

On Δ-Uniform and Δ-Pointwise Convergence on Time Scale

Mustafa Seyyit SEYYİDOĞLU^{1,*}, Ayşe KARADAŞ²

¹Uşak University, Department of Mathematics, Uşak, Turkey seyyit.seyyidoglu@usak.edu.tr, ORCID: 0000-0001-9129-1373
 ²Uşak University, Institute of Science and Technology, Uşak, Turkey aysekaradas9496@gmail.com, ORCID: 0000-0000-0000

Received: 29.03.2019 Accepted: 03.03.2020 Published: 25.06.2020

Abstract

In this article, we define the concept of Δ -Cauchy, Δ -uniform convergence and Δ pointwise convergence of a family of functions $\{f_j\}_{j \in J}$, where J is a time scale. We study the
relationships between these notions. Moreover, we introduced sufficient conditions for
interchangeability Δ -limitation with Riemann Δ -integration or Δ -differentiation. Also, we obtain
the analogue of the well-known Dini's Theorem.

Keywords: Δ -Convergence; Δ -Cauchy; Statistical convergence.

Zaman Skalası Üzerinde Δ-Düzgün ve Δ-Noktasal Yakınsaklık

Öz

Bu makalede J bir zaman skalası olmak üzere, $\{f_j\}_{j \in J}$ fonksiyon ailesi için Δ -Cauchy, Δ düzgün yakınsaklık ve Δ -noktasal yakınsaklık kavramları verilerek bu kavramlar arasındaki ilişkiler incelenmiştir. Δ -limit ile Riemann Δ -integrali ve Δ -türevin yer değişme problemi araştırılarak Dini Teoreminin farklı bir versiyonu elde edilmiştir.

Anahtar Kelimeler: Δ-Yakınsaklık; Δ-Cauchy; İstatistiksel yakınsaklık.

1. Introduction and Preliminaries

The time scale calculus was introduced in 1989 by German mathematician Stefan Hilger [1]. It is a unification of the theory of differential equations with that of difference equations. This theory was developed to a certain extent in [2] by Hilger.

The notion of statistical convergence for complex number sequences was introduced by Fast in [3]. Schoenberg gave some properties of this concept [4]. Fridy progressed with the statistically Cauchy and showed the equivalence of these concepts in [5].

In recent years, there are many studies based on the density function, which is defined on some subsets of time scale. For instance, first author and Tan [6] gave the notions of Δ -Cauchy and Δ -convergence of a function defined on time scale by using Δ -density. The notion of *m*- and (λ, m) - uniform density of a set and the concept of *m*- and (λ, m) - uniform convergence on a time scale were presented by Altin et al. [7]. Also, Altin et al. gave λ -statistical convergence on time scale and examined some of its features [8]. Some fundamental properties of Lacunary statistical convergence and statistical convergence on time scale investigated by Turan and Duman in [9].

Let S be the collection of all subsets of time scale J in the form of [a, b), where $[a, a) = \emptyset$. Then S is a semiring on J. The set function m defined by m([a, b)) = b - a is a measure on S. The outer measure $m^*: S \to [0, \infty]$ generated by m is defined by

$$m^*(A) := \inf \left\{ \sum_{n=1}^{\infty} (b_n - a_n) : A \subset \bigcup_{n=1}^{\infty} [a_n, b_n) \right\}.$$

The family of all m^* -measurable (it is also called Δ -measurable) sets $\mathcal{M} = \mathcal{M}(m^*)$ is a σ algebra and it is well known that from the measure theory the restriction of m^* to \mathcal{M} , which we
denote by μ_{Δ} , is a measure. This measure is called Lebesgue Δ -measure on \mathbb{J} .

Definition 1. [5] Let $A \subset \mathbb{N}$, and

$$A_n = \sum_{m \le n, m \in A} 1.$$

The asymptotic density of A is defined by $\delta(A) = \lim_{n \to \infty} n^{-1}A_n$, which is also called natural density. The real number sequence $x = (x_n)$ is statistically convergent to l if for each $\epsilon > 0$, $\delta(\{n \in \mathbb{N} : |x_n - l| \ge \epsilon\} = 0$; in this case we write st-lim x = l.

