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Abstract

In this article, we define the concept of A-Cauchy, A-uniform convergence and A-
pointwise convergence of a family of functions {f;};ej, where JJ is a time scale. We study the
relationships between these notions. Moreover, we introduced sufficient conditions for

interchangeability A-limitation with Riemann A-integration or A-differentiation. Also, we obtain

the analogue of the well-known Dini's Theorem.
Keywords: A-Convergence; A-Cauchy; Statistical convergence.
Zaman Skalas1 Uzerinde A-Diizgiin ve A-Noktasal Yakinsakhk
Oz

Bu makalede ] bir zaman skalas1 olmak iizere, {f;};ej fonksiyon ailesi igin A-Cauchy, A-
diizgiin yakinsaklik ve A-noktasal yakinsaklik kavramlar1 verilerek bu kavramlar arasindaki
iligkiler incelenmistir. A-limit ile Riemann A-integrali ve A-tiirevin yer degisme problemi

arastirilarak Dini Teoreminin farkli bir versiyonu elde edilmistir.

Anahtar Kelimeler: A-Y akinsaklik; A-Cauchy; Istatistiksel yakinsaklik.
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1. Introduction and Preliminaries

The time scale calculus was introduced in 1989 by German mathematician Stefan Hilger
[1]. It is a unification of the theory of differential equations with that of difference equations. This

theory was developed to a certain extent in [2] by Hilger.

The notion of statistical convergence for complex number sequences was introduced by
Fast in [3]. Schoenberg gave some properties of this concept [4]. Fridy progressed with the

statistically Cauchy and showed the equivalence of these concepts in [5].

In recent years, there are many studies based on the density function, which is defined on
some subsets of time scale. For instance, first author and Tan [6] gave the notions of A-Cauchy
and A-convergence of a function defined on time scale by using A-density. The notion of m- and
(A4, m)- uniform density of a set and the concept of m- and (4, m)- uniform convergence on a time
scale were presented by Altin et al. [7]. Also, Altin et al. gave A-statistical convergence on time
scale and examined some of its features [8]. Some fundamental properties of Lacunary statistical

convergence and statistical convergence on time scale investigated by Turan and Duman in [9].

Let S be the collection of all subsets of time scale ] in the form of [a, b), where [a,a) = @.
Then § is a semiring on J. The set function m defined by m([a, b)) = b — a is a measure on S.

The outer measure m*: § — [0, o] generated by m is defined by
m*(A): = inf{z (by — a,): A C U [an,bn)}.
n=1 n=1

The family of all m*-measurable (it is also called A-measurable) sets M' = M (m*) isa o-
algebra and it is well known that from the measure theory the restriction of m* to M’, which we

denote by p,, is a measure. This measure is called Lebesgue A-measure on J.

Definition 1. [5] Let A € N, and

msn,meA

The asymptotic density of A is defined by §(4) = lim,n"'A4,, which is also called natural
density. The real number sequence x = (x;,) is statistically convergent to [ if for each € > 0,

6({n € N:|x,, — l| = €} = 0; in this case we write st-lim x = L.

From now on we assume that sup ] = oo and ] has a minimum for the time scale J.
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Definition 2. (A -Density) [6] Let B be a subset of J] such that B € M and a = minJJ. A-
density of B in ] is defined by

85(B): = JZ%M;BQ;—R{D

provided that this limit exists.

A property of points of ] is said to hold A-almost everywhere (or A-almost all j € ]) if the
set of points in J at which it fails to hold has zero A-density. The expression A-almost everywhere

abbreviated to A-a.e.

Definition 3. (A -Convergence) [6] If for every € > 0, the inequality |g(j) — | < € holds
A-a.e. on J, then g:J] = R is called A-convergent to [ € R (or has A-limit). In this case we write

A-limjoo f () = L.

Definition 4. (A-Cauchy) [6] The function g: ] = R is A-Cauchy provided that for each
€ > 0, there exist K = K(€¢) € J and j, € ] such that §,(K) =1 and |g(j) — g(jo)| < € holds
forall j € K.

