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Abstract 

In this paper we studied the behavior of a family of three dimensional cellular 

automata under periodic boundary condition by using matrix algebra. We obtained 

representation matrix of the this family with the help of polinomal algebra. We gave an 

application of obtained block matrices to coding theory over the ternary field. 

Keywords: Three dimensional cellular automata, Rule matrix, Error correcting 

codes 

Hücresel Dönüşümlerin Bir Kuralının Matris Temsili ve Kodlama Teorisinde Bir 

Uygulaması 

Öz 

Bu çalışmada, matris cebiri yardımıyla üç boyutlu bir hücresel dönüşüm ailesinin 

periyodik sınır şartı altında davranışını inceledik. Polinom cebiri yardımıyla bu ailenin 

temsil matrisini elde ettik. Elde edilen blok matrislerin üçlü cisimler üzerinde bir kodlama 

teorisi uygulamasını verdik. 

Anahtar Kelimeler: Üç boyutlu hücresel dönüşüm, Kural matris, Hata düzelten 

kodlar 
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1. Introduction and Basics 

Three dimensional cellular automata (3D-CA) have been studied a lot recently for 

their applications in many areas. The state space of these works are mainly binary field 

with two elements 0, 1 and so called as binary 3D-CA. One dimensional cellular automata 

(1D-CA) originally was introduced by Ulam and von Neumann in [1] and Wolfram 

investigated the complex behavior of 1D-CA rules (see [2]). 

For a particular step of time,which we call 𝑡, each cell of cellular grid has a state 

value and synchronously updates its state at the next time step 𝑡 + 1 depending on its 

neighbors and local rule. If this dependence is formulated by a relation amongst the 

neighbors of the cell that is applied to all cells at each time step then these CA are called 

regular. Regular CA is model of different physical events or applications. Besides all 

these applications, the reversibility problem of CA is studied as a crucial research topic 

due to its important role in many applications. 

The study of reversibility of CAs have received remarkable attention in the last few 

years due to its several applications in many disciplines (e.g., mathematics, physics, 

computer science, biology (see [3]), chemistry and so on) with different purposes (e.g., 

simulation of natural phenomena, pseudo-random number generation, image processing, 

analysis of universal model of computations, cryptography) (see [4]). For some of these 

applications, the inverse of CA are computed (see [5-10]). Most of these works done over 

one and two dimensional cellular automata (see [10-16]). 

However, lately three dimensional cellular automata hasn’t just much investigated, 

Hemmingson studied behavior of 3D-CA in [17]. Tsalides et al. studied the 

characterization of 3D-CA with the help of matrix algebra in [18]. They obtained matrix 

algebraic formulas concerning some exceptional rules of 3D-CA.Youbin et al. 

investigated 3D-CA model for HIV dynamics. in [19]. 

In this work, we define 3D-CA and then we obtain representation matrix for 

characterizing via matrix algebra. Finally we make an application about with coding 

theory over the ternary field. 
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2. Three Dimensional Cellular Automata 

In this section ,we describe of 3D-CAs over the field ℤ' with the aid of some local 

rules. Let ℤ' be states set and ℤ'ℤ
( is cells spaces. £ is local rule and F  is global transition 

function 

£: ℤ'ℤ
( ⟶ ℤ', F : ℤ'ℤ

( ⟶ ℤ'ℤ
(. 

For 3D-CA there is some classical type of neighborhoods.In this work, we only 

restrict ourselves to the adjacent neighbors which have found in more applications and 

they are very common cases. So, we define the 𝑡 + 1 ,- state of the 𝑖, 𝑗, 𝑘 ,-  cell as the 

following.  