From now on we assume that $\sup \mathbb{J} = \infty$ and \mathbb{J} has a minimum for the time scale \mathbb{J} .

Definition 2. (Δ -Density) [6] Let *B* be a subset of \mathbb{J} such that $B \in \mathcal{M}$ and $a = \min \mathbb{J}$. Δ -density of *B* in \mathbb{J} is defined by

$$\delta_{\Delta}(B) := \lim_{j \to \infty} \frac{\mu_{\Delta}(B \cap [a, j])}{\sigma(j) - a}$$

provided that this limit exists.

A property of points of J is said to hold Δ -almost everywhere (or Δ -almost all $j \in J$) if the set of points in J at which it fails to hold has zero Δ -density. The expression Δ -almost everywhere abbreviated to Δ -a.e.

Definition 3. (Δ -Convergence) [6] If for every $\epsilon > 0$, the inequality $|g(j) - l| < \epsilon$ holds Δ -a.e. on \mathbb{J} , then $g: \mathbb{J} \to \mathbb{R}$ is called Δ -convergent to $l \in \mathbb{R}$ (or has Δ -limit). In this case we write Δ -lim_{$j\to\infty$} f(j) = l.

Definition 4. (Δ -Cauchy) [6] The function $g: \mathbb{J} \to \mathbb{R}$ is Δ -Cauchy provided that for each $\epsilon > 0$, there exist $K = K(\epsilon) \subset \mathbb{J}$ and $j_0 \in \mathbb{J}$ such that $\delta_{\Delta}(K) = 1$ and $|g(j) - g(j_0)| < \epsilon$ holds for all $j \in K$.

Note that the Δ -density, Δ -Cauchy and Δ -Convergence coincide with the natural density, statistical Cauchy and statistical convergence respectively whenever J is the natural numbers.

2. Δ-Pointwise and Δ-Uniform Convergence

In this section, we will deal with the family of functions $\{f_j\}_{j \in J}$ whose elements defined on any subset of real numbers.

Definition 5. (Δ -Pointwise Convergence) Let $B \subset \mathbb{R}$ and for each $j \in J$, f_j and f be real valued functions on B. The family $\{f_j\}_{j \in J}$ converges Δ -pointwise to f on B, if for each given $\epsilon > 0$ and $t \in B$, the inequality $|f_j(t) - f(t)| < \epsilon$ holds Δ -a.e. on J. This notion is abbreviated as $\{f_j\}_{j \in J} \to f$ on B.

Definition 6. (Δ -Uniform Convergence) Let $B \subset \mathbb{R}$ and for each $j \in J$, f_j and f be real valued functions on B. The family $\{f_j\}_{j \in J}$ converges Δ -uniformly to f on B, if for each given $\epsilon > 0$, the inequality $|f_j(t) - f(t)| < \epsilon$ holds Δ -a.e. on J and for all $t \in B$. In this case we write $\{f_j\}_{j \in J} \rightrightarrows f$ on B.

Definition 7. (Δ -Uniform Cauchy) Let $B \subset \mathbb{R}$ and $\{f_j\}$ be a family of real valued functions defined on B. The family $\{f_j\}_{j\in J}$, Δ -uniform Cauchy on B, if for all $\epsilon > 0$ there exists a subset $K = K(\epsilon)$ of J and $j_0 \in J$ such that $\delta_{\Delta}(K) = 1$ and $|f_j(t) - f_{j_0}(t)| < \epsilon$ for all $j \in K$ and for all $t \in B$.

Example 8. Let $\mathbb{J} = [0, \infty)$ and $B \subset \mathbb{R}$. We denote the irrational and rational numbers in $[0, \infty)$ by $\mathbb{I}_{[0,\infty)}$ and $\mathbb{Q}_{[0,\infty)}$, respectively. We consider the functions $f_j: B \to \mathbb{R}$ $(j \in \mathbb{J})$ defined as;

$$f_j(t) = \begin{cases} \sin jt, & j \in \mathbb{Q}_{[0,\infty)} \\ 0, & j \in \mathbb{I}_{[0,\infty)} \end{cases}.$$

Since the set $\mathbb{Q}_{[0,\infty)}$ has zero density in \mathbb{J} , the density of $\mathbb{I}_{[0,\infty)}$ is one. Hence, $\{f_j\}_{j\in\mathbb{J}} \Rightarrow f = 0$ on *B*.

