable is as following 

															𝜏(𝑐𝑜𝑠	ℎ²𝑤(𝑠) + 𝜎²) = 𝜎𝑠𝑖𝑛ℎ	𝑤(𝑠)(𝜅 + 𝑤′(𝑠)). 

Remark 4.1.3. We can say that the surface 𝑀|(𝑠, 𝑣) is developable if and only if the base 

curve is a helix with 

(4
5
) = ( 6"89:	<

=>":!<?6!
), 

where 𝑐𝑜𝑠	𝑤(𝑠) = 𝑥₁ = 𝑐𝑜𝑛𝑠𝑡 and sin 𝑤(𝑠) = 𝑥₂ = 𝑐𝑜𝑛𝑠𝑡. 

4.2. Striction line of generalized non-null surface with constant slope ruling with 

respect to osculating plane  

The striction point on a surface is the foot of the common normal between two consecutive 

generators (or ruling). The set of striction points defines the striction curve given by [10] 

𝛽 = 𝛼(𝑠) − ( @A,BC
@B#,B#C

). 𝑋(𝑠).	
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Theorem 4.2.1. The striction line on 𝑀(𝑠, 𝑣) is given by 

𝛽 = 𝛼(𝑠) − l
=>"	D(")E50D#(")F

G50D#(")H!?4!G6!0=>"!D(")H?-"89!D(")G50D#(")H64
m 𝑢(𝑠). 

Proof. By taking derivative of 𝑢(𝑠) is calculated as 

𝑢(𝑠)′ = (𝑐𝑜𝑠	𝑤(𝑠)(𝑤′(𝑠) − 𝜅))𝑡(𝑠) + (𝑠𝑖𝑛	𝑤(𝑠)(𝜅 − 𝑤′(𝑠)) + 𝜎𝜏)𝑛(𝑠) + (𝜏𝑐𝑜𝑠	𝑤(𝑠)𝑏(𝑠))	

and 

< 𝑡, 𝑢(𝑠) >= 𝑐𝑜𝑠	𝑤(𝑠)(𝜅 − 𝑤′(𝑠)), 

< 𝑢(𝑠)′, 𝑢(𝑠)′ >= (𝜅 − 𝑤′(𝑠))² + 𝜏²(𝜎² − 𝑐𝑜𝑠²𝑤(𝑠)) + 2𝑠𝑖𝑛²𝑤(𝑠)(𝜅 − 𝑤′(𝑠))𝜎𝜏.	

Theorem 4.2.2. The striction line on surface 𝑀�(𝑠, 𝑣)	is given as follows 

𝛽 = 𝛼(𝑠) − (
0"89:D(")E5?D#(")F

G5?D#(")HEG5?D#(")H0-=>":	D(")64F?4!G6!?"89:!D(")H
)𝑢(𝑠). 

Proof.  By taking derivative of 𝑢̂(𝑠) is obtained as follows 

𝑢̂(𝑠)′ = (𝑠𝑖𝑛ℎ	𝑤(𝑠)(𝑤′(𝑠) − 𝜅))𝑡(𝑠) + (𝑐𝑜𝑠ℎ	𝑤(𝑠)(𝜅 − 𝑤′(𝑠)) + 𝜎𝜏)𝑛(𝑠)

+ (𝜏𝑠𝑖𝑛ℎ	𝑤(𝑠))𝑏(𝑠) 

and 

< 𝑡, 𝑢̂(𝑠) >= −𝑠𝑖𝑛ℎ	𝑤(𝑠)(𝜅 + 𝑤′(𝑠)), 

< 𝑢̂(𝑠)′, 𝑢̂(𝑠)′ >= (𝜅 + 𝑤′(𝑠))((𝜅 + 𝑤′(𝑠)) − 2𝑐𝑜𝑠ℎ	𝑤(𝑠)𝜎𝜏) + 𝜏²(𝜎² + 𝑠𝑖𝑛ℎ²𝑤(𝑠)). 

If the obtained values are written in place of the striction line equation, then the proof is 

completed. 

Theorem 4.2.3. The striction line on surface 𝑀|(𝑠, 𝑣) is defined by 

𝛽 = 𝛼(𝑠) − �
=>":	D(")E5?D#(")F

E=>":!D(")G50D#(")H!?I"89:	D(")G50D#(")H064HJ
! + 𝑐𝑜𝑠ℎ-𝑤(𝑠)𝜏-�𝑢i(𝑠). 

Proof. Proof of the theorem can be obtained by making calculations similar to the proof of 

the previous two theorems. 
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