        𝑥 2,3,4
,56 = £

𝑥 286,386,486
, , 𝑥 286,3,486

, , 𝑥 286,3,456
, , 𝑥 286,386,4

, ,

𝑥 286,386,456
, , 𝑥 286,3,4

, , 𝑥 286,356,4
, , 𝑥 286,356,486

, ,

𝑥 286,356,456
, , 𝑥 2,386,486

, , 𝑥 2,3,486
, , 𝑥 2,3,456

, ,

𝑥 2,386,4
, , 𝑥 2,386,456

, , , 𝑥 2,3,4
, , 𝑥 2,356,4

, ,

𝑥 2,,356,486
, , 𝑥 2,,356,456

, , 𝑥 256,386,486
, , 𝑥 256,3,486

, ,

𝑥 256,3,456
, , 𝑥 256,386,4

, , 𝑥 256,386,456
, , 𝑥 256,3,4

, ,

𝑥 256,356,4
, , 𝑥 256,356,486 ,

, 𝑥 256,356,456
, )

               (1) 

                   = 𝑎;𝑥 286,386,486
,56 + 𝑎6𝑥 286,3,486

,56 + ⋯+ 𝑎=>𝑥 256,356,456
,56 𝑚𝑜𝑑𝑚 . 

The value of each cell for the next state may not depend upon all 27 neighbors.The 

linear combination of the neighboring cells on which each cell value determines the rule 

number of the 3D-CA.Regarding the neighborhood of the extreme cells, there exist some 

approaches (for details see [20]). we can use periodic boundary condition.Now we can 

define it as follows: 

A Periodic Boundary CA is the one in which the extreme cells are adjacent to each 

other.  

In this paper, in order to obtain representation matrix for characterizing 3D-CA, we 

can use  the following local rule,which help of defining the rule matrix: 

         𝑥 2,3,4
,56 = 𝑎. 𝑥 2,3,456

,56 + 𝑏. 𝑥 2,356,4
,56 + 𝑐. 𝑥 2,386,4

,56                                          (2) 
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                       +𝑑. 𝑥 2,3,486
,56 + 𝑒. 𝑥 286,3,4

,56 + 𝑓. 𝑥 256,3,4
,56  

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ 𝑍' − {0}. 

In order to characterize 3-D PBCA with the local rules in Eq. (2), we get rule matrix 

for 𝑚, 𝑛, 𝑠 ≥ 3 (𝑚, 𝑛, 𝑠 ∈ ℤ5) as follows:																																																				 

		(𝑇ST)'UV×'UV =

𝐾V 𝐸V 𝑂V 𝑂V … 𝑂V 𝑂V 𝐹V
𝐹V 𝐾V 𝐸V 𝑂V … 𝑂V 𝑂V 𝑂V
𝑂V 𝐹V 𝐾V 𝐸V … 𝑂V 𝑂V 𝑂V
𝑂V 𝑂V 𝐹V 𝐾V … 𝑂V 𝑂V 𝑂V
… … … … … … … …
𝑂V 𝑂V 𝑂V 𝑂V … 𝐾V 𝐸V 𝑂V
𝑂V 𝑂V 𝑂V 𝑂V … 𝐹V 𝐾V 𝐸V
𝐸V 𝑂V 𝑂V 𝑂V … 𝑂V 𝐹V 𝐾V

		,				 

𝐾V, 𝐸V, 𝑂V, 𝐹V are 𝑠×𝑠 block matrices where 𝑠 = 𝑚×𝑛. 

Their sub matrices are as follows: 

𝐾V =

𝑆U 𝑐, 𝑏 𝑑. 𝐼U 𝑂U … 𝑂U 𝑎. 𝐼U
𝑎. 𝐼U 𝑆U 𝑐, 𝑏 𝑑. 𝐼U … 𝑂U 𝑂U
𝑂U 𝑎. 𝐼U 𝑆U 𝑐, 𝑏 … 𝑂U 𝑂U
… … … … … …
𝑂U 𝑂U 𝑂U … 𝑆U 𝑐, 𝑏 𝑑. 𝐼U
𝑑. 𝐼U 𝑂U 𝑂U … 𝑎. 𝐼U 𝑆U 𝑐, 𝑏 UV×UV.