It is easily seen that Δ -uniform convergence implies Δ -pointwise convergence, but the converse is not always true as we can see from the following counter-examle.

Example 9. Let $\mathbb{J} = [1, \infty)$ and $j \in \mathbb{J}$. Consider the functions $f_j: [0, \infty) \to \mathbb{R}$ defined as:

$$f_j(t) = \begin{cases} \frac{t}{j}, & j \in \mathbb{Q}_{[1,\infty)} \\ 0, & j \in \mathbb{I}_{[0,\infty)} \end{cases}$$

Although $\{f_j\}_{j \in J}$ is Δ -pointwise convergent to f = 0, it is not Δ -uniform convergent.

The proof of the following theorem is clear.

Theorem 10. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of real valued functions defined on $B \subset \mathbb{R}$. If $(f_n)_{n \in \mathbb{N}}$ converges uniformly (pointwise) to f, then $\{f_n\}_{n \in \mathbb{N}}$ converges Δ -uniformly (Δ -pointwise) to f.

Theorem 11. Let $\{f_j\}_{j \in \mathbb{J}}$ be a family of real valued functions defined on $B \subset \mathbb{R}$. If $\{f_j\}_{j \in \mathbb{J}} \to f$ on B, then $\{f_j\}_{j \in \mathbb{J}} \rightrightarrows f$ on B if and only if

$$\Delta - \lim_{j \to \infty} \sup_{t \in B} |f_j(t) - f(t)| = 0.$$

Theorem 12. Let $\{f_j\}_{j \in \mathbb{J}}$ be a family of real valued functions defined on $B \subset \mathbb{R}$. $\{f_j\}_{j \in \mathbb{J}} \Rightarrow f$ on *B* if and only if it is Δ -uniform Cauchy on *B*.

Proof. Necessity is obvious. Let $\{f_j\}_{j \in J}$ be Δ -uniform Cauchy on B. For a given $\epsilon > 0$ there exists $j_0 \in J$ and $K \subset J$ such that $\delta_{\Delta}(K) = 1$, the inequality

$$|f_j(t) - f_{j_0}(t)| < \frac{\epsilon}{2},$$
(1)

holds for all $j \in K$ and $t \in B$. Let $g_t: \mathbb{J} \to \mathbb{R}$ defined by $g_t(j) = f_j(t)$ for each $t \in B$. For each fixed t

$$|g_t(j) - g_t(j_0)| = |f_j(t) - f_{j_0}(t)| < \epsilon,$$

holds Δ -a.e. on \mathbb{J} . Therefore, the functions g_t , $(t \in B)$ are Δ -Cauchy. These functions have Δ limit. Let $f(t) = \Delta$ -lim_{$j \to \infty$} $g_t(j)$. As $j \to \infty$, the Δ -limit of (1) yields

$$|f(t) - f_{j_0}(t)| \le \frac{\epsilon}{2}.$$
(2)

In view of inequalities (1) and (2), one can get

$$|f_j(t) - f(t)| \le |f_j(t) - f_{j_0}(t)| + |f_{j_0}(t) - f(t)| < \epsilon,$$

for all $j \in K$ and for all $t \in B$.

Theorem 13. Let \mathbb{T} and \mathbb{J} be two time scales and $[\alpha, \beta] \subset B \subset \mathbb{T}$. If $f_j \in C_{rd}(B, \mathbb{R}) := {f | f : B \to \mathbb{R} \text{ is } rd - continuous}$ for all $j \in \mathbb{J}$, and ${f_j}_{j \in \mathbb{J}} \rightrightarrows f$, then $f \in C_{rd}(B, \mathbb{R})$ and

$$\Delta - \lim_{j \to \infty} \int_{\alpha}^{\beta} f_j(t) \Delta t = \int_{\alpha}^{\beta} f(t) \Delta t.$$

Proof. Let any positive ϵ be given. In accordance with Δ -uniform convergence, the time scale J has a subset K such that $\delta_{\Delta}(K) = 1$ and the inequality

$$|f_j(t) - f(t)| < \frac{\epsilon}{3},$$

holds for all $j \in K$ and for all $t \in B$.