Note that the A-density, A-Cauchy and A-Convergence coincide with the natural density,

statistical Cauchy and statistical convergence respectively whenever ] is the natural numbers.
2. A-Pointwise and A-Uniform Convergence

In this section, we will deal with the family of functions {f;};¢j whose elements defined on

any subset of real numbers.

Definition 5. (A-Pointwise Convergence) Let B € R and for each j € JJ, f; and f be real
valued functions on B. The family {f;};¢j converges A-pointwise to f on B, if for each given € >

0 and t € B, the inequality |f;(t) — f(t)| < € holds A-a.e. on J. This notion is abbreviated as

Definition 6. (A-Uniform Convergence) Let B € R and for each j € J, f; and f be real
valued functions on B. The family {f;};¢; converges A-uniformly to f on B, if for each given € >

0, the inequality |fj(t) — f(t)| < € holds A-a.c. on ] and for all ¢t € B. In this case we write
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Definition 7. (A-Uniform Cauchy) Let B € R and {f;} be a family of real valued functions
defined on B. The family {f;}ej, A-uniform Cauchy on B, if for all € > 0 there exists a subset
K = K(€) of ] and j, € J such that §,(K) = 1 and |f;(¢) — fj,(t)| < € for all j € K and for all

t €B.

Example 8. Let ] = [0, ) and B € R. We denote the irrational and rational numbers in

0, o) by Iy ) and Qg o0y, respectively. We consider the functions f;: B = R (j € J) defined as;
[0,00) [0,0) j

Sinjt, ] (S Q[O,oo)
£ = {0 e,
y ] [0,00)

Since the set Q[o,0) has zero density in J, the density of I «) is one. Hence, {fj}je; 3 f = 0 on

B.

It is easily seen that A-uniform convergence implies A-pointwise convergence, but the

converse is not always true as we can see from the following counter-examle.

Example 9. Let ] = [1,) and j € J. Consider the functions fj: [0, ) — R defined as;

t .

£(6) = I € Q1,m0)

j , .
0, je H[O,oo)

Although {f;};¢j is A-pointwise convergent to f = 0, it is not A-uniform convergent.
The proof of the following theorem is clear.

Theorem 10. Let (f,),en be a sequence of real valued functions defined on B € R. If

(fn)nen converges uniformly (pointwise) to f, then {f;, },en converges A-uniformly (A-pointwise)

to f.

Theorem 11. Let {fj};e be a family of real valued functions defined on B ¢ R. If
{fi}jey = f on B, then {fj};ej 3 f on B if and only if

A = limsupl|f;(t) — f(t)| = 0.
]2 teB

Theorem 12. Let {f;} j¢j be a family of real valued functions defined on B € R. {f;};¢j 3

f on B if and only if it is A-uniform Cauchy on B.

Proof. Necessity is obvious. Let {f;};ej be A-uniform Cauchy on B. For a given € > 0

there exists j, € J and K c ] such that §,(K) = 1, the inequality
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15@®) = fi, O <=, ©)

holds for all j € K and t € B. Let g;:] — R defined by g:(j) = f;(t) for each t € B. For each

fixed t
19:G) — g:Go)l = 1f;(®) = fj, (O] <,

holds A-a.e. on J. Therefore, the functions g;, (t € B) are A-Cauchy. These functions have A-
limit. Let f(t) = A-lim;_,,g:(j). As j = o, the A-limit of (1) yields

F(®) = fi, (] <= #)
In view of inequalities (1) and (2), one can get

If;® = F®| < |f;® - £, O] + |f;, () — F®] <€,
forall j € K and for all t € B.

Theorem 13. Let T and ] be two time scales and [a, ] € B € T. If f; € Cq(B,R): =
{fIf:B » R isrd — continuous} for all j € ], and {fj} ;¢ 3 f, then f € C,4(B,R) and

B B
A lim L fi(©AL = L F(DAE.