, 

			𝐸V =

𝑒. 𝐼U 𝑂U 𝑂U … 𝑂U 𝑂U
𝑂U 𝑒. 𝐼U 𝑂U … 𝑂U 𝑂U
𝑂U 𝑂V 𝑒. 𝐼U … 𝑂U 𝑂U
… … … … … …
𝑂U 𝑂U 𝑂U … 𝑒. 𝐼U 𝑂U
𝑂U 𝑂U 𝑂U … 𝑂U 𝑒. 𝐼U UV×UV

, 

𝐹V =

𝑓. 𝐼U 𝑂U 𝑂U … 𝑂U 𝑂U
𝑂U 𝑓. 𝐼U 𝑂V … 𝑂U 𝑂U
𝑂U 𝑂U 𝑓. 𝐼U … 𝑂U 𝑂U
… … … … … …
𝑂U 𝑂U 𝑂U … 𝑓. 𝐼U 𝑂U
𝑂U 𝑂U 𝑂U … 𝑂U 𝑓. 𝐼U UV×UV

, 
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𝑂V =

𝑂U 𝑂U 𝑂U … 𝑂U 𝑂U
𝑂U 𝑂U 𝑂U … 𝑂U 𝑂U
𝑂U 𝑂U 𝑂U … 𝑂U 𝑂U
… … … … … …
𝑂U 𝑂U 𝑂U … 𝑂U 𝑂U
𝑂U 𝑂U 𝑂U … 𝑂U 𝑂U UV×UV

. 

𝐼U is 𝑛×𝑛 identity matrix. 𝑂U is 𝑛×𝑛 zero matrix and then 𝑆U 𝑐, 𝑏  is as follow: 

𝑆U 𝑐, 𝑏 =

0 𝑏 0 0 … 0 0 𝑐
𝑐 0 𝑏 0 … 0 0 0
0 𝑐 0 𝑏 … 0 0 0
0 0 𝑐 0 … 0 0 0
… … … … … … … …
0 0 0 0 … 0 𝑏 0
0 0 0 0 … 𝑐 0 𝑏
𝑏 0 0 0 … 0 𝑐 0 U×U

. 

Example 1. If we take 𝑚 = 3, 𝑛 = 3, 𝑠 = 3,	then we get the rule matrix 𝑇ST of 

order 27×27. In this situation we have 5 configurations and then we consider a 

configuration of size 3×3×3 with periodic boundary condition. 

 

𝑥6b6 𝑥666 𝑥6=6 𝑥6b6 𝑥666
𝑥6bb 𝑥66b 𝑥6=b 𝑥6bb 𝑥66b
𝑥6b= 𝑥66= 𝑥6== 𝑥6b= 𝑥66=
𝑥6b6 𝑥666 𝑥6=6 𝑥6b6 𝑥666
𝑥6bb 𝑥66b 𝑥6=b 𝑥6bb 𝑥66b

, 

𝑥bb6 𝑥b66 𝑥b=6 𝑥bb6 𝑥b66
𝑥bbb 𝑥b6b 𝑥b=b 𝑥bbb 𝑥b6b
𝑥bb= 𝑥b6= 𝑥b== 𝑥bb= 𝑥b6=
𝑥bb6 𝑥b66 𝑥b=6 𝑥bb6 𝑥b66
𝑥bbb 𝑥b6b 𝑥b=b 𝑥bbb 𝑥b6b

, 

𝑥=b6 𝑥=66 𝑥==6 𝑥=b6 𝑥=66
𝑥=bb 𝑥=6b 𝑥==b 𝑥=bb 𝑥=6b
𝑥=b= 𝑥=6= 𝑥=== 𝑥=b= 𝑥=6=
𝑥=b6 𝑥=66 𝑥==6 𝑥=b6 𝑥=66
𝑥=bb 𝑥=6b 𝑥==b 𝑥=bb 𝑥=6b

, 
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𝑥6b6 𝑥666 𝑥6=6 𝑥6b6 𝑥666
𝑥6bb 𝑥66b 𝑥6=b 𝑥6bb 𝑥66b
𝑥6b= 𝑥66= 𝑥6== 𝑥6b= 𝑥66=
𝑥6b6 𝑥666 𝑥6=6 𝑥6b6 𝑥666
𝑥6bb 𝑥66b 𝑥6=b 𝑥6bb 𝑥66b