Let $j_0 \in K$ and $t_0 \in B$ are arbitrary. We consider two cases. In the first case we assume that t_0 is left-dense. From rd-continuity of f_{j_0} , we can find $\delta > 0$ such that

$$|f_{j_0}(\xi) - f_{j_0}(\eta)| < \frac{\epsilon}{3},$$

for any $\xi, \eta \in (t_0 - \delta, t_0)$. If $t_n \to t_0^-$ as $n \to \infty$, then there exists natural number n_0 such that $n, m > n_0$ imply $t_m, t_n \in (t_0 - \delta, t_0)$ and

$$|f_{j_0}(t_n) - f_{j_0}(t_m)| < \frac{\epsilon}{3}.$$
(3)

Hence, for $m, n > n_0$, we have

$$|f(t_n) - f(t_m)| = |f(t_n) - f_{j_0}(t_n) + f_{j_0}(t_n) - f_{j_0}(t_m) + f_{j_0}(t_m) - f(t_m)|$$

$$\leq |f(t_n) - f_{j_0}(t_n)| + |f_{j_0}(t_n) - f_{j_0}(t_m)|$$

$$+ |f_{j_0}(t_m) - f(t_m)|$$

$$< \epsilon.$$
(4)

Therefore, the function f has finite left-sided limit at t_0 .

In the second case we assume that t_0 is right-dense. Then all functions f_j are continuous at t_0 . If $t_n \to t_0$ as $n \to \infty$, then there exists natural number n_0 such that $n, m > n_0$ imply $t_m, t_n \in (t_0 - \delta, t_0 + \delta)$ and (3-4) holds. This is implies continuity of f at t_0 . Therefore, f is Riemann Δ -integrable on every subinterval $[\alpha, \beta] \subset B$. So, we obtain the inequality

$$\left|\int_{\alpha}^{\beta} f_j(t)\Delta t - \int_{\alpha}^{\beta} f(t)\Delta t\right| \leq \int_{\alpha}^{\beta} \left|f_j(t) - f(t)\right|\Delta t < \frac{\epsilon}{3}(\beta - \alpha),$$

for every $j \in K$ that completes our proof.

Theorem 14. Let \mathbb{T} and \mathbb{J} be two time scales and $[\alpha, \beta] \subset \mathbb{T}$. Suppose that the functions

$$f_i: [\alpha, \beta] \to \mathbb{R} \quad (j \in \mathbb{J})$$

satisfies the following conditions on $[\alpha, \beta]$:

- 1. f_i has Hilger derivative and its Hilger derivative f_i^{Δ} is rd-continuous,
- $2. \ \{f_j\}_{j\in \mathbb{J}} \to f,$
- 3. $\{f_i^{\Delta}\}_{i \in \mathbb{J}} \rightrightarrows g$.

Then *f* has Hilger derivative on $[\alpha, \beta]$ and $f^{\Delta}(t) = g(t)$ for all $t \in [\alpha, \beta]$.

Proof. *g* is rd-continuous on $[\alpha, \beta]$ by Theorem 13 and so *g* is Riemann Δ -integrable on this interval. By the help of Theorem 13, we have

$$\int_{\alpha}^{t} g(s)\Delta s = \Delta - \lim_{j \to \infty} \int_{\alpha}^{t} f_{j}^{\Delta} f(s)\Delta s = \Delta - \lim_{j \to \infty} (f_{j}(t) - f_{j}(\alpha)) = f(t) - f(\alpha),$$

for all $t \in [\alpha, \beta]$. Since the left hand-side of the last equality has Hilger derivative, the right handside also has, and it follows that $f^{\Delta}(t) = g(t)$ for all $t \in [\alpha, \beta]$.