Proof. Let any positive € be given. In accordance with A-uniform convergence, the time

scale ] has a subset K such that §5,(K) = 1 and the inequality
JORSIOIRS
holds for all j € K and for all t € B.

Let jo € K and t, € B are arbitrary. We consider two cases. In the first case we assume

that ¢ is left-dense. From rd-continuity of f; , we can find § > 0 such that

1) = fi I <3,

for any &,1 € (tg — 8, tp). If t;, = tg as n — oo, then there exists natural number ny such that

n,m > ng imply t,,, t, € (t; — 8, ¢tp) and

o (tn) = fio (tm)] < = 3)
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Hence, for m, n > ny, we have
If (tn) = f(Em)] = If (tn) = fjo (tn) + fy (tn) = fy (tm) + g (tm) — f(Em)]
< If () = fiy )] + Iy (En) = S, (Em)]
Ffjo (tm) = f(tm)]
<e “4)
Therefore, the function f has finite left-sided limit at ¢;.

In the second case we assume that t, is right-dense. Then all functions f; are continuous at
to. If t;, = ty as n — oo, then there exists natural number n, such that n,m > ng imply t,,,, t,, €
(to — 6,ty + &) and (3-4) holds. This is implies continuity of f at t,. Therefore, f is Riemann A-

integrable on every subinterval [@, 8] € B. So, we obtain the inequality

B €
< L Ifi(®) = F@®]at < 3B -,

L ’ £ (AL — L ’ JIO)Y:

for every j € K that completes our proof.
Theorem 14. Let T and ] be two time scales and [a, 8] € T. Suppose that the functions
firla, Bl >R (€]
satisfies the following conditions on [a, £] :
1. f; has Hilger derivative and its Hilger derivative fjA is rd-continuous,
2. {itig = 1
3. {ff Y 3 9.
Then f has Hilger derivative on [a, 8] and f2(t) = g(t) forall t € [a,f].

Proof. g is rd-continuous on [a, 8] by Theorem 13 and so g is Riemann A-integrable on

this interval. By the help of Theorem 13, we have

Jo9)As = A= lim [CFAF()As = A= lim (f;(©) = fi(@)) = f(©) = f(@).
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forall t € [a, B]. Since the left hand-side of the last equality has Hilger derivative, the right hand-
side also has, and it follows that f2(t) = g(t) forall t € [a,p].

Theorem 15. (Dini's Theorem) Let X be a compact metric space. Let f: X — R be a
continuous function and the functions fj: X — R, (j € J) are continuous for A-almost all J. If the

following two conditions are satisfied:

1. {fj}jg = fonX,

2. fj(x) < fi(x) for all x € X and A-almost all i,j € J such that i < j,
then {fj};jey 3 f on X.

Proof. There exists a subset K; € ] with A-density 1. Moreover, for each j € K; the

functions f; are continuous, and
fi(x) < fi(x) forall x€X,

holds for all i,j € Ky such that i < j. For each j € Ky, define g; = f; — f. Then {g;} ek, is a
family of continuous functions on the compact metric space X that converges A-pointwise to 0.

Furthermore,
0=<g;(x) =< gix),
forallx € X and i,j € K; such thati < j.
Let € > 0 and define
Gi={x€X:gj(x)<e€}, (JE Ky).
Since g; is continuous, then G; is an open set and G; € G; for each i, j € K; such that i < j.

Let xo € X be arbitrary. Since A-lim;_,,g;(xo) = 0, then there exists a subset K, < ] such
that 55 (K;) = 1 and the inequality |g;(xo)| < € holds for all j € K. If we set K = K; N K, then
6p(K) =1 and g;(xo) = 1gj(xo)| < € for all j € K. Thus x, € G; for all j € K, and thus, we

have

X == UjEK G]
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Since K is compact and G; © G; when i < j, then there is a j, € K with G;, = X. Then we have
G; = X for all j € K such that j > j,. This implies that f;j(x) — f(x) = g;(x) < eforallx € X
and j € K such that j > j,. Consequently, {f;};ej 3 f on X.
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