, 

𝑥bb6 𝑥b66 𝑥b=6 𝑥bb6 𝑥b66
𝑥bbb 𝑥b6b 𝑥b=b 𝑥bbb 𝑥b6b
𝑥bb= 𝑥b6= 𝑥b== 𝑥bb= 𝑥b6=
𝑥bb6 𝑥b66 𝑥b=6 𝑥bb6 𝑥b66
𝑥bbb 𝑥b6b 𝑥b=b 𝑥bbb 𝑥b6b

, 

we apply local rule all the cells and than we obtain new configurations is as follow: 

𝑏. 𝑥b=b + 𝑑. 𝑥b6= + 𝑐. 𝑥bbb + 𝑎. 𝑥b66 + 𝑒. 𝑥=6b + 𝑓. 𝑥66b = 𝑦b6b 

𝑏. 𝑥bbb + 𝑑. 𝑥b== + 𝑐. 𝑥b6b + 𝑎. 𝑥b=6 + 𝑒. 𝑥==b + 𝑓. 𝑥6=b = 𝑦b=b 

𝑏. 𝑥b6b + 𝑑. 𝑥bb= + 𝑐. 𝑥b=b + 𝑎. 𝑥bb6 + 𝑒. 𝑥=bb + 𝑓. 𝑥66b = 𝑦bbb 

𝑏. 𝑥b== + 𝑑. 𝑥b66 + 𝑐. 𝑥bb= + 𝑎. 𝑥b6b + 𝑒. 𝑥=6= + 𝑓. 𝑥66= = 𝑦b6= 

𝑏. 𝑥bb= + 𝑑. 𝑥b=6 + 𝑐. 𝑥b6= + 𝑎. 𝑥b=b + 𝑒. 𝑥=== + 𝑓. 𝑥6== = 𝑦b== 

𝑏. 𝑥b6= + 𝑑. 𝑥bb6 + 𝑐. 𝑥b== + 𝑎. 𝑥bbb + 𝑒. 𝑥=b= + 𝑓. 𝑥6b= = 𝑦bb= 

𝑏. 𝑥b=6 + 𝑑. 𝑥b6b + 𝑐. 𝑥bb6 + 𝑎. 𝑥b6= + 𝑒. 𝑥=66 + 𝑓. 𝑥666 = 𝑦b66 

𝑏. 𝑥bb6 + 𝑑. 𝑥b=b + 𝑐. 𝑥b66 + 𝑎. 𝑥b== + 𝑒. 𝑥==6 + 𝑓. 𝑥6=6 = 𝑦b=6 

𝑏. 𝑥b66 + 𝑑. 𝑥bbb + 𝑐. 𝑥b=6 + 𝑎. 𝑥bb= + 𝑒. 𝑥=b6 + 𝑓. 𝑥6b6 = 𝑦bb6 

𝑏. 𝑥==b + 𝑑. 𝑥=6= + 𝑐. 𝑥=bb + 𝑎. 𝑥=66 + 𝑒. 𝑥66b + 𝑓. 𝑥b6b = 𝑦=6b 

𝑏. 𝑥=bb + 𝑑. 𝑥=== + 𝑐. 𝑥=6b + 𝑎. 𝑥==6 + 𝑒. 𝑥6=b + 𝑓. 𝑥b=b = 𝑦==b 

𝑏. 𝑥=6b + 𝑑. 𝑥=b= + 𝑐. 𝑥==b + 𝑎. 𝑥=b6 + 𝑒. 𝑥6bb + 𝑓. 𝑥bbb = 𝑦=bb 

𝑏. 𝑥=== + 𝑑. 𝑥=66 + 𝑐. 𝑥=b= + 𝑎. 𝑥=6b + 𝑒. 𝑥66= + 𝑓. 𝑥b6= = 𝑦=6= 

𝑏. 𝑥=b= + 𝑑. 𝑥==6 + 𝑐. 𝑥=6= + 𝑎. 𝑥==b + 𝑒. 𝑥6== + 𝑓. 𝑥b== = 𝑦=== 

𝑏. 𝑥=6= + 𝑑. 𝑥=b6 + 𝑐. 𝑥=== + 𝑎. 𝑥=bb + 𝑒. 𝑥6b= + 𝑓. 𝑥bb= = 𝑦=b= 
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𝑏. 𝑥==6 + 𝑑. 𝑥=6b + 𝑐. 𝑥=b6 + 𝑎. 𝑥=6= + 𝑒. 𝑥666 + 𝑓. 𝑥b66 = 𝑦=66 

𝑏. 𝑥=b6 + 𝑑. 𝑥==b + 𝑐. 𝑥=66 + 𝑎. 𝑥=== + 𝑒. 𝑥6=6 + 𝑓. 𝑥b=6 = 𝑦==6 

𝑏. 𝑥=66 + 𝑑. 𝑥=bb + 𝑐. 𝑥==6 + 𝑎. 𝑥=b= + 𝑒. 𝑥6b6 + 𝑓. 𝑥bb6 = 𝑦=b6 

𝑏. 𝑥6=b + 𝑑. 𝑥66= + 𝑐. 𝑥6bb + 𝑎. 𝑥666 + 𝑒. 𝑥b6b + 𝑓. 𝑥=6b = 𝑦66b 

𝑏. 𝑥6bb + 𝑑. 𝑥6== + 𝑐. 𝑥66b + 𝑎. 𝑥6=6 + 𝑒. 𝑥b=b + 𝑓. 𝑥==b = 𝑦6=b 

𝑏. 𝑥66b + 𝑑. 𝑥6b= + 𝑐. 𝑥6=b + 𝑎. 𝑥6b6 + 𝑒. 𝑥bbb + 𝑓. 𝑥=bb = 𝑦6bb 

𝑏. 𝑥6== + 𝑑. 𝑥666 + 𝑐. 𝑥6b= + 𝑎. 𝑥66b + 𝑒. 𝑥b6= + 𝑓. 𝑥=6= = 𝑦66= 

𝑏. 𝑥6b= + 𝑑. 𝑥6=6 + 𝑐. 𝑥66= + 𝑎. 𝑥6=b + 𝑒. 𝑥b== + 𝑓. 𝑥=== = 𝑦6== 

𝑏. 𝑥66= + 𝑑. 𝑥6b6 + 𝑐. 𝑥6== + 𝑎. 𝑥6bb + 𝑒. 𝑥bb= + 𝑓. 𝑥=b= = 𝑦6b= 

𝑏. 𝑥6=6 + 𝑑. 𝑥66b + 𝑐. 𝑥6b6 + 𝑎. 𝑥66= + 𝑒. 𝑥b66 + 𝑓. 𝑥=66 = 𝑦666 

𝑏. 𝑥6b6 + 𝑑. 𝑥6=b + 𝑐. 𝑥666 + 𝑎. 𝑥6== + 𝑒. 𝑥b=6 + 𝑓. 𝑥==6 = 𝑦6=6 

𝑏. 𝑥666 + 𝑑. 𝑥6bb + 𝑐. 𝑥6=6 + 𝑎. 𝑥6b= + 𝑒. 𝑥bb6 + 𝑓. 𝑥=b6 = 𝑦6b6. 

In order to obtain represantation matrix 𝑇ST corresponding to the local rule applied 

over al the cells , we evaluate the basis vector as follows: 

𝑇ST(𝐸6) = 𝑇ST(100000000000000000000000000)d 

                               = (0 𝑐 𝑏 𝑎 0 0 𝑑 0 0 𝑓 0 0 0 0 0 0 0 0 𝑒 0 0 0 0 0 0 0 0)d, 

𝑇ST(𝐸=) = 𝑇ST(010000000000000000000000000)d 

                              	= (𝑏 0 𝑐 0 𝑎 0 0 𝑑 0 0 𝑓 0 0 0 0 0 0 0 0 𝑒 0 0 0 0 0 0 0 0)d. 

Transpose of 𝑇ST(𝐸6) and 𝑇ST(𝐸=) compose first and second columns of 

represantation matrix 𝑇ST.we can similarly obtain the rest of the columns and we get 

represantation matrix 𝑇ST =e×=e as follow: 
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0 𝑏 𝑐 𝑑 0 0 𝑎 0 0 𝑒 0 0 0 0 0 0 0 0 𝑓 0 0 0 0 0 0 0 0
𝑐 0 𝑏 0 𝑑 0 0 𝑎 0 0 𝑒 0 0 0 0 0 0 0 0 𝑓 0 0 0 0 0 0 0
𝑏 𝑐 0 0 0 𝑑 0 0 𝑎 0 0 𝑒 0 0 0 0 0 0 0 0 𝑓 0 0 0 0 0 0
𝑎 0 0 0 𝑏 𝑐 𝑑 0 0 0 0 0 𝑒 0 0 0 0 0 0 0 0 𝑓 0 0 0 0 0
0 𝑎 0 𝑐 0 𝑏 0 𝑑 0 0 0 0 0 𝑒 0 0 0 0 0 0 0 0 𝑓 0 0 0 0
0 0 𝑎 𝑏 𝑐 0 0 0 𝑑 0 0 0 0 0 𝑒 0 0 0 0 0 0 0 0 𝑓 0 0 0
𝑑 0 0 𝑎 0 0 0 𝑏 𝑐 0 0 0 0 0 0 𝑒 0 0 0 0 0 0 0 0 𝑓 0 0
0 𝑑 0 0 𝑎 0 𝑐 0 𝑏 0 0 0 0 0 0 0 𝑒 0 0 0 0 0 0 0 0 𝑓 0
0 0 𝑑 0 0 𝑎 𝑏 𝑐 0 0 0 0 0 0 0 0 0 𝑒 0 0 0 0 0 0 0 0 𝑓
𝑓 0 0 0 0 0 0 0 0 0 𝑏 𝑐 𝑑 0 0 𝑎 0 0 𝑒 0 0 0 0 0 0 0 0
0 𝑓 0 0 0 0 0 0 0 𝑐 0 𝑏 0 𝑑 0 0 𝑎 0 0 𝑒 0 0 0 0 0 0 0
0 0 𝑓 0 0 0 0 0 0 𝑏 𝑐 0 0 0 𝑑 0 0 𝑎 0 0 𝑒 0 0 0 0 0 0
0 0 0 𝑓 0 0 0 0 0 𝑎 0 0 0 𝑏 𝑐 𝑑 0 0 0 0 0 𝑒 0 0 0 0 0
0 0 0 0 𝑓 0 0 0 0 0 𝑎 0 𝑐 0 𝑏 0 𝑑 0 0 0 0 0 𝑒 0 0 0 0
0 0 0 0 0 𝑓 0 0 0 0 0 𝑎 𝑏 𝑐 0 0 0 𝑑 0 0 0 0 0 𝑒 0 0 0
0 0 0 0 0 0 𝑓 0 0 𝑑 0 0 𝑎 0 0 0 𝑏 𝑐 0 0 0 0 0 0 𝑒 0 0
0 0 0 0 0 0 0 𝑓 0 0 𝑑 0 0 𝑎 0 𝑐 0 𝑏 0 0 0 0 0 0 0 𝑒 0
0 0 0 0 0 0 0 0 𝑓 0 0 𝑑 0 0 𝑎 𝑏 𝑐 0 0 0 0 0 0 0 0 0 𝑒
𝑒 0 0 0 0 0 0 0 0 𝑓 0 0 0 0 0 0 0 0 0 𝑏 𝑐 𝑑 0 0 𝑎 0 0
0 𝑒 0 0 0 0 0 0 0 0 𝑓 0 0 0 0 0 0 0 𝑐 0 𝑏 0 𝑑 0 0 𝑎 0
0 0 𝑒 0 0 0 0 0 0 0 0 𝑓 0 0 0 0 0 0 𝑏 𝑐 0 0 0 𝑑 0 0 𝑎
0 0 0 𝑒 0 0 0 0 0 0 0 0 𝑓 0 0 0 0 0 𝑎 0 0 0 𝑏 𝑐 𝑑 0 0
0 0 0 0 𝑒 0 0 0 0 0 0 0 0 𝑓 0 0 0 0 0 𝑎 0 𝑐 0 𝑏 0 𝑑 0
0 0 0 0 0 𝑒 0 0 0 0 0 0 0 0 𝑓 0 0 0 0 0 𝑎 𝑏 𝑐 0 0 0 𝑑
0 0 0 0 0 0 𝑒 0 0 0 0 0 0 0 0 𝑓 0 0 𝑑 0 0 𝑎 0 0 0 𝑏 𝑐
0 0 0 0 0 0 0 𝑒 0 0 0 0 0 0 0 0 𝑓 0 0 𝑑 0 0 𝑎 0 𝑐 0 𝑏
0 0 0 0 0 0 0 0 𝑒 0 0 0 0 0 0 0 0 𝑓 0 0 𝑑 0 0 𝑎 𝑏 𝑐 0

=e×=e

 

=
𝐾b 𝐸b 𝐹b
𝐹b 𝐾b 𝐸b
𝐸b 𝐹b 𝐾b =e×=e

. 

𝐾b, 𝐸b , 𝐹b, 𝑂b are block matrices of 𝑇ST =e×=e which are given as follows: 

𝐾b =
𝑆b 𝑐, 𝑏 𝑑. 𝐼b 𝑂b
𝑎. 𝐼b 𝑆b 𝑐, 𝑏 𝑑. 𝐼b
𝑂b 𝑎. 𝐼b 𝑆b 𝑐, 𝑏 f×f

, 					𝐸b =
𝑒. 𝐼b 𝑂b 𝑂b
𝑂b 𝑒. 𝐼b 𝑂b
𝑂b 𝑂b 𝑒. 𝐼b f×f

, 

𝐹b =
𝑓. 𝐼b 𝑂b 𝑂b
𝑂b 𝑓. 𝐼b 𝑂b
𝑂b 𝑂b 𝑓. 𝐼b f×f

,																					𝑂b =
𝑂b 𝑂b 𝑂b
𝑂b 𝑂b 𝑂b
𝑂b 𝑂b 𝑂b f×f

. 

3. Application of Error Correcting Code Based 3D-CA with PBC 

1D-CA based bit error correcting binary codes (CA-ECC) were first proposed by 

Chowdhury et al. in [21]. This method recently has been generalized to error correcting 

codes over non binary fields by Koroglu et al. in [5]. It is also known that CA based error 

correcting codes have some advantages compared to the classical ones [5, 21, 22]. In this 
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section, we present an application of CA based bit error correcting codes by applying 

reversible CA which fall into a 3D-CA family with periodic boundary condition. First we 

present the encoding and decoding process that is given in [5]: 

Let 𝑇 be a 𝑛×𝑛 nonsingular transition matrix. Assume that there exists 1 ≤ 𝑘 ≤ 𝑛, 

𝑘 ∈ ℤ5 such that 𝐺 = 𝐼U|𝑇4  (𝐼U, 𝑛×𝑛 identity matrix) generates a linear code that 

corrects up to 𝑡 errors. 

Encoding: 

Let 𝐼 = 𝑖6, 𝑖=,⋯ , 𝑖U ∈ ℤbU be an information vector, where 𝑛 is the rank of the 

nonsingular transition matrix.Then, the encoded codeword is as follow: 

𝐶𝑊 = 𝐼, 𝑇4 𝐼 = 𝑖6, 𝑖=, . . . , 𝑖U, 𝑐U56, 𝑐U5=, … , 𝑐=U ,  

i.e., 

𝐶 = 𝑇4 𝐼 = 𝑐U56, 𝑐U5=, … , 𝑐=U 	 

is the check vector. 

Now, we present a decoding scheme for ternary CA based error correcting codes. 

Decoding: 

Now suppose that the codeword 𝐶𝑊 = (𝐼, 𝑇4[𝐼]) is sent and 𝐶𝑊n = 𝐼n, 𝑇4 𝐼 =

𝑖6n , 𝑖=n , . . . , 𝑖Un , 𝑐U56n , 𝑐U5=n , … , 𝑐=Un = (𝐼 ⊕ 𝐼p, 𝑇4[𝐼] ⊕ 𝐶p) (where the operator ⊕ 

represent modulo 3 addition) is the received word. Here, 𝐼p and 𝐶p represent the errors 

that have occurred in information and check bits respectively. We assume that the sum of 

the Hamming weight of 𝐼p and 𝐶p are less or equal to 𝑡 i.e. if 𝑤r 𝐼p ≤ 𝑖 and 𝑤r 𝐶p ≤

𝑡 − 𝑖 𝑖 = 1,2, . . . , 𝑡 , then 𝑤r 𝐼p + 𝑤r 𝐶p ≤ 𝑡. The syndrome vector is defined by:  

                                𝑆 = 2𝑇4 𝐼n ⊕ 𝐶n = 2𝑇4[𝐼p] ⊕ 𝐶p.                                     (3) 

The syndrome of both the information and check vectors is defined by  

                                                   𝑆U = 2𝑇4[𝐼n] ⊕ 𝐶n                                             (4) 

and  
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                                                   𝑆s = 𝑇4[𝐼n] ⊕ 2𝐶n,                                            (5) 

respectively. 

The example given in the following realizes the encoding-decoding schemes above 

by using a 27×27 invertible rule matrix 𝑇 = 𝑇ST of 3D cellular automata. 

Example 2. Let b = c = e = 1, a = f = 0, d = 2 be elements in ternary field 

Fb.Then we have a 27×27 rule matrix T = T|} with det T = 2 in Fb. Thus the matrix 

T is non singular and for k = 2 the matrix G = I=e|T=  generates a 54,27,5 b linear 

code with d C = 5. It is known that, this code can correct all one and two errors. 

Let I = 111111111111111111111111111 be information part of a codeword. 

Then, the check part is C = T= I = 111111111111111111111111111 and so CW =

I, T= I  is a codeword of length 54. 

Case 1. Suppose that one error occurs in the information part. For instance, suppose 

that the received word is  

𝐶𝑊n = 211111111111111111111111111111111111111111111111111111

= 𝐼n|𝐶n . 

Now, we compute the syndrome as  

𝑆 = 2𝑇= 𝐼n ⊕ 𝐶n = 122200022200000000011000200. 

The syndrome of the check part is  

𝑆s = 𝑇4 𝐼n ⊕ 2𝐶n = 000000000000000000000000000, 

as we should expect since the errors are located in the information part as supposed.  

𝑆=e = 𝑆 ⊕ 𝑆s = 122200022200000000011000200. 

Therefore,  

𝐼p = 𝑇8= 𝑆=e = 200000000000000000000000000. 

𝐼 = 𝐼n ⊕ 𝐼p = 211111111111111111111111111

⊕ 200000000000000000000000000 
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and 𝐶 = 𝐶n. Hence, the error vector is  

𝐸 = 200000000000000000000000000000000000000000000000000000. 

Case 2. Suppose that one error occurs in the check part. Let the received word be  

𝐶𝑊n = 111111111111111111111111111111111111111111111111111110

= 𝐼n|𝐶n . 

The syndrome of the check part can be computed as  

𝑆 = 𝑇= 𝐼n ⊕ 2𝐶n = 000000000000000000000000001. 

The syndromes of the information and the check parts are  

𝑆=e = 000000000000000000000000000 

and  

𝑆s = 000000000000000000000000001, 

respectively. Next,  

𝐼p = 𝑇8= 𝑆=e = 000000000000000000000000000 

and  

𝐶p = 𝑆s = 000000000000000000000000001. 

Hence,  

𝐶 = 𝐶n ⊕ 𝐶p = 111111111111111111111111111. 

 

So, the error vector is  

𝐸 = 200000000000000000000000000000000000000000000000000001. 
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4. Conclusion 

In this paper, the author studied a family of three dimensional cellular automata. 

The algebraic representation of such 3D-CA is established. The author obtained 

representation matrice via matrice algebra and then author gave an important application 

about coding theory over the ternary field and we conclude by presenting an application 

to error correcting codes where reversibility of cellular automata is crucial. 
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