Theorem 15. (Dini's Theorem) Let X be a compact metric space. Let $f: X \to \mathbb{R}$ be a continuous function and the functions $f_j: X \to \mathbb{R}$, $(j \in J)$ are continuous for Δ -almost all J. If the following two conditions are satisfied:

1. $\{f_j\}_{j \in \mathbb{J}} \to f \text{ on } X$,

2. $f_i(x) \le f_i(x)$ for all $x \in X$ and Δ -almost all $i, j \in J$ such that i < j,

then $\{f_i\}_{i \in \mathbb{J}} \rightrightarrows f$ on *X*.

Proof. There exists a subset $K_1 \subset J$ with Δ -density 1. Moreover, for each $j \in K_1$ the functions f_j are continuous, and

$$f_i(x) \le f_i(x)$$
 for all $x \in X$,

holds for all $i, j \in K_1$ such that i < j. For each $j \in K_1$, define $g_j = f_j - f$. Then $\{g_j\}_{j \in K_1}$ is a family of continuous functions on the compact metric space *X* that converges Δ -pointwise to 0. Furthermore,

$$0 \le g_i(x) \le g_i(x),$$

for all $x \in X$ and $i, j \in K_1$ such that i < j.

Let $\epsilon > 0$ and define

$$G_j = \{x \in X : g_j(x) < \epsilon\}, \quad (j \in K_1).$$

Since g_i is continuous, then G_i is an open set and $G_i \subset G_j$ for each $i, j \in K_1$ such that i < j.

Let $x_0 \in X$ be arbitrary. Since $\Delta -\lim_{j\to\infty} g_j(x_0) = 0$, then there exists a subset $K_2 \subset J$ such that $\delta_{\Delta}(K_2) = 1$ and the inequality $|g_j(x_0)| < \epsilon$ holds for all $j \in K_2$. If we set $K = K_1 \cap K_2$ then $\delta_{\Delta}(K) = 1$ and $g_j(x_0) = |g_j(x_0)| < \epsilon$ for all $j \in K$. Thus $x_0 \in G_j$ for all $j \in K$, and thus, we have

$$X = \bigcup_{j \in K} G_j.$$

Since *K* is compact and $G_i \subset G_j$ when i < j, then there is a $j_0 \in K$ with $G_{j_0} = X$. Then we have $G_j = X$ for all $j \in K$ such that $j > j_0$. This implies that $f_j(x) - f(x) = g_j(x) < \epsilon$ for all $x \in X$ and $j \in K$ such that $j > j_0$. Consequently, $\{f_j\}_{j \in \mathbb{J}} \rightrightarrows f$ on *X*.

References

[1] Hilger, S., *Ein maßkettenkalkül mit anwendung auf zentrumsmannigfaltigkeiten*, PhD Thesis, 1989.

[2] Hilger, S., *Analysis on measure chains—a unified approach to continuous and discrete calculus*, Results in Mathematics 18, 1-2, 18-56, 1990.

[3] Fast, H., Sur la convergence statistique, Colloquium Mathematicae, 2(3-4), 1951.

[4] Schoenberg, I.J., *The integrability of certain functions and related summability methods*, The American Mathematical Monthly, 66(5), 361-775, 1959.

[5] Fridy, J.A., On statistical convergence, Analysis, 5(4), 301-314, 1985.

[6] Seyyidoğlu, M.S., Tan, N.Ö,. A note on statistical convergence on time scale, Journal of Inequalities and Applications, 2012(1), 219, 2012.

[7] Altın, Y., Koyunbakan, H., Yılmaz, E., *Uniform statistical convergence on time scales, Journal of Applied Mathematics*, vol. 2014, 6 pages, 2014.

[8] Yılmaz, E., Altın, A., Koyunbakan, H., λ -Statistical convergence on time scales, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 23, 69-78, 2016.

[9] Ceylan, T., Duman, O., Fundamental Properties of Statistical Convergence and Lacunary Statistical Convergence on Time Scales, Filomat, 31(14), 